
Package ‘BCT’
January 20, 2025

Type Package

Title Bayesian Context Trees for Discrete Time Series

Version 1.2

Date 2022-11-05

Author Ioannis Papageorgiou, Valentinian Mihai Lungu, Ioannis Kontoyiannis

Maintainer Valentinian Mihai Lungu <valentinian.mihai@gmail.com>

Description An implementation of a collection of tools for exact Bayesian inference with dis-
crete times series. This package contains functions that can be used for prediction, model selec-
tion, estimation, segmentation/change-point detection and other statistical tasks. Specifi-
cally, the functions provided can be used for the exact computation of the prior predictive likeli-
hood of the data, for the identification of the a posteriori most likely (MAP) variable-
memory Markov models, for calculating the exact posterior probabili-
ties and the AIC and BIC scores of these models, for prediction with respect to log-loss and 0-
1 loss and segmentation/change-point detection. Example data sets from finance, genetics, ani-
mal communication and meteorology are also provided. Detailed descriptions of the underly-
ing theory and algorithms can be found in [Kontoyiannis et al. 'Bayesian Context Trees: Mod-
elling and exact inference for discrete time series.' Journal of the Royal Statistical Society: Se-
ries B (Statistical Methodology), April 2022. Avail-
able at: <arXiv:2007.14900> [stat.ME], July 2020] and [Lungu et al. 'Change-point Detec-
tion and Segmentation of Discrete Data using Bayesian Con-
text Trees' <arXiv:2203.04341> [stat.ME], March 2022].

License GPL (>= 2)

LazyData true

Encoding UTF-8

SystemRequirements C++11

Imports Rcpp (>= 1.0.5), stringr, igraph, grDevices, graphics

LinkingTo Rcpp

Depends R (>= 4.0)

RoxygenNote 7.1.2

NeedsCompilation yes

Repository CRAN

Date/Publication 2022-05-12 14:00:05 UTC

1

https://arxiv.org/abs/2007.14900
https://arxiv.org/abs/2203.04341

2 BCT

Contents
BCT . 2
calculate_exact_changepoint_posterior . 4
compute_counts . 5
CTW . 6
draw_models . 7
el_nino . 7
enterophage . 8
generate_data . 8
gene_s . 9
infer_fixed_changepoints . 10
infer_unknown_changepoints . 11
kBCT . 12
log_loss . 14
MAP_parameters . 15
ML . 16
pewee . 17
plot_changepoint_posterior . 18
plot_individual_changepoint_posterior . 19
prediction . 20
sars_cov_2 . 21
show_tree . 22
simian_40 . 23
SP500 . 23
three_changes . 24
zero_one_loss . 24

Index 26

BCT Bayesian Context Trees (BCT) algorithm

Description

Finds the maximum a posteriori probability (MAP) tree model.

Usage

BCT(input_data, depth, beta = NULL)

Arguments

input_data the sequence to be analysed. The sequence needs to be a "character" object. See
the examples section on how to transform any dataset to a "character" object.

depth maximum memory length.
beta hyper-parameter of the model prior. Takes values between 0 and 1. If not ini-

tialised in the call function, the default value is 1− 2−m+1, where m is the size
of the alphabet; for more information see Kontoyiannis et al. (2020).

https://arxiv.org/pdf/2007.14900.pdf

BCT 3

Value

returns a list object which includes:

Contexts MAP model given as a list object containing the contexts of its leaves.

Results a dataframe with the following columns: prior probability, log(prior probabil-
ity), posterior probability, log(posterior probability), number of leaves, maxi-
mum depth, BIC score, AIC score and maximum log-likelihood.

See Also

kBCT

Examples

Finding the MAP model with maximum depth <= 10
for the SP500 dataset (with default value beta):

BCT(SP500, 10)

For custom beta (e.g. 0.7):

BCT(SP500, 10, 0.7)

The type of the input dataset is "character"
If the dataset is contained within a vector:

q <- c(1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0)

Convert a vector to a "character" object:
s <- paste(q, collapse = "")

BCT(s, 2)

Reading a file using the readChar function

Example 1: The dataset is stored in a .txt file

fileName <- '~/example_data.txt' # fileName stores the path to the dataset

s<-readChar(fileName, file.info(fileName)$size)

Make sure that s does not contain any "\n" at the end of the string
To remove last entry:
s<-gsub('.$', '', s)

To remove any unwanted characters (e.g. "\n"):
s<-gsub('\n', '', s)

Example 2: The dataset is stored in a .csv file

fileName <- '~/example_data.csv' # fileName stores the path to the dataset

4 calculate_exact_changepoint_posterior

s<-readChar(fileName, file.info(fileName)$size)

Depending on the running environment,
s might contain unwanted characters such as: "\n" or "\r\n".
Remove any unwanted characters (e.g. "\r\n"):
s<-gsub('\r\n', '', s)

Always make sure that s does not contain any unwanted characters

calculate_exact_changepoint_posterior

Calculates the exact posterior for a sequence with a single change-
point.

Description

This function calculates the exact posterior for a sequence with a single change-point.

Usage

calculate_exact_changepoint_posterior(input_data, depth, alphabet)

Arguments

input_data the sequence to be analysed.

depth maximum memory length.

alphabet symbols appearing in the sequence.

Value

empirical posterior of the change-points locations.

See Also

infer_unknown_changepoints

Examples

Use the first 300 samples of the simian_40 dataset.
Run the function with 1 change-point, a maximum depth of 2 and the ["a", "c", "g", "t"] alphabet.

res <- calculate_exact_changepoint_posterior(substr(simian_40, 1, 300), 2, c("acgt"))

compute_counts 5

compute_counts Compute empirical frequencies of all contexts

Description

Computes the count vectors of all contexts up to a certain length (D) for a given dataset. The first D
characters are used to construct the initial context and the counting is performed on the remaining
characters. These counts are needed for intermediate computations in BCT and kBCT, and can
also be viewed as maximum likelihood estimates of associated parameters; see Kontoyiannis et al.
(2020).

Usage

compute_counts(input_data, depth)

Arguments

input_data the sequence to be analysed. The sequence needs to be a "character" object.
See the examples section of the BCT/kBCT functions on how to transform any
dataset to a "character" object.

depth maximum memory length.

Value

a list containing the counts of all contexts of length ≤ depth. If a context with a smaller length than
the maximum depth is not contained in the output, its associated count vector is 0. ’Root’ indicates
the empty context.

See Also

BCT, generate_data

Examples

For the pewee dataset:
compute_counts(pewee, 3)

https://arxiv.org/pdf/2007.14900.pdf
https://arxiv.org/pdf/2007.14900.pdf

6 CTW

CTW Context Tree Weighting (CTW) algorithm

Description

Computes the prior predictive likelihood of the data given a specific alphabet. This function is used
in for change-point point/segmentation problems

Usage

CTW(input_data, depth, desired_alphabet = NULL, beta = NULL)

Arguments

input_data the sequence to be analysed. The sequence needs to be a "character" object.
See the examples section of the BCT/kBCT functions on how to transform any
dataset to a "character" object.

depth maximum memory length.
desired_alphabet

set containing the symbols of the process. If not initialised, the default set con-
tains all the unique symbols which appear in the sequence. This parameter is
needed for the segmentation problem where short segments might not contain
all the symbols in the alphabet.

beta hyper-parameter of the model prior. Takes values between 0 and 1. If not ini-
tialised in the call function, the default value is 1− 2−m+1, where m is the size
of the alphabet; for more information see Kontoyiannis et al. (2020).

Value

returns the natural logarithm of the prior predictive likelihood of the data.

See Also

BCT, kBCT

Examples

For the gene_s dataset with a maximum depth of 10 (with dafault value of beta):
CTW(gene_s, 10)

With the ["0", "1", "2", "3"] alphabet
CTW(gene_s, 10, "0123")

For custom beta (e.g. 0.8):
CTW(gene_s, 10, ,0.8)

https://arxiv.org/pdf/2007.14900.pdf

draw_models 7

draw_models Plot the results of the BCT and kBCT functions

Description

This function plots the models produced by the BCT and kBCT functions.

Usage

draw_models(lst)

Arguments

lst output of the BCT/kBCT function.

Value

plots of the BCT/kBCT output models.

See Also

show_tree, BCT, kBCT

Examples

Use the pewee dataset as an example:
q <- BCT(pewee, 5) # maximum depth of 5

draw_models(q)
r <- kBCT(pewee, 5, 3)

maximum depth of 5, and k = 3 (top 3 a posteriori most likely models)
draw_models(r)

el_nino El Nino

Description

This dataset consists of 495 annual observations between 1525 to 2020, with 0 representing the
absence of an El Nino event and 1 indicating its presence. El Nino is one of the most influential
natural climate patterns on earth. It impacts ocean temperatures, the strength of ocean currents, and
the local weather in South America.

Usage

el_nino

8 generate_data

Format

An object of class "character".

References

W.H. Quinn, V.T. Neal, and S.E. Antunez De Mayolo. El Nino occurrences over the past four and a
half centuries. Journal of Geophysical Research: Oceans, 92(C13):14449–14461, 1987. (Quinn)

(el_nino)s

enterophage Enterobacteria_phage_lambda

Description

This dataset contains the 48502 base-pair-long genome of the bacteriophage lambda virus. The
bacteriophage lambda is a parasite of the intestinal bacterium Escherichia coli. This virus is a
benchmark sequence for the comparison of segmentation algorithms.

Usage

enterophage

Format

An object of class "character".

References

Enterobacteria phage lambda, complete genome. (Enterobacteria_phage_lambda)

generate_data Sequence generator

Description

Generates a simulated sequence of data according to a given model and associated parameters. An
initial context of length equal to the maximum depth of the model is first generated uniformly and
independently, and it is deleted after the desired number of samples has been generated.

Usage

generate_data(ct_theta, N)

https://agupubs.onlinelibrary.wiley.com/doi/10.1029/JC092iC13p14449
https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php
https://www.ncbi.nlm.nih.gov/nuccore/9626243

gene_s 9

Arguments

ct_theta a list containing the contexts that specify a model, and also a parameter vector
for each context.

N length of the sequence to be generated.

Value

a simulated sequence as a "character" object

See Also

BCT, kBCT, MAP_parameters

Examples

Create a list containing contexts and associated parameters.
d1 <- list("0" = c(0.2, 0.8), "10" = c(0.9, 0.1), "11" = c(0,1))

The contexts need to correspond to the leaves of a proper tree.
The key of each vector is the context.
For example:
For context "0": P(x_{i+1} = 0 | x_{i} = 0) = 0.2
and P(x_{i+1} = 1 | x_{i} = 0) = 0.8

If a dataset containing only letters is desired:
d2 <- list("ab" = c(0.3, 0.7), "b" = c(0.8, 0.2), "aa" = c(0.5,0.5))

Generate data from d2
gd <- generate_data(d2, 10000)

Use the BCT function to find the MAP model
BCT(gd, 10) # maximum depth of 10

or the kBCT function can be used:
kBCT(gd, 10, 5) # maximum depth of 10 and top 5 models

gene_s SARS-CoV-2 gene S

Description

This dataset contains the spike (S) gene, in positions 21,563–25,384 of the SARS-CoV-2 genome.
The importance of this gene is that it codes for the surface glycoprotein whose function was iden-
tified in Yan et al. (2020) and Lan et al. (2020) as critical, in that it binds onto the Angiotensin
Converting Enzyme 2 (ACE2) receptor on human epithelial cells, giving the virus access to the cell
and thus facilitating the COVID-19 disease. The gene sequence is mapped to the alphabet 0,1,2,3
via the obvious map A->0, C->1, G->2, T->3.

10 infer_fixed_changepoints

Usage

gene_s

Format

An object of class "character".

References

Wu, F., S. Zhao, B. Yu, et al. (2020). A new coronavirus associated with human respiratory disease
in China. Nature 579(7798), 265–269. (PMC)

Yan, R., Y. Zhang, Y. Li, L. Xia, Y. Guo, and Q. Zhou (2020). Structural basis for the recognition
of SARS-CoV-2 by full-length human ACE2. Science 367(6485), 1444–1448. (aaas)

Lan, J., J. Ge, J. Yu, et al. (2020). Structure of the SARS-CoV-2 spike receptor-binding domain
bound to the ACE2 receptor. Nature 581, 215–220. (nature)

Examples

BCT(gene_s, 5)

infer_fixed_changepoints

Inferring the change-points locations when the number of change-
points is fixed.

Description

This function implements the Metropolis-Hastings sampling algorithm for inferring the locations
of the change-points.

Usage

infer_fixed_changepoints(
input_data,
l,
depth,
alphabet,
iters,
fileName = NULL

)

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7094943/
https://www.science.org/doi/10.1126/science.abb2762
https://www.nature.com/articles/s41586-020-2180-5

infer_unknown_changepoints 11

Arguments

input_data the sequence to be analysed.
l number of change-points.
depth maximum memory length.
alphabet symbols appearing in the sequence.
iters number of iterations; for more information see Lungu et al. (2022).
fileName file path for storing the results.

Value

return a list object which includes:

positions the sampled locations of the change-points.
acceptance_prob

the empirical acceptance ratio.

See Also

infer_unknown_changepoints

Examples

Use as an example the three_changes dataset.
Run the function with 3 change-points, a maximum depth of 5 and the [0,1,2] alphabet.
The sampler is run for 100 iterations
output <- infer_fixed_changepoints(three_changes, 3, 5, c("012"), 100, fileName = NULL)

If the fileName is not set to NULL,
the output file will contain on each line the sampled locations of the change-points.

infer_unknown_changepoints

Inferring the number of change-points and their locations.

Description

This function implements the Metropolis-Hastings sampling algorithm for inferring the number of
change-points and their locations.

Usage

infer_unknown_changepoints(
input_data,
l_max,
depth,
alphabet,
iters,
fileName = NULL

)

https://arxiv.org/pdf/2203.04341.pdf

12 kBCT

Arguments

input_data the sequence to be analysed.

l_max maximum number of change-points.

depth maximum memory length.

alphabet symbols appearing in the sequence.

iters number of iterations; for more information see Lungu et al. (2022).

fileName file path for storing the results.

Value

return a list object which includes:

number_changes sampled number of change-points.

positions sampled locations of the change-points.
acceptance_prob

the empirical acceptance ratio.

See Also

infer_fixed_changepoints

Examples

Use as an example the three_changes dataset.
Run the function with 5 change-points, a maximum depth of 5 and the [0,1,2] alphabet.
The sampler is run for 100 iterations
output <- infer_unknown_changepoints(three_changes, 5, 5, c("012"), 100, fileName = NULL)

If the fileName is not set to NULL,
the output file will contain on each line the sampled number of change-points
and the associated sampled locations of the change-points.

kBCT k-Bayesian Context Trees (kBCT) algorithm

Description

Finds the top k a posteriori most likely tree models.

Usage

kBCT(input_data, depth, k, beta = NULL)

https://arxiv.org/pdf/2203.04341.pdf

kBCT 13

Arguments

input_data the sequence to be analysed. The sequence needs to be a "character" object. See
the examples section on how to transform any dataset to a "character" object.

depth maximum memory length.

k number of the a posteriori most likely tree models to be identified.

beta hyper-parameter of the model prior. Takes values between 0 and 1. If not ini-
tialised in the call function, the default value is 1− 2−m+1, where m is the size
of the alphabet; for more information see: Kontoyiannis et al. (2020).

Value

a list object which includes:

Contexts top k a posteriori most likely models. Each model given as a list object contain-
ing the contexts of its leaves.

Results a dataframe with the following columns: prior probability, log(prior probabil-
ity), posterior probability, log(posterior probability), posterior odds, number of
leaves, maximum depth, BIC score, AIC score and maximum log-likelihood.

See Also

BCT

Examples

Finding the first 5 a posteriori most likely models with maximum depth <= 5
for the SP500 dataset (with default value beta):

kBCT(SP500, 5, 2)

For custom beta (e.g. 0.8):

kBCT(SP500, 5, 2, 0.8)

The type of the input dataset is "character"
If the dataset is contained within a vector:

q <- c(1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0)

Convert a vector to a "character" object:
s <- paste(q, collapse = "")

kBCT(s, 2, 2)

Reading a file using the readChar function

Example 1: The dataset is stored in a .txt file

fileName <- '~/example_data.txt' # fileName stores the path to the dataset

https://arxiv.org/pdf/2007.14900.pdf

14 log_loss

s<-readChar(fileName, file.info(fileName)$size)

Make sure that s does not contain any "\n" at the end of the string
To remove last entry:
s<-gsub('.$', '', s)

To remove any unwanted characters (e.g. "\n"):
s<-gsub('\n', '', s)

Example 2: The dataset is stored in a .csv file

fileName <- '~/example_data.csv' # fileName stores the path to the dataset

s<-readChar(fileName, file.info(fileName)$size)

Depending on the running environment,
s might contain unwanted characters such as: "\n" or "\r\n".
Remove any unwanted characters (e.g. "\r\n"):
s<-gsub('\r\n', '', s)

Always make sure that s does not contain any unwanted characters

log_loss Calculating the log-loss incurred in prediction

Description

Compute the log-loss incurred in BCT prediction with memory length D. Given an initial context
(x−D+1, ..., x0) and training data (x1, ..., xn), the log-loss is computed in sequentially predicting
the test data (xn+1, ..., xn+T). The function outputs the cummulative, normalized (per-sample)
log-loss, at each prediction step; for more information see Kontoyiannis et al.(2020).

Usage

log_loss(input_data, depth, train_size, beta = NULL)

Arguments

input_data the sequence to be analysed. The sequence needs to be a "character" object. See
the examples section of BCT/kBCT functions on how to transform any dataset
to a "character" object.

depth maximum memory length.

train_size number of samples used in the training set. The training set size should be at
least equal to the depth.

beta hyper-parameter of the model prior. Takes values between 0 and 1. If not ini-
tialised in the call function, the default value is 1− 2−m+1, where m is the size
of the alphabet; for more information see Kontoyiannis et al. (2020).

https://arxiv.org/pdf/2007.14900.pdf
https://arxiv.org/pdf/2007.14900.pdf

MAP_parameters 15

Value

returns a vector containing the averaged log-loss incurred in the sequential prediction at each time-
step.

See Also

prediction, zero_one_loss

Examples

Compute the log-loss in the prediction of the last 10 elements
of a dataset.
log_loss(pewee, 5, nchar(pewee) - 10)

For custom beta (e.g. 0.7):
log_loss(pewee, 5, nchar(pewee) - 10, 0.7)

MAP_parameters Parameters of the MAP model

Description

Returns the parameters of each leaf contained in the MAP model.

Usage

MAP_parameters(input_data, depth, beta = NULL)

Arguments

input_data the sequence to be analysed. The sequence needs to be a "character" object. See
the examples section of BCT/kBCT functions on how to transform any dataset
to a "character" object.

depth maximum memory length.

beta hyper-parameter of the model prior. Takes values between 0 and 1. If not ini-
tialised in the call function, the default value is 1− 2−m+1, where m is the size
of the alphabet; for more information see Kontoyiannis et al. (2020).

Value

list of parameters for each of the context within the MAP model.

See Also

BCT, kBCT, generate_data

https://arxiv.org/pdf/2007.14900.pdf

16 ML

Examples

Use the gene_s dataset:
q <- BCT(gene_s, 10)
expected_contexts <- q[['Contexts']]
expected_contexts
[1] "3" "1" "0" "23" "20" "21" "22"

For default beta:
v <- MAP_parameters(gene_s, 10)

For custom beta (e.g. 0.8):
MAP_parameters(gene_s, 10, 0.8)

generate a sequence of data using the generate_data function
s <- generate_data(v, 20000)

Use BCT:
r <- BCT(s, 10)

Check the resulting contexts:
r[['Contexts']]
[1] "3" "0" "1" "20" "22" "23" "21"

The resulting contexts are as expected

ML Maximum Likelihood

Description

Computes the logarithm of the likelihood of the observations, maximised over all models and pa-
rameters.

Usage

ML(input_data, depth)

Arguments

input_data the sequence to be analysed. The sequence needs to be a "character" object.
See the examples section of the BCT/kBCT functions on how to transform any
dataset to a "character" object.

depth maximum memory length.

Value

returns the natural logarithm of the maximum likelihood.

pewee 17

See Also

BCT, kBCT

Examples

Computing the maximum likelihood of the gene_s dataset
with a maximum depth of 5:
ML(gene_s, 5)

pewee Pewee birdsong

Description

The twilight song of the wood pewee bird can be described as a sequence consisting of an arrange-
ment of musical phrases taken from an alphabet of three specific, distinct phrases. The dataset
consists of a single continuous song by a wood pewee, of length n = 1327 phrases.

Usage

pewee

Format

An object of class "character".

References

W. Craig. The song of the wood pewee (Myiochanes virens Linnaeus): A study of bird music. New
York State Museum Bulletin No. 334. University of the State of New York, Albany, NY, 1943.
(craig)

Examples

BCT(pewee, 5)

https://www.worldcat.org/title/song-of-the-wood-pewee-myiochanes-virens-linnaeus-a-study-of-bird-music/oclc/2133859

18 plot_changepoint_posterior

plot_changepoint_posterior

Plot the empirical posterior distribution of the change-points.

Description

This function plots the empirical posterior distribution of the change-points.

Usage

plot_changepoint_posterior(res, burn)

Arguments

res the output obtained from the Metropolis-Hastings algorithms.

burn the proportion of the samples discarded as burn-in.

Value

returns plot of the empirical posterior of the number of change-points (if the results from the in-
fer_unknown_changepoints function were used).

returns plot of the empirical posterior of the change-points.

See Also

infer_unknown_changepoints, infer_fixed_changepoints

Examples

Use as an example the el_nino dataset.
Run the function with l_max = 3 change-points, a maximum depth of 5 and the [0, 1] alphabet.
The sampler is run for 100 iterations

res_unknown <- infer_unknown_changepoints(el_nino, 3, 5, c("01"), 100, fileName = NULL)

Plot the posterior distribution of the locations and the posterior of the number of change-points.

plot_changepoint_posterior(res_unknown, 0.2)

This function can be also used with the infer_fixed_changepoints.
Assume l = 2.

res_fixed <- infer_fixed_changepoints(el_nino, 2, 5, c("01"), 100, fileName = NULL)

Now, the function will only output the posterior distribution of the change-points
(the number is fixed).

plot_changepoint_posterior(res_fixed, 0.2)

plot_individual_changepoint_posterior 19

plot_individual_changepoint_posterior

Plot empirical conditional posterior of the number of change-points.

Description

This function plots the conditional posterior distribution of the change-points locations given a
specific number of change-points.

Usage

plot_individual_changepoint_posterior(res, burn, pm, l = NULL)

Arguments

res the output obtained from the Metropolis-Hastings algorithms (either from in-
fer_fixed_changepoints or infer_unknown_changepoints).

burn the proportion of the samples discarded as burn-in.

pm the desired range around the MAP location for each change-point location.

l condition on the number of change-points. If not initialised, the function expects
as input the results obtained from the infer_fixed_changepoints function.

Value

plots of the empirical posterior distributions of the change-points given a specific number of change-
points.

See Also

infer_fixed_changepoints, infer_unknown_changepoints

Examples

Use as an example the el_nino dataset.
Run the function with l_max = 3 change-points, a maximum depth of 5 and the [0, 1] alphabet.
The sampler is run for 10000 iterations.

res_unknown <- infer_unknown_changepoints(el_nino, 3, 5, c("01"), 100, fileName = NULL)

Because l_max = 3 , there can be 0, 1, 2 or 3 changes.
Let's see the posterior distribution on the number of changes

plot_changepoint_posterior(res_unknown, 0.2)

The MAP l is 2. Let's see the distribution of changes given l = 2.

plot_individual_changepoint_posterior(res_unknown, 0.2, 20, 2)

20 prediction

One can also see the distribution of changes given l = 1.

plot_individual_changepoint_posterior(res_unknown, 0.2, 500, 1)

This function can be also used with the infer_fixed_changepoints
Assume l = 2.

res_fixed <- infer_fixed_changepoints(el_nino, 2, 5, c("01"), 100, fileName = NULL)

The function is now called without l = 2 as the number of changes is fixed
(all sampled vectors have 2 values).

plot_individual_changepoint_posterior(res_fixed, 0.2, 20)

prediction Prediction

Description

Computes the posterior predictive distribution at each time step, and predicts the next symbol as
its most likely value. Given an initial context (x−D+1, ..., x0) and training data (x1, ..., xn), the
posterior predictive distribution is computed sequentially for the test data (xn+1, ..., xn+T). The
function outputs the predicted distribution at each time step, along with the most likely symbol; for
more information see Kontoyiannis et al.(2020).

Usage

prediction(input_data, depth, train_size, beta = NULL)

Arguments

input_data the sequence to be analysed. The sequence needs to be a "character" object. See
the examples section on how to transform any dataset to a "character" object.

depth maximum memory length.

train_size number of samples used for training.

beta hyper-parameter of the model prior. Takes values between 0 and 1. If not ini-
tialised in the call function, the default value is 1− 2−m+1, where m is the size
of the alphabet; for more information see: Kontoyiannis et al. (2020).

Value

returns a "list" containing the posterior predictive distribution at each time step. The last entry in
the list, named "Prediction", contains the most likely character at each time step according to the
posterior predictive distribution.

See Also

log_loss, zero_one_loss

https://arxiv.org/pdf/2007.14900.pdf
https://arxiv.org/pdf/2007.14900.pdf

sars_cov_2 21

Examples

Predicting the 2 last characters of a dataset using a model with a maximum depth of 5
The training size is the total number of characters within the dataset minus 2: nchar(pewee) - 2

q <- prediction(pewee, 5, nchar(pewee) - 2)

q
[[1]]
[1] 0.56300039 0.05899728 0.37800233

[[2]]
[1] 0.08150306 0.76293065 0.15556628

$Prediction
[1] "0" "1"

To access the "Prediction" from result list q:
q[["Prediction"]]

For custom beta (e.g. 0.8):
prediction(pewee, 5, nchar(pewee) - 10, 0.8)

sars_cov_2 SARS-CoV-2 genome

Description

The severe acute respiratory syndrome coronavirus, SARS-CoV-2, is the novel coronavirus respon-
sible for the Covid-19 global pandemic in 2019-20. This dataset contains the SARS-CoV-2 genome,
available in the GenBank database as the sequence MN908947.3. It consists of n = 29903 base pairs.
The gene sequence is mapped to the alphabet 0,1,2,3 via the obvious map A->0, C->1, G->2, T->3.

Usage

sars_cov_2

Format

An object of class "character".

References

K. Clark, I. Karsch-Mizrachi, D.J. Lipman, J. Ostell, and E.W. Sayers. GenBank. Nucleic Acids
Research, 44(D1): D67–D72, January 2016. (ncbi)

F. Wu, S. Zhao, B. Yu, et al. A new coronavirus associated with human respiratory disease in China.
Nature, 579(7798):265–269, Februrary 2020. (PubMed)

https://www.ncbi.nlm.nih.gov
https://pubmed.ncbi.nlm.nih.gov/32296181/

22 show_tree

Examples

BCT(sars_cov_2, 5)

show_tree Plot tree with given contexts

Description

Plots a tree depicting a model with the given set of contexts.

Usage

show_tree(s)

Arguments

s vector containing the contexts of the leaves of the desired tree.

Value

plot of the desired tree model.

See Also

BCT, draw_models

Examples

Construct an example vector:
r <- c("a", "ab", "aab", "b", "ba")

show_tree(r)

If the input contains digits:
q <- c(11,1,0)

show_tree(q)

simian_40 23

simian_40 simian_40

Description

This dataset contains the 5243 base-pair-long genome of the simian vacuolating virus 40 (SV40).
SV40 is a polyomavirus that is found in both monkeys and humans. The expression of SV40 genes
is regulated by two major transcripts (early and late), suggesting the presence of a single major
change-point in the entire genome.

Usage

simian_40

Format

An object of class "character".

References

(SV40)

SP500 Daily changes in the S&P 500 index

Description

This dataset contains the quantised daily changes x_i in the Standard & Poor’s index price, from
January 2, 1928 until October 7, 2016. The price changes are quantised to 7 values as follows: If
the change between two successive trading days (i - 1) and i is smaller than -3%, xi is set equal to
0; if the change is between -3% and -2%, xi = 1; for changes in the intervals (-2%, -1%], (-1%,
1%], (1%, 2%], and (2%, 3%] xi is set equal to 2,3,4 and 5, respectively; and for changes greater
than 3%, xi = 6.

Usage

SP500

Format

An object of class "character".

References

Yahoo! finance. (yahoo_finance)

https://www.ncbi.nlm.nih.gov/nuccore/J02400
https://finance.yahoo.com

24 zero_one_loss

Examples

BCT(SP500, 10)

three_changes three_changes

Description

This dataset contains synthetic-generated data. The sequence has three change-points located at
2500, 3500 and 4000. The tree models and associated parameters are chosen to be quite similar, so
that the segmentation problem is nontrivial.

Usage

three_changes

Format

An object of class "character".

References

V. Lungu, I. Papageorgiou and I. Kontoyiannis. Change-point Detection and Segmentation of Dis-
crete Data using Bayesian Context Trees. arxiv.2203.04341 (Segmentation)

zero_one_loss Calculating the 0-1 loss incurred in prediction

Description

Compute the 0-1 loss, i.e., the proportion of incorrectly predicted values, incurred in BCT prediction
with memory length D. Given an initial context (x−D+1, ..., x0) and training data (x1, ..., xn), the
0-1 loss is computed in sequentially predicting the test data (xn+1, ..., xn+T). The function outputs
the cummulative, normalized (per-sample) 0-1 loss, at each prediction step; for more information
see Kontoyiannis et al. (2020).

Usage

zero_one_loss(input_data, depth, train_size, beta = NULL)

https://arxiv.org/abs/2203.04341
https://arxiv.org/pdf/2007.14900.pdf

zero_one_loss 25

Arguments

input_data the sequence to be analysed. The sequence needs to be a "character" object. See
the examples section of kBCT/BCT functions on how to transform any dataset
to a "character" object.

depth maximum memory length.

train_size number of samples used in the training set. The training set size should be at
least equal to the depth.

beta hyper-parameter of the model prior. Takes values between 0 and 1. If not ini-
tialised in the call function, the default value is 1− 2−m+1, where m is the size
of the alphabet; for more information see Kontoyiannis et al. (2020)

Value

returns a vector containing the averaged number of errors at each timestep.

See Also

log_loss, prediction

Examples

Use the pewee dataset and look at the last 8 elements:
substring(pewee, nchar(pewee)-7, nchar(pewee))

[1] "10001001"

Predict last 8 elements using the prediction function
pred <- prediction(pewee, 10, nchar(pewee)-8)[["Prediction"]]
Taking only the "Prediction" vector:

pred
[1] "1" "0" "0" "1" "1" "0" "0" "1"

To transform the result of the prediction function into a "character" object:
paste(pred, collapse = "")
[1] "10011001"

As observed, there is only 1 error (the sixth predicted element is 1 instead of a 0).
Thus, up to the 4th place, the averaged error is 0
and the sixth averaged error is expected to be 1/4.
Indeed, the zero_one_loss function yields the expected answer:

zero_one_loss(pewee, 10, nchar(pewee)-8)
[1] 0.0000000 0.0000000 0.0000000 0.2500000 0.2000000 0.1666667 0.1428571 0.1250000

https://arxiv.org/pdf/2007.14900.pdf

Index

∗ datasets
el_nino, 7
enterophage, 8
gene_s, 9
pewee, 17
sars_cov_2, 21
simian_40, 23
SP500, 23
three_changes, 24

BCT, 2, 5–7, 9, 13, 15, 17, 22

calculate_exact_changepoint_posterior,
4

compute_counts, 5
CTW, 6

draw_models, 7, 22

el_nino, 7
enterophage, 8

gene_s, 9
generate_data, 5, 8, 15

infer_fixed_changepoints, 10, 12, 18, 19
infer_unknown_changepoints, 4, 11, 11, 18,

19

kBCT, 3, 6, 7, 9, 12, 15, 17

log_loss, 14, 20, 25

MAP_parameters, 9, 15
ML, 16

pewee, 17
plot_changepoint_posterior, 18
plot_individual_changepoint_posterior,

19
prediction, 15, 20, 25

sars_cov_2, 21
show_tree, 7, 22
simian_40, 23
SP500, 23

three_changes, 24

zero_one_loss, 15, 20, 24

26

	BCT
	calculate_exact_changepoint_posterior
	compute_counts
	CTW
	draw_models
	el_nino
	enterophage
	generate_data
	gene_s
	infer_fixed_changepoints
	infer_unknown_changepoints
	kBCT
	log_loss
	MAP_parameters
	ML
	pewee
	plot_changepoint_posterior
	plot_individual_changepoint_posterior
	prediction
	sars_cov_2
	show_tree
	simian_40
	SP500
	three_changes
	zero_one_loss
	Index

