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cdna Example cDNA data

Description

cDNA data from a one-colour experiment from the Stanford Microarray Database. The data set is

stored as an intensity matrix with 42624 genes (rows) and 4 replicates (columns).

The experiment numbers are 40430, 40571, 34905 and 34912.

Usage

data(cdna)

Format

A 42624x4 matrix

Source

Stanford Microarray Database

References

McCaftrey, R.L., Fawcett, P., O’Riordan, M. Lee, K., Havell, E.A. Brown, P.O. and Portnoy, D.A.
(2004) A specific gene expression program triggered by Gram-positive bacteria in the cytocol, Proc.

Nat. Acad. of Science, 101, 11386-11391
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cDNAdata Samples from the cDNA data vector

Description

Arranges a vector of intensities into a form amenable to analysis by the DDHF and also can restrict
the number of genes analysed and also obtain a random sample

Usage

cDNAdata(data.vect,cdnalength,datasize,ng,nrep)

Arguments

data.vect The data vector of intensities

cdnalength Only considers the first cdnalength genes for analysis

datasize Needs to be a power of two. The number of genes that get randomly sampled

from the first cdnalengthq and then subsequently transformed.

ng The total number of genes described by data.vect

nrep The number of replicates (should be a power of two) contained in data.vect
Details

The

J =ng x nrep

vector data.vect should contain first the intensities of the first replicate of the ng genes’, then the
second replicate of all of the ng genes in the same order, and so on.

This function first puts the one dimensional data.vect into a matrix form with ng rows and nrep
columns (so the row number indices the gene and the column number the replicate).

Then the first cdnalength rows are extracted and kept, the remaining rows are discarded.

Then datasize rows at random are extracted and kept and the remaining rows are discarded.

Value
cDNAdata The data vector in the proper format to perform Data-Driven Haar-Fisz algo-
rithm
Author(s)

Efthimios Motakis <e.motakis @bris.ac.uk>



4 DDHFm

DDHFm Data-driven Haar-Fisz for microarrays

Description

Takes a matrix containing the resuls of a (e.g.) microarray experiment (rows are different genes,
columns are replicates) and performs a multiscale variance stabilization and Gaussianization trans-
form. Note, you have to have replicates to make this work.

Usage
DDHFm(x)

Arguments

X A matrix containing n rows (genes) and k columns (replicates)

Details

The data-drive Haar-Fisz transform is a multiscale variance stabilization and Gaussianization trans-
form. The algorithm will run on a one-column matrix but the results will NOT be good. For one

column of data use some other variance stabilizer (in which case why are you using one column,
eh?)

However, if you have replicates then you can use this powerful multiscale algorithm which will
stabilize variance and also draw the distribution of the intensities towards Gaussian extremely ef-
fectively (so skew and kurtosis will look good too).

This function forms a single vector of intensities by the following procedure. First, it computes
the mean over replicates for each gene (this is why you need replicates, really). Then it orders the
rows of the matrix into increasing mean order. Then it converts that matrix into a vector (which is
therefore a sequence of intensities which are grouped according to gene (according to increasing
mean intensity within each group)). Then this vector is padded up to the next power-of-two in
length with zeroes. Then the padded vector is subjected to the ddhft.np. 2 function which actually
does the data-driven Haar-Fisz transform. The results of this are unpadded and then rearranged into
a matrix with an identical structure to the input matrix. This final matrix contains stabilized and
Gaussianized (is this a word?) intensities.

It is important that you have replicates (ie, the number of columns of the matrix has to be greater
than 1). Also, it is scientifically important that the replicates be just that (ie, although the rows might
refer to the same genes the columns must be results from repeats experiments held under identical
conditions). For example, you shouldn’t have results for the gene on one subject and then the same
gene on another subject unless I suppose you are considering them to be replicates in some way.

Value

A single matrix with the same dimensions as the input matrix. Each entry in the resultant matrix
corresponds to a variance stabilized and Gaussianized version of the entry in the input matrix.
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Author(s)

Guy Nason

References

Motakis, E.S., Nason, G.P., Fryzlewicz, P. and Rutter, G.A. (2005) Variance stabilization and nor-
malization for one-color microarray data using a data-driven multiscale approach. Technical Report,
05:16, Statistics Group, Department of Mathematics, University of Bristol, UK

Motakis, E.S., Nason, G.P., Fryzlewicz, P. and Rutter, G.A. (2006) Variance stabilization and nor-
malization for one-color microarray data using a data-driven multiscale approach. Bioinformatics,
22,2547-2553.

See Also
ddhft.np.2

Examples

#

# First, let's make up some "true” intensities (these are gamma)

#

Truelnt <- genesimulator(nreps=5, nps=100)

#

# Now let us simulate data from the Durbin and Rocke (2001) model conditioning
# on the Truelnt

#

MAInts <- simdurbin2(Truelnt,alpha=24800, seta=0.227, seps=4800)

#

# Now put these intensities into the correct format for DDHFm. That is
# replicates across columns

#

MAm <- matrix(MAInts, ncol=5, byrow=TRUE)

#

# Apply DDHFm transform

#

MAmMDDHFm <- DDHFm(MAm)

#

# Now look at the variances of each

#

diag(var(MAm))

#

#[1] 22443437 25065729 23430160 22470058 21023183
#

diag(var (MAm))/ mean(diag(var(MAm)))

#

#[1] 0.9806403 1.0952183 1.0237540 ©.9818035 0.9185839
#

# Now for the DDHFm version

#

diag(var (MAmDDHFm))

#
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# [1] 10938.71 11369.41 11169.50 11144.74 10959.94

#

diag(var (MAmDDHFm))/ mean(diag(var (MAmDDHFm)))

#

# [1] 0.9840099 1.0227549 1.0047711 1.0025441 ©.9859200

#

# So stabilization is better with DDHFm

#

ddhft.np.2 Data-Driven Haar-Fisz transformation

Description

Forward Data-Driven Haar-Fisz transform

Usage
ddhft.np.2(data, Ccode=TRUE)

Arguments
data A vector of size $2"J$ containing the data to variance stabilize and Gaussianize.
Ccode If TRUE then fast C code is used, otherwise R code is used

Details

Performs the data-driven Haar-Fisz transform on sequence data. This consists of (i) the Haar wavelet
transform of sequence; (ii) estimation of mean-variance relationship between finest level smoothing
and detail wavelet coefficients using isotonic regression (see isotone); (iii) divide wavelet detail
coefficients by smooth ones subjected to the estimated mean-variance relationship; (iv) perform the
inverse Haar wavelet transform of the modified coefficients.

The aim is to variance stabilize and Gaussianize the sequence data which is only assumed to be
positive and possess an underlying increasing mean-variance relationship.

Value

A list containing the following components

hft The data-driven Haar-Fisz transform of the input sequence

mu The mu’s obtained from the input sequence used for estimating the mean-variance
relationship

sigma The estimated standard deviation as a function of the mean, the result of the
isotonic regression fit of sigma2 on sigma

sigma2 The local multiscale standard deviations associated with each mean

factors The numbers that divide the detail coefficients to standardize variance (obtained

from the mean-variance estimation)
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Author(s)

Piotr Fryzlewicz <p.fryzlewicz@imperial.ac.uk>

References

Fisz, M. (1955), The limiting distribution of a function of two independent random variables and
its statistical application, Colloquium Mathematicum, 3, 138-146.

Delouille, V., Fryzlewicz, P. and Nason, G.P. (2005), A data-driven Haar-Fisz transformation for
multiscale variance stabilization. Technical Report, 05:06, Statistics Group, Department of Mathe-
matics, University of Bristol

See Also
ddhft.np.inv

Examples

Generate example Poisson data set.

Intensity function is steps from 1 to 32 in steps of 4 with each intensity
lasting for 128 observations. Then sample Poisson with these intensities

<- rpois(1024, lambda=rep(seq(from=1, to=32, by=4), rep(1024/8,8)))

Let's take a look at this

e R R

## Not run: ts.plot(v)

#

# Ok. So mean of intensity clear increasing, but variance increasing too
#

# Now do data-driven Haar-Fisz

#

vhft <- ddhft.np.2(v)

#

# Now plot the variance stabilized series

#

## Not run: ts.plot(vhft$hft)

#

# The variance of the observations is much closer to 1. For example, let's
# look a the variance of the original series and the transformed one
#

# For the first intensity of 1

#

var(v[1:128])

#[1] 0.6628322

#

var(vhft$hft[1:128])

#[1] 1.025151

#

#
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# And for second intensity of 5
#

#

var(v[129:2561])

#[1] 4.389518
var(vhft$hft[129:2561])

#[1] 1.312953

#

# So both transformed variances near to 1

#

# Now plot the estimated variance-mean relationship
#

## Not run: plot(vhft$mu, vhft$sigma)

## Not run: lines(vhft$mu, sgrt(vhft$mu))

#

# This is an approximately square root function (because you expect the
# sd of Poisson to be the square root of the mean).

#

ddhft.np.inv Inverse Data-Driven Haar-Fisz transformation

Description

Inverts the Data-Driven Haar-Fisz transform to obtain the raw (untransformed) data

Usage
ddhft.np.inv(hft.obj)

Arguments

hft.obj An object with the same structure as that returned by the ddhft.np. 2 function.

Details

Merely performs the inverse of the DDHF transform see ddhft.np.2

Value

The inverted transform

Author(s)

Piotr Fryzlewicz <p.fryzlewicz@imperial.ac.uk>

References

Delouille, V., Fryzlewicz, P. and Nason, G.P. (2005), A data-driven Haar-Fisz transformation for
multiscale variance stabilization. Technical Report 05:06, Statistics Group, Department of Mathe-
matics, University of Bristol.
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See Also
ddhft.np.2
dhhrcomp Simulated genes, apply DDHFm then compute and return variance,
skewness and kurtosis values
Description

An example gene intensity simulator with given mean values mu0 which then returns the variance,
skew and kurtosis of the DDHF transformed intensities. The gene intensity simulation is performed
using simdurbin2

Usage

dhhrcomp(nsims = 1024, nmu = 4,
mu@ = c(@, 5, 10, 15, 20, 25, 30, 40, 50, 60,
65, 70, 80, 100, 200, 300, 500, 1000) * 1000)

Arguments
nsims Number of replicates for each mu
nmu Selects first nmu genes from mu for use
mu@ The possible gene intensity means
Details

This function simulates some gene intensities. A list of possible intensity means are supplied in
mu@. The first nmu of these are selected. Then for each of the selected means nsims gene intensities
are generated.

The intensities are them subjected to DDHF transformation.

Value
mu A vector of length nmu of the mean intensities considered
v.hft A vector of nmu variances, one for each mean in mu@. The variance is the vari-
ance of the DDHFm transformed simulated intensity data.
s.hft A vector of nmu skewnesses, one for each mean in mu@. The skewness is the
skewness of the DDHFm transformed simulated intensity data.
k.hft A vector of nmu kurtoses, one for each mean in mu@. The kurtosis is the kurtosis
of the DDHFm transformed simulated intensity data.
Author(s)

Guy Nason <g.p.nason@bris.ac.uk.
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References

Durbin, B.P., Hardin, J.S., Hawkins, D.M. and Rocke, D.M. (2002), A variance-stabilizing trans-
formation for gene expression microarray data, Bioinformatics, 18, S105-S110

See Also
simdurbin2
dhhrss Tabulates variance, skewness and kurtosis coefficients from the output
of dhhrcomp
Description

Tabulates the variance, skewness and kurtosis coefficients from the output of dhhrcomp

Usage

dhhrss(dhhrobj)

Arguments

dhhrobj The results to be tabulated. The output of a call to dhhrcomp

Details

This routine merely runs summary statistics calculations on the output results from dhhrcomp

Value

None, prints a table.

Author(s)

Guy Nason <g.p.nason@bris.ac.uk.
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function.from.vector  Function applied for the computation of the Data-Driven Haar-Fisz
transform

Description

Applies the function which.min.diff to the argument.vect vector with the argument x

Usage

function.from.vector(x, y, argument.vect)

Arguments
X a vector of data in ascending order
y a vector with length(y) = length(x)

argument.vect can be a vector

Value

function.from.vector
help function for data transformation

Author(s)

Piotr Fryzlewicz <p.fryzlewicz@imperial.ac.uk>

genesimulator Gene means simulator

Description
Simulates means of the gene intensities for "nps" genes, each replicated "nreps" times. The mean is
drawn from a gamma distribution with shape parameter "shape" and scale parameter "scale"
Usage

genesimulator(nreps = 3, nps = 100, shape = 4, scale = 100)

Arguments
nreps Number of replicates
nps Number of genes
shape Shape parameter

scale Scale parameter
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Details
For many problems a set of reasonable gene mean intensities is useful for testing algorithms that
later draw actual gene intensities with distributions that possess a gene mean intensity.
Value
A matrix containing nreps*nps rows and 3 columns. The first col contains all the gene mean inten-
sities. The second and third col contain the gene replicate number and gene number respectively.
Author(s)

Guy Nason <g.p.nason@bris.ac.uk>

hftrialdatagen Gene intensities simulator and DDHFm tester

Description

Simulates gene intensities and also applies DDHFm to them

Usage

hftrialdatagen(nreps = 4, nps = 128, plot.it = FALSE, uvp = 0.8)

Arguments
nreps Number of replicates
nps Number of genes
plot.it Takes TRUE to activate the command of the respective plot and FALSE to de-
activate it
uvp a parameter for the denoising
Details

The code is well commented for further information.

First, genesimulator is called to obtain a vector of mean gene intensities (for a number of genes
and a number of replicates for each gene.

Then link{simdurbin2} simulates a series of gene intensities using the (log-normal type) model
as described in Durbin and Rocke (2001,2002).

Then for each gene the mean of replicates for that gene is computed.

Optionally, if plot.it is TRUE then the mean is plotted against its standard deviation (over repli-
cates).

Then the intensities are sorted according to increasing replicate mean.
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Optionally, if plot.it is TRUE then a plot of the intensities values as a vector (sorted according to
increasing replicate mean) is plotted in black, and then the true mean plotted in colour 2 (on my
screen this is red) and the computed replicate mean plotted in green.

The DDHF transform of the sorted intensities is computed.

Optionally, if plot. it is TRUE then a plot of the transformed means versus the transformed standard
deviations is plotted. Followed by a time series plot of the transformed sorted intensities. These can
be studied to see how well DDHF has done the transformation.

Then two smoothing methods are applied the the DDHF transformed data. One method is trans-
lation invariant, Haar wavelet universal thresholding. The other method is the classical smoothing
spline. If plot.it is TRUE then these smoothed estimates are plotted in different colours.

Then the mean estimated intensity for each gene is computed and this is returned as the first column
of a two-column matrix (ansm). The second column is the true underlying mean. The object hftssq
contains a measure of error between the estimated and true gene means.

Value
ansm Two column matrix containing the estimated gene intensities and the true ones
hftssq Sum of squares between estimated means and true means
yhf Simulated gene intensities

Author(s)

Guy Nason <g.p.nason@bris.ac.uk>

Examples
#
# First run hftrialdatagen
#
## Not run: v <- hftrialdatagen()
#
# Now plot the Haar-Fisz transformed intensities.
#

## Not run: ts.plot(v$yhf)
Now plot the denoised intensities

Note that above we have 128 genes and 4 replicates and so there are
4%x128 = 512 intensities to plot.

However, there are only 128 gene intensities, and estimates. So, for this
plot we choose to plot the noisy intensities and then for each replicate
group (which are colocated on the plot) plot the (necessarily constant)
true and estimated intensities (ie we plot each true/estimated intensity
4 times, once for each replicate).

First estimates...

B I R T T

## Not run: lines(1:512, rep(v$ansm[,1], rep(4,128)), col=2)
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#

# Now plot the truth

#

## Not run: lines(1:512, rep(v$ansm[,2], rep(4,128)), col=3)

isotone Performs Isotone regression using "pool-adjacent-violators" algo-
rithm

Description

It is applied in order to estimate the h() function in the Data-Driven Haar-Fisz algorithm

Usage

isotone(x, wt = rep(1, length(x)), increasing = FALSE, Ccode=TRUE)

Arguments
X the vector that will be fitted with the regression
wt a vector of weights
increasing if TRUE the curve is set to be increasing, else FALSE
Ccode if TRUE then faster C code is used rather than R
Value
isotone the regression results
Author(s)

Bernard Silverman, with C modifications by GPN

References

Johnstone, .M. and Silverman, B.W. (2005), EbayesThresh: R and S-Plus programs for empirical
Bayes thresholding, Journal of Statistical Software, to appear
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KURTOSIS Kurtosis Coefficient estimator

Description

Estimates the kurtosis coefficient of a data vector

Usage
KURTOSIS(x)

Arguments

X the data vector

Value

The estimated kurtosis of x

Author(s)

Efthimios Motakis <e.motakis @bris.ac.uk

MOMENTS Moment estimator

Description

Computes the rth central moment of the data x

Usage
MOMENTS(x, r)

Arguments

X the data vector

r parameter that describes which moment will be produced
Value

The rth central moment of x

Author(s)

Efthimios Motakis <e.motakis @bris.ac.uk.
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ShipCreditFlow Example Shipping credit flow data

Description

Shipping credit flow data. A set of monthly credit transaction flow series recorded by the Central
Bank of Cyprus. The time range of the data is January 2002 to December 2014 and contains 156
observations.

Usage
data(ShipCreditFlow)

Format

A vector of length 156

Source

Central Bank of Cyprus

References

Michis, A. A. and Nason, G.P. (2016) Case Study: Shipping trend estimation and prediction via
multiscale variance stabilisation. Journal of Applied Statistics (to appear)

simdurbin Gene intensities simulator

Description

Simulates gene intensities from the two components model as in the papers of Durbin and Rocke.

Usage

simdurbin(n, alpha, mu, seta, seps)

Arguments
n number of intensities to be simulated
alpha background mean of gene intensities
mu the means where the gene intensities are simulated from
seta standard deviation of high-level gene intensities

seps standard deviation of low-level gene intensities
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Details

This function generates n intensities from the Durbin and Rocke (2001) gene intensity model with
parameters alpha, seta and seps.

Value

A vector of the appropriate intensities.

Author(s)

Guy Nason <g.p.nason @bris.ac.uk>

References
Rocke, D.M. and Durbin, B.P. (2001), A model for measurement error for gene expression arrays,
Journal of Computational Biology, 8, 557-569

See Also

simdurbin2

simdurbin2 Gene intensities simulator

Description

Simulates gene intensities from the two components model of Durbin and Rocke.

Usage

simdurbin2(mu, alpha, seta, seps)

Arguments
mu the means where the gene intensities are simulated from
alpha background mean of gene intensities
seta standard deviation of high-level gene intensities
seps standard deviation of low-level gene intensities
Value

Like simdurbin this function simulates gene intensities from the Durbin and Rocke two component
model (see Durbin and Rocke, 2001). Unlike simdurbin this function generates each intensity with
a mean specified by an entry in mu. So, length(mu) intensities are generated with intensity i having
mean mu[i].
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Author(s)

Guy Nason <g.p.nason@bris.ac.uk>

References

Rocke, D.M. and Durbin, B.P. (2001), A model for measurement error for gene expression arrays,
Journal of Computational Biology, 8, 557-569

See Also

simdurbin

Examples

#

# Generate data with mu equal to 80 and mu equal to 80000 with 10 replicates each
#

#

v <- simdurbin2( c(rep(80, 10), rep(80000,10)), alpha=24800, seta=0.227, seps=4800)
#

# Let's look at the mean of the first 10 and the last 10

#

mean(v[1:10])

#[1] 27361.95

#

mean(v[11:20])

#[1] 92455.66

SKEW Skewness coefficient estimator

Description

Estimates the skewness coefficient of the data

Usage
SKEW(x)

Arguments

X The data vector

Value

The skewness of x

Author(s)

Efthimios Motakis <e.motakis @bris.ac.uk>
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which.min.diff Find index where two vectors are closest

Description

Finds the index point where two index vectors are closest in value

Usage

which.min.diff(a, vect)

Arguments
a input vector
vect input vector
Value

The index where abs(a-vect) is smallest, ie where a and vect are smallest.

Author(s)

Piotr Fryzlewicz <p.fryzlewicz@imperial.ac.uk>

Examples

#

# Make up two vectors

#

a <- c¢(1,2,3)

vect <- ¢(3,2,1)

#

# Now see on which index are the two closest in value
#

which.min.diff(a,vect)

#[1]1 2

#

# ie its the second index where both vectors are actually 2
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