Package 'CalibratR'

July 21, 2025

Type Package

BBQ_CV

example		 	 	 	 				 	 10
format_values		 	 	 	 					 10
getECE		 	 	 	 					 11
getMCE		 	 	 	 					 12
getRMSE		 	 	 	 					 12
get_Brier_score		 	 	 	 					 13
get_CLE_class		 	 	 	 					 13
get_CLE_comparison		 	 	 	 				 	 14
get_ECE_equal_width		 	 	 	 				 	 14
get_MCE_equal_width		 	 	 	 				 	 15
GUESS_CV		 	 	 	 				 	 15
hist_binning_CV		 	 	 	 				 	 16
plot_class_distributions		 	 	 	 				 	 17
plot_model		 	 	 	 				 	 18
predict_BBQ		 	 	 	 				 	 18
predict_calibratR		 	 	 	 				 	 19
predict_GUESS		 	 	 	 				 	 20
predict_hist_binning		 	 	 	 				 	 21
predict_model		 	 	 	 				 	 22
rd_multiple_runs		 	 	 	 				 	 22
reliability_diagramm		 	 	 	 				 	 23
scale_me		 	 	 	 				 	 24
statistics_calibratR		 	 	 	 					 24
transform_me		 	 	 	 					 26
uncalibrated_CV		 	 	 	 				 	 27
visualize_calibrated_test_s	et .	 	 	 	 				 	 28
visualize_calibratR		 	 	 	 				 	 28
visualize_distribution		 	 	 	 				 	 31
visualize_error_boxplot .		 	 	 	 				 	 31
										33

BBQ_CV BBQ_CV

Description

trains and evaluates the BBQ calibration model using folds-Cross-Validation (CV). The predicted values are partitioned into n subsets. A BBQ model is constructed on (n-1) subsets; the remaining set is used for testing the model. All test set predictions are merged and used to compute error metrics for the model.

```
BBQ_CV(actual, predicted, method_for_prediction = 0, n_folds = 10, seed, input)
```

binom_for_histogram 3

Arguments

actual vector of observed class labels (0/1) predicted vector of uncalibrated predictions

method_for_prediction

0=selection, 1=averaging, Default: 0

n_folds number of folds in the cross-validation, Default: 10 seed random seed to alternate the split of data set partitions

input specify if the input was scaled or transformed, scaled=1, transformed=2

Value

list object containing the following components:

error list object that summarizes discrimination and calibration errors obtained during

the CV

pred_idx which BBQ prediction method was used during CV, 0=selection, 1=averaging

type "BBQ

probs_CV vector of calibrated predictions that was used during the CV

actual_CV respective vector of true values (0 or 1) that was used during the CV

Examples

```
## Loading dataset in environment
data(example)
actual <- example$actual
predicted <- example$predicted
BBQ_model <- CalibratR:::BBQ_CV(actual, predicted, method_for_prediction=0, n_folds=4, 123, 1)</pre>
```

binom_for_histogram binom_for_histogram

Description

p_values from stats::binom.test for each bin, if bin is empty, a p-value of 2 is returned

Usage

```
binom_for_histogram(n_x)
```

Arguments

n_x numeric vector of two integers. The first one is the number of cases in the bin;

the second the number of instances in the bin

Value

p-value from stats::binom.test method

4 build_GUESS

|--|

Description

This method builds a BBQ calibration model using the trainings set provided.

Usage

```
build_BBQ(actual, predicted)
```

Arguments

actual vector of observed class labels (0/1) predicted vector of uncalibrated predictions

Details

Based on the paper (and matlab code): "Obtaining Well Calibrated Probabilities Using Bayesian Binning" by Naeini, Cooper and Hauskrecht: ; https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4410090/

Value

returns the BBQ model which includes models for all evaluated binning schemes; the prunedmodel contains only a selection of BBQ models with the best Bayesian score

build_GUESS	build_GUESS	

Description

This method builds a GUESS calibration model using the trainings set provided.

Usage

```
build_GUESS(actual, predicted)
```

Arguments

actual vector of observed class labels (0/1) predicted vector of uncalibrated predictions

Value

returns the trained GUESS model that can be used to calibrate a test set using the predict_GUESS method

build_hist_binning 5

See Also

denscomp

build_hist_binning
build_hist_binning

Description

calculate estimated probability per bin, input predicted and real score as numeric vector; builds a histogram binning model which can be used to calibrate uncalibrated predictions using the predict_histogramm_binning method

Usage

```
build_hist_binning(actual, predicted, bins = NULL)
```

Arguments

actual vector of observed class labels (0/1) predicted vector of uncalibrated predictions

bins number of bins that should be used to build the binning model, Default: de-

cide_on_break estimates optimal number of bins

Details

if trainings set is smaller then threshold (15 bins*5 elements=75), number of bins is decreased

Value

returns the trained histogram model that can be used to calibrate a test set using the predict_hist_binning method

calibrate calibrate

Description

Builds selected calibration models on the supplied trainings values actual and predicted and returns them to the user. New test instances can be calibrated using the predict_calibratR function. Returns cross-validated calibration and discrimination error values for the models if evaluate_CV_error is set to TRUE. Repeated cross-Validation can be time-consuming.

6 calibrate

Usage

```
calibrate(actual, predicted, model_idx = c(1, 2, 3, 4, 5),
  evaluate_no_CV_error = TRUE, evaluate_CV_error = TRUE, folds = 10,
  n_seeds = 30, nCores = 4)
```

Arguments

actual vector of observed class labels (0/1) predicted vector of uncalibrated predictions

model_idx which calibration models should be implemented, 1=hist_scaled, 2=hist_transformed,

3=BBQ_scaled, 4=BBQ_transformed, 5=GUESS, Default: c(1, 2, 3, 4, 5)

evaluate_no_CV_error

computes internal errors for calibration models that were trained on all available actual/predicted tuples. Testing is performed with the same set. Be careful to interpret those error values, as they are not cross-validated. Default: TRUE

evaluate_CV_error

computes cross-validation error. folds times cross validation is repeated n_seeds times with changing seeds. The trained models and the their calibration and discrimination errors are returned. Evaluation of CV errors can take some time to compute, depending on the number of repetitions specified in n_seeds, Default:

TRUE

folds number of folds in the cross-validation of the calibration model. If folds is set

to 1, no CV is performed and summary_CV can be calculated. Default: 10

ing seed. If folds is 1, n_seeds should be set to 1, too. Default: 30

nCores how many cores should be used during parallelisation. Default: 4

Details

parallised execution of random data set splits for the Cross-Validation procedure over n_seeds

Value

A list object with the following components:

calibration_models

a list of all trained calibration models, which can be used in the predict_calibratR

method.

summary_CV a list containing information on the CV errors of the implemented models summary_no_CV a list containing information on the internal errors of the implemented models

predictions calibrated predictions for the original predicted values

n_seeds number of random data set partitions into training and test set for folds-times

CV

Author(s)

Johanna Schwarz

calibrate_me 7

Examples

calibrate_me calibrate_me

Description

trains calibration models on the training set of predicted/actual value pairs.model_idx specifies which models should be trained.

Usage

```
calibrate_me(actual, predicted, model_idx)
```

Arguments

actual vector of observed class labels (0/1)
predicted vector of uncalibrated predictions

model_idx a single number from 1 to 5, indicating which calibration model should be imple-

 $mented, 1 = hist_scaled, 2 = hist_transformed, 3 = BBQ_scaled, 4 = BBQ_transformed,$

5=GUESS

Value

depending on the value of model_idx, the respective calibration model is build on the input from actual and predicted

Description

trains and evaluates calibration models using n_seeds-times repeated folds-Cross-Validation (CV).model_idx specifies which models should be trained.

Model training and evaluation is repeated n_seeds-times with a different training/test set partition scheme for the CV each time.

Usage

```
calibrate_me_CV_errors(actual, predicted, model_idx, folds = 10, n_seeds,
    nCores)
```

Arguments

actual	vector of observed class labels (0/1)
predicted	vector of uncalibrated predictions
model_idx	which calibration models should be implemented, 1=hist_scaled, 2=hist_transformed, 3=BBQ_scaled, 4=BBQ_transformed, 5=GUESS
folds	number of folds in the cross-validation, Default: 10
n_seeds	n_seeds determines how often random data set partition is repeated with varying seed
nCores	nCores how many cores should be used during parallelisation. Default: 4

Details

parallised execution over n_seeds

Value

returns all trained calibration models that were built during the n_seeds -times repeated folds-CV. Error values for each of the n_seeds CV runs are given.

compare_models_visual

compare_models_visual compare_models_visual

Description

FUNCTION_DESCRIPTION

Usage

```
compare_models_visual(models, seq = NULL)
```

Arguments

models PARAM_DESCRIPTION

seq sequence for which the calibrated predictions should be plotted, Default: NULL

Details

DETAILS

Value

OUTPUT_DESCRIPTION

See Also

```
ggplot,geom_line,aes,ylim,theme,labs,scale_color_brewer melt
```

evaluate_discrimination

evaluate_discrimination

Description

computes various discrimination error values, namely: sensitivity, specificity, accuracy, positive predictive value (ppv), negative predictive value (npv) and AUC

Usage

```
evaluate_discrimination(actual, predicted, cutoff = NULL)
```

Arguments

actual vector of observed class labels (0/1) predicted vector of uncalibrated predictions

cut-off cut-off to be used for the computation of npv, ppv, sensitivity and specificity,

Default: value that maximizes sensitivity and specificity (Youden-Index)

10 format_values

Value

list object with the following components:

sens sensitivity
spec specificity
acc accuracy

ppv positive predictive value npv negative predictive value

cutoff cut-off that was used to compute the error values

auc AUC value

See Also

roc

example <i>ex</i>	ample
-------------------	-------

Description

list object containing 1) the simulated classifiers for two classes. Distributions are simulated from Gaussian distributions with Normal(mean=1.5, sd=0) for class 1 and Normal(mean=0, sd=0) for class 0 instances. Each class consists of 100 instances. and 2) A test set of 100 instances

Usage

```
data(example)
```

Format

predicted=vector of 200 simulated classifier values; actual=their respective true class labels (0/1)

format_values format_values

Description

returns formatted input. If specified, the uncalibrated input is mapped to the [0;1] range using scaling (scale_me) or transforming (transform_me)

```
format_values(cases, control, input, min = NULL, max = NULL, mean = NULL)
```

getECE 11

Arguments

cases	instances from class 1
control	instances from class 0

input single integer (0, 1 or 2). specify if the input should be formatted (=0), formatted

and scaled (=1) or formatted and transformed (=2)

min min value of the original data set, default=calculated on input
max max value of the original data set, default=calculated on input
mean mean value of the original data set, default=calculated on input

Value

list object with the following components:

formated_values

formatted input. If input is set to 1 (2), the input is additionally scaled (trans-

formed) using the method scale_me (transform_me)

min minimum value among all instances
max maximum value among all instances
mean mean value among all instances

getECE getECE

Description

Expected Calibration Error (ECE); the model is divided into 10 equal-width bins (default) and the mean of the observed (0/1) vs. mean of predicted is calculated per bin, weighted by emperical frequency of elements in bin i

Usage

```
getECE(actual, predicted, n_bins = 10)
```

Arguments

actual vector of observed class labels (0/1) predicted vector of uncalibrated predictions

n_bins number of bins of the underlying equal-frequency histogram, Default: 10

Value

equal-frequency ECE value

12 getRMSE

|--|

Description

Maximum Calibration Error (MCE), returns maximum calibration error for equal-frequency binning model

Usage

```
getMCE(actual, predicted, n_bins = 10)
```

Arguments

actual vector of observed class labels (0/1) predicted vector of uncalibrated predictions

n_bins number of bins of the underlying equal-frequency histogram, Default: 10

Value

equal-frequency MCE value

getRMSE	getRMSE

Description

calculates the root of mean square error (RMSE) in the test set of calibrated predictions

Usage

```
getRMSE(actual, predicted)
```

Arguments

actual vector of observed class labels (0/1) predicted vector of uncalibrated predictions

Value

RMSE value

get_Brier_score 13

get_Brier_score

Description

FUNCTION_DESCRIPTION

Usage

```
get_Brier_score(actual, predicted)
```

Arguments

actual vector of observed class labels (0/1) predicted vector of uncalibrated predictions

Details

DETAILS

Value

OUTPUT_DESCRIPTION

get_CLE_class

Description

calculates the class-specific classification error CLE in the test set. The method computes the deviation of the calibrated predictions of class 1 instances from their true value 1. For class 0 instances, get_CLE_class computes the deviation from 0. Class 1 CLE is 0 when all class 1 instances have a calibrated prediction of 1 regardless of potential miscalibration of class 0 instances. CLE calculation is helpful when miscalibration and -classification is more cost-sensitive for one class than for the other.

Usage

```
get_CLE_class(actual, predicted, bins = 10)
```

Arguments

actual vector of observed class labels (0/1) predicted vector of uncalibrated predictions

bins number of bins for the equal-width binning model, default=10

Value

object of class list containing the following components:

```
class_1 CLE of class 1 instances
class_0 CLE of class 0 instances
```

See Also

melt ggplot,geom_line,aes,position_dodge,labs,scale_colour_manual

```
get_CLE_comparison get_CLE_comparison
```

Description

visualises how class 1 and class 0 classification error (CLE) differs in each trained calibration model. Comparing class-specific CLE helps to choose a calibration model for applications were classification error is cost-sensitive for one class. See get_CLE_class for details on the implementation.

Usage

```
get_CLE_comparison(list_models)
```

Arguments

list_models list object that contains all error values for all trained calibration models. For the specific format, see the calling function visualize_calibratR.

Value

ggplot2

```
get_ECE_equal_width get_ECE_equal_width
```

Description

Expected Calibration Error (ECE); the model is divided into 10 equal-width bins (default) and the mean of the observed (0/1) vs. mean of predicted is calculated per bin, weighted by emperical frequency of elements in bin i

```
get_ECE_equal_width(actual, predicted, bins = 10)
```

get_MCE_equal_width

Arguments

actual vector of observed class labels (0/1) predicted vector of uncalibrated predictions

bins number of bins for the equal-width binning model

Value

```
equal-width ECE value
```

```
get_MCE_equal_width get_MCE_equal_width
```

Description

Maximum Calibration Error (MCE), returns maximum calibration error for equal-width binning model

15

Usage

```
get_MCE_equal_width(actual, predicted, bins = 10)
```

Arguments

actual vector of observed class labels (0/1)
predicted vector of uncalibrated predictions
bins number of bins for the binning model

Value

equal-width MCE value

GUESS_CV	GUESS_CV	
----------	----------	--

Description

trains and evaluates the GUESS calibration model using folds-Cross-Validation (CV). The predicted values are partitioned into n subsets. A GUESS model is constructed on (n-1) subsets; the remaining set is used for testing the model. All test set predictions are merged and used to compute error metrics for the model.

```
GUESS_CV(actual, predicted, n_folds = 10, method_of_prediction = 2, seed,
  input)
```

16 hist_binning_CV

Arguments

actual vector of observed class labels (0/1) predicted vector of uncalibrated predictions

n_folds number of folds for the cross-validation, Default: 10

method_of_prediction

PARAM DESCRIPTION, Default: 2

seed random seed to alternate the split of data set partitions

input specify if the input was scaled or transformed, scaled=1, transformed=2

Value

list object containing the following components:

error list object that summarizes discrimination and calibration errors obtained during

the CV

type "GUESS"

pred_idx which prediction method was used during CV

probs_CV vector of calibrated predictions that was used during the CV

actual_CV respective vector of true values (0 or 1) that was used during the CV

Description

trains and evaluates the histogram binning calibration model repeated folds-Cross-Validation (CV). The predicted values are partitioned into n subsets. A histogram binning model is constructed on (n-1) subsets; the remaining set is used for testing the model. All test set predictions are merged and used to compute error metrics for the model.

Usage

```
hist_binning_CV(actual, predicted, n_bins = 15, n_folds = 10, seed, input)
```

Arguments

actual vector of observed class labels (0/1) predicted vector of uncalibrated predictions

n_bins number of bins used in the histogram binning scheme, Default: 15

n_folds number of folds in the cross-validation, Default: 10 seed random seed to alternate the split of data set partitions

input specify if the input was scaled or transformed, scaled=1, transformed=2

plot_class_distributions 17

Value

list object containing the following components:

error list object that summarizes discrimination and calibration errors obtained during

the CV

type "hist"

probs_CV vector of calibrated predictions that was used during the CV

actual_CV respective vector of true values (0 or 1) that was used during the CV

plot_class_distributions

plot_class_distributions

Description

plots the the returned conditional class probabilities P(x|C) of GUESS_1 or GUESS_2 models. Which GUESS model is plotted can be specified in pred_idx.

Usage

```
plot_class_distributions(build_guess_object, pred_idx)
```

Arguments

build_guess_object

output from build_GUESS()

pred_idx if pred_idx=1 GUESS_1 is plotted; if pred_idx=2 GUESS_2 is plotted

Value

ggplot object that visualizes the returned calibrated predicition estimates by GUESS_1 or GUESS_2

See Also

```
melt ggplot,geom_line,aes,scale_colour_manual,theme,labs,geom_vline,geom_text
```

18 predict_BBQ

nlot	model	
DIOL	moder	

plot_model

Description

this methods visualizes all implemented calibration models as a mapping function between original ML scores (x-axis) and calibrated predictions (y-axis)

Usage

```
plot_model(calibration_model, seq = NULL)
```

Arguments

calibration_model

output from the calibrate method.

seq

sequence of ML scores over which the mapping function should be evaluated,

Default: 100 scores from the minimum to the maximum of the original ML

scores

Value

ggplot object

See Also

 $\verb|melt ggplot,geom_line,aes,ylim,scale_colour_manual,theme,labs,geom_text,geom_vline|\\$

predict_BBQ

predict_BBQ

Description

FUNCTION_DESCRIPTION

Usage

```
predict_BBQ(bbq, new, option)
```

Arguments

bbq output from the build_BBQ method
new vector of uncalibrated probabilities
option either 1 or 0; averaging=1, selecting=0

predict_calibratR 19

Details

Based on the paper (and matlab code): "Obtaining Well Calibrated Probabilities Using Bayesian Binning" by Naeini, Cooper and Hauskrecht: ; https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4410090/

Value

a list object containing the following components:

predictions contains a vector of calibrated predictions

pred_idx which option was used (averaging or selecting)

significance_test_set

the percentage of new instances that was evaluated using significant prediction

estimates

pred_per_bin number of instances new in each bin of the selected model

predict_calibratR

Description

maps the uncalibrated predictions new into calibrated predictions using the passed over calibration models

Usage

```
predict_calibratR(calibration_models, new = NULL, nCores = 4)
```

Arguments

calibration_models

list of trained calibration models that were constructed using the calibrate method. The list components calibration_models from the calibrate output

can be used directly.

new vector of new uncalibrated instances. Default: 100 scores from the minimum to

the maximum of the original ML scores

nCores how many cores should be used during parallelisation. Default: 4

Details

if no new value is given, the function will evaluate a sequence of numbers ranging from the minimum to the maximum of the original values in the training set

20 predict_GUESS

Value

list object with the following components:

predictions a list containing the calibrated predictions for each calibration model significance_test_set

a list containing the percentage of new instances for which prediction estimates

are statistically significant

pred_per_bin a list containing the number of instances in each bin for the binning models

Author(s)

Johanna Schwarz

Examples

```
## Loading dataset in environment
data(example)
test_set <- example$test_set
calibration_model <- example$calibration_model

## Predict for test set
predictions <- predict_calibratR(calibration_model$calibration_models, new=test_set, nCores = 2)</pre>
```

predict_GUESS

predict_GUESS

Description

returns calibrated predictions for the instances new using the trained GUESS calibration model build_guess_object. Two different evaluation methods are available. Method 1: returns the p-value for the score new under the distribution that is handed over in the build_guess_object Method 2: returns the probability density value for the score new under the distribution that is handed over in the build_guess_object

Usage

```
predict_GUESS(build_guess_object, new, density_evaluation = 2,
  return_class_density = FALSE)
```

Arguments

build_guess_object

output from the build_GUESS method

new vector of uncalibrated probabilities

density_evaluation

which density evaluation method should be used to infer calculate probabilities,

Default: 2

predict_hist_binning 21

```
return_class_density
```

if set to TRUE, class densities p(xlclass) are returned, Default: FALSE

Details

dens_case and dens_control are only returned when return_class_density is set to TRUE

Value

a list object containing the following components:

predictions contains a vector of calibrated predictions pred_idx which density evaluation method was used

significance_test_set

the percentage of new instances that was evaluated using significant prediction

estimates

dens_case a vector containing the p(x|case) values
dens_control a vector containing the p(x|control) values

predict_hist_binning
predict_hist_binning

Description

predict for a new element using histogram binning

Usage

```
predict_hist_binning(histogram, new)
```

Arguments

histogram the output of build_hist_binning
new vector of uncalibrated probabilities

Value

a list object containing the following components

predictions contains a vector of calibrated predictions

significance_test_set

the percentage of new instances that was evaluated using significant prediction

estimates

pred_per_bin a table containing the number of instances from new for each bin of the final

binning scheme of histogram

22 rd_multiple_runs

Description

calibrates the uncalibrated predictions new using calibration_model.

Usage

```
predict_model(new, calibration_model, min, max, mean, inputtype)
```

Arguments

new vector of uncalibrated predictions

calibration_model

calibration model to be used for the calibration. Can be the output of build_BBQ,build_hist_binning

or build_GUESS.

min minimum value of the original data set
max maximum value of the original data set
mean mean value of the original data set

inputtype specify if the model was build on original (=0), scaled(=1) or transformed (=2)

data

Value

vector of calibrated predictions

Description

This functions plots all n reliability diagrams that were constructed during n-times repeated m-fold cross-validation (CV). During calibration model evaluation, CV is repeated n times, so that eventually n reliability diagrams are obtained.

Usage

```
rd_multiple_runs(list_models)
```

Arguments

list_models list object that contains n-times the output from the reliability_diagramm.

method.

reliability_diagramm 23

Value

a list object that contains a reliability diagram that visualises all reliability diagrams that were constructed during n-times repeated m-fold cross-validation.

See Also

 $\verb|meltggplot,geom_line,aes,geom_abline,ylab,xlab,xlim,ylim,coord_fixed,geom_text,scale_color_discrete,ggting the property of the property of$

```
reliability_diagramm reliability_diagramm
```

Description

Reliability curves allow checking if the predicted probabilities of a

Usage

```
reliability_diagramm(actual, predicted, bins = 10, plot_rd = TRUE)
```

Arguments

actual vector of observed class labels (0/1) predicted vector of uncalibrated predictions

bins number of bins in the reliability diagram, Default: 10 plot_rd should the reliability diagram be plotted, Default: TRUE

Value

```
a list object containing the following elements
calibration_error

discrimination_error

rd_breaks
histogram_plot
diagram_plot
mean_pred_per_bin
accuracy_per_bin

freq_per_bin
sign
```

See Also

ggplot,stat_bin,aes,scale_fill_manual,theme,labs,geom_point,xlim,ylim,geom_abline,geom_line,geom_text,geo

24 statistics_calibratR

scale_me

scale_me

Description

```
maps all instances in x to the [0;1] range using the equation:

y = (x-min)/(max-min)

If no values for min and max are given, they are calculated per default as min=min(x) and max=max(x)
```

Usage

```
scale_me(x, min = NULL, max = NULL)
```

Arguments

x vector of predictions

min minimum of x, Default: NULL
max maximum of x, Default: NULL

Details

if x is greater (smaller) than max (min), its calibrated prediction is set to 1 (0) and warning is triggered.

Value

scaled values of x

```
statistics\_calibratR statistics\_calibratR
```

Description

this method offers a variety of statistical evaluation methods for the output of the calibrate method. All returned error values represent mean error values over the n_seeds times repeated 10-fold CV.

```
statistics_calibratR(calibrate_object, t.test_partitions = TRUE,
    significance_models = TRUE)
```

statistics_calibratR 25

Arguments

calibrate_object

list that is returned from the calibrate function. The parameter n_seeds is available as a list component of the calibrate_object

t.test_partitions

Performs a paired two sided t.test over the error values (ECE, CLE1, CLE0, MCE, AUC, sensitivity and specificity) from the random partition splits comparing a possible significant difference in mean among the calibration models. All models and the original, scaled and transformed values are tested against each other. The p_value and the effect size of the t.test are returned to the user. Can only be performed, if the calibrate_object contains a summary_CV list object, else, an error is returned. Default: TRUE

significance_models

returns important characteristics of the implemented calibration models, Default: TRUE

Details

DETAILS

Value

An object of class list, with the following components:

mean_calibration

mean of calibration error values (ECE_equal_width, MCE_equal_width, ECE_equal_freq, MCE_equal_freq, RMSE, Class 1 CLE, Class 0 CLE, Brier Score, Class 1 Brier Score, Class 0 Brier Score) over n_seeds times repeated 10-fold CV. ECE and MCE are computed once using equal-width and once using equal-frequency binning for the construction of the underlying binning scheme. Only returned, if calibrate_object contains a summary_CV list object.

standard_deviation

standard deviation of calibration error values over n_seeds times repeated 10-fold CV. Only returned, if calibrate_object contains a summary_CV list object.

var_coeff_calibration

variation coefficient of calibration error values over n_seeds times repeated 10-fold CV. Only returned, if calibrate_object contains a summary_CV list object.

mean_discrimination

mean of discrimination error (sensitivity, specificity, AUC, positive predictive value, negative predictive value, accuracy) values over n_seeds times repeated 10-fold CV. The "cut-off" is the cut-off value that maximizes sensitivity and specificity. Only returned, if calibrate_object contains a summary_CV list object.

sd_discrimination

standard deviation of discrimination error values over n_seeds times repeated 10-fold CV. Only returned, if calibrate_object contains a summary_CV list object.

26 transform_me

var_coeff_discrimination

variation coefficient of discrimination error values over n_seeds times repeated 10-fold CV. Only returned, if calibrate_object contains a summary_CV list object.

t.test_calibration

 $= list(p_value = t.test.calibration, effect_size = effect_size_calibration), only returned if t.test = TRUE$

t.test_discrimination

=list(p_value=t.test.discrimination, effect_size=effect_size_discrimination), only returned if t.test=TRUE

significance_models

only returned if significance_models=TRUE

n_seeds number of random data set partitions into train

number of random data set partitions into training and test set for folds-times CV

original_values

list object that consists of the actual and predicted values of the original scores

Author(s)

Johanna Schwarz

See Also

```
t.test,friedman.test
```

Examples

```
## Loading dataset in environment
data(example)
calibration_model <- example$calibration_model
statistics <- statistics_calibratR(calibration_model)</pre>
```

transform_me

transform_me

Description

```
maps all instances in x_unscaled to the [0;1] range using the equation: y=\exp(x)/(1+\exp(x))
```

```
transform_me(x_unscaled, mean)
```

uncalibrated_CV 27

Arguments

x_unscaled vector of predictions

mean of x

Details

values greater then exp(700)/ or smaller then exp(-700) are returned as "Inf". To avoid NaN values, these "Inf." values are turned into min(y) or max(y).

Value

transformed values of x_unscaled

uncalibrated_CV

 $uncalibrated_CV$

Description

performs n_folds-CV but with only input-preprocessing the test set. No calibration model is trained and evaluated in this method. The predicted values are partitioned into n subsets. The training set is constructed on (n-1) subsets; the remaining set is used for testing. Since no calibration model is used in this method, the test set predictions are only input-preprocessed (either scaled or transformed, depending on input). All test set predictions are merged and used to compute error metrics for the input-preprocessing methods.

Usage

```
uncalibrated_CV(actual, predicted, n_folds = 10, seed, input)
```

Arguments

actual vector of observed class labels (0/1) predicted vector of uncalibrated predictions

n_folds number of folds for the cross-validation, Default: 10 seed random seed to alternate the split of data set partitions

input specify if the input was scaled or transformed, scaled=1, transformed=2

Value

list object containing the following components:

error list object that summarizes discrimination and calibration errors obtained during

the CV

type "uncalibrated"

probs_CV vector of input-preprocessed predictions that was used during the CV actual_CV respective vector of true values (0 or 1) that was used during the CV

28 visualize_calibratR

Description

plots a panel for all calibrated predictions from the respective calibration model. Allows visual comparison of the models output and their optimal cut off

Usage

```
visualize_calibrated_test_set(actual, predicted_list, cutoffs)
```

Arguments

actual vector of observed class labels (0/1)

predicted_list predict_calibratR\$predictions object (list of calibrated predictions from calibra-

tion models)

cutoffs vector of optimal cut-off thresholds for each calibration model

Value

ggplot2 element for visual comparison of the evaluated calibration models

See Also

```
ggplot,geom_point,scale_colour_manual,xlab,ylab,geom_hline,ylim
```

```
visualize_calibratR
```

Description

this method offers a variety of visualisations to compare implemented calibration models

```
visualize_calibratR(calibrate_object, visualize_models = FALSE,
  plot_distributions = FALSE, rd_partitions = FALSE,
  training_set_calibrated = FALSE)
```

visualize_calibratR 29

Arguments

calibrate_object

the list component calibration_models from the calibrate method

visualize_models

 $returns\ the\ list\ components\ plot_calibration_models\ and\ plot_single_models$

plot_distributions

returns a density distribution plot of the calibrated predictions after CV (External) or without CV (internal)

rd_partitions returns a reliability diagram for each model

training_set_calibrated

returns a list of ggplots. Each plot represents the calibrated predictions by the respective calibration model of the training set. If the list object predictions in the calibrate_object is empty, training_set_calibrated is returned as NULL.

Value

An object of class list, with the following components:

histogram_distribution

returns a histogram of the original ML score distribution

density_calibration_internal

returns a list of density distribution plots for each calibration method, the original and the two input-preprocessing methods scaling and transforming. The plot visualises the density distribution of the calibrated predictions of the training set. In this case, training and test set values are identical, so be careful to evaluate the plots.

density_calibration_external

returns a list of density distribution plots for each calibration method, the original and the two input-preprocessing methods scaling and transforming. The plot visualises the density distribution of the calibrated predictions, that were returned during Cross Validation. If more than one repetition of CV was performed, run number 1 is evaluated

plot_calibration_models

maps the original ML scores to their calibrated prediction estimates for each model. This enables easy model comparison over the range of ML scores See also compare_models_visual.

plot_single_models

returns a list of ggplots for each calibration model, also mapping the original ML scores to their calibrated prediction. Significance values are indicated. See also plot_model

rd_plot

returns a list of reliability diagrams for each of the implemented calibration models and the two input-preprocessing methods "scaled" and "transformed". The returned plot visualises the calibrated predictions that were returned for the test set during each of the n run of the n-times repeated CV. Each grey line represents one of the n runs. The blue line represents the median of all calibrated bin predictions. Insignificant bin estimates are indicated with "ns". If no CV

30 visualize_calibratR

was performed during calibration model building using the calibrate method, rd_plot is returned as NULL

calibration_error

returns a list of boxplots for the calibration error metrics ECE, MCE, CLE and RMSE. The n values for each model represent the obtained error values during the n times repeated CV. If no CV was performed during calibration model building using the calibrate method, calibration_error is returned as NULL

discrimination_error

returns a list of boxplots for the discrimination error AUC, sensitivity and specificity. The n values for each model represent the obtained error values during the n times repeated CV. If no CV was performed during calibration model building using the calibrate method, discrimination_error is returned as NULL

cle_class_specific_error

If no CV was performed during calibration model building using the calibrate method, cle_class_specific_error is returned as NULL

training_set_calibrated

returns a list of ggplots. Each plot represents the calibrated predictions by the respective calibration model of the training set. If the list object predictions in the calibrate_object is empty, training_set_calibrated is returned as NULL.

GUESS_1_final_model

plots the the returned conditional probability p(xlClass) values of the GUESS_1 model

GUESS_2_final_model

plots the the returned conditional probability p(xlClass) values of the GUESS_2 model

Author(s)

Johanna Schwarz

See Also

 $\verb|ggplot,geom_density,aes,scale_colour_manual,scale_fill_manual,labs,geom_point,geom_hline,theme,element_to the property of the property of$

Examples

```
## Loading dataset in environment
data(example)
calibration_model <- example$calibration_model

visualisation <- visualize_calibratR(calibration_model, plot_distributions=FALSE,
rd_partitions=FALSE, training_set_calibrated=FALSE)</pre>
```

visualize_distribution 31

```
visualize_distribution
```

visualize_distribution

Description

FUNCTION_DESCRIPTION

Usage

```
visualize_distribution(actual, predicted)
```

Arguments

actual vector of observed class labels (0/1) predicted vector of uncalibrated predictions

Value

list object containing the following components:

plot_distribution

ggplot histogram that visualizes the observed class distributions

parameter

list object that summarizes all relevant parameters (mean, sd, number) of the

observed class distributions

See Also

```
ggplot,geom_histogram,aes,scale_colour_manual,scale_fill_manual,labs
```

```
visualize_error_boxplot
```

visualize_error_boxplot

Description

compares error values among different calibration models. A boxplots is created from the n error values that were obtained during the n-times repeated Cross-Validation procedure. Different error values are implemented and can be compared:

discrimination error = sensitivity, specificity, accuracy, AUC (when discrimination=TRUE) calibration error = ece, mce, rmse, class 0 cle, class 1 cle (when discrimination=FALSE) For the calculation of the errors, see the respective methods listed in the "see also" section

```
visualize_error_boxplot(list_models, discrimination = TRUE)
```

Arguments

list_models list object that contains all error values for all trained calibration models. For

the specific format, see the calling function visualize_calibratR.

discrimination boolean (TRUE or FALSE). If TRUE, discrimination errors are compared be-

tween models; if FALSE calibration error is compared, Default: TRUE

Value

An object of class list, with the following components:

if discrimination=TRUE

sens ggplot2 boxplot that compares all evaluated calibration models with regard to

sensitivity.

spec ggplot2 boxplot that compares all evaluated calibration models with regard to

specificity

acc ggplot2 boxplot that compares all evaluated calibration models with regard to

accuracy

auc ggplot2 boxplot that compares all evaluated calibration models with regard to

AUC

list_errors list object that contains all discrimination error values that were used to con-

struct the boxplots

if discrimination=FALSE

ece ggplot2 boxplot that compares all evaluated calibration models with regard to

expected calibration error

mce ggplot2 boxplot that compares all evaluated calibration models with regard to

maximum expected calibration error (MCE)

rmse ggplot2 boxplot that compares all evaluated calibration models with regard to

root mean square error (RMSE)

cle_0 ggplot2 boxplot that compares all evaluated calibration models with regard to

class 0 classification error (CLE)

cle_1 ggplot2 boxplot that compares all evaluated calibration models with regard to

class 1 classification error (CLE)

list_errors list object that contains all calibration error values that were used to construct

the boxplots

See Also

 ${\tt ggplot,aes,ggtitle,scale_x_discrete,geom_boxplot,theme,element_text\,melt,get_CLE_class,getECE,getMCE,getFoundate_discrimination}$

Index

* datasets	getECE, 11, 32 getMCE, 12, 32 getRMSE, 12, 32 ggplot, 9, 14, 17, 18, 23, 28, 30–32 ggtitle, 23, 32 GUESS_CV, 15 hist_binning_CV, 16 labs, 9, 14, 17, 18, 23, 30, 31
<pre>calibrate, 5, 18, 19, 24, 25, 29, 30 calibrate_me, 7 calibrate_me_CV_errors, 8 compare_models_visual, 9, 29 coord_fixed, 23 denscomp, 5 element_text, 30, 32 evaluate_discrimination, 9, 32 example, 10 format_values, 10 friedman.test, 26</pre>	melt, 9, 14, 17, 18, 23, 30, 32 plot_class_distributions, 17 plot_model, 18, 29 position_dodge, 14 predict_BBQ, 18 predict_calibratR, 5, 6, 19 predict_GUESS, 4, 20 predict_hist_binning, 5, 21 predict_model, 22 rd_multiple_runs, 22 reliability_diagramm, 22, 23 roc, 10
geom_abline, 23 geom_boxplot, 32 geom_density, 30 geom_histogram, 31 geom_hline, 28, 30 geom_label, 23 geom_line, 9, 14, 17, 18, 23 geom_point, 23, 28, 30 geom_text, 17, 18, 23 geom_vline, 17, 18 get_Brier_score, 13 get_CLE_class, 13, 14, 32 get_CLE_comparison, 14 get_ECE_equal_width, 14 get_MCE_equal_width, 15	scale_color_brewer, 9 scale_color_discrete, 23 scale_colour_manual, 14, 17, 18, 28, 30, 31 scale_fill_manual, 23, 30, 31 scale_me, 10, 11, 24 scale_x_discrete, 32 stat_bin, 23 statistics_calibratR, 24 t.test, 26 theme, 9, 17, 18, 23, 30, 32 transform_me, 10, 11, 26 uncalibrated_CV, 27 visualize_calibrated_test_set, 28

34 INDEX

```
visualize_calibratR, 14, 28, 32
visualize_distribution, 31
visualize_error_boxplot, 31
xlab, 23, 28
xlim, 23
ylab, 23, 28
ylim, 9, 18, 23, 28
```