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1 Introduction

The DDHFm package is designed to perform data-driven Haar-Fisz (DDHF) variance stabi-
lization. The basic DDHF method itself is described in [4, 5]. The modifications to DDHF
to make it work successfully for microarray (or indeed similar kinds of replicate data) are
described in [10].

The basic idea of the Haar-Fisz transform is very simple. First, a Haar wavelet transform
is applied to the data. Then a Fisz transformation is applied to the wavelet coefficients.
Then a standard inverse Haar transformation is applied to the Fisz-transformed wavelet
coeflicients to obtain a variance stabilized sequence. Informally, this kind of transformation
works because the Fisz variance stabilizes (and moves towards Gaussian) each individual
wavelet coefficient and then the multiscale nature of the inverse transform maintains the
variance stabilization (since it is an orthogonal transform) by effectively enforcing the sta-
bilization at every scale and location.



The data-driven HF transform adds in an extra step by trying to estimate the most
effective power in the denominator of the Fisz step. Diagnostic information can be ex-
tracted from the DDHF transform which gives information as to the likely mean-variance
relationship in the data.

More information on wavelets and the Haar wavelet transform can be found in [1] and
more on the Fisz transform in [3]. The original paper on the HF transform for Poisson data
can be found in [6].

2 Application of DDHFm to cDNA data

This section describes the application of DDHFm to a real set of cDNA data. The data
can be obtained from the Stanford Microarray Database. The data arise from [9]: a study
on mouse cDNA microarrays to investigate gene expression triggered by infection of bone
marrow-derived macrophages with cytosol- and vacuole-localized Listeria monocytogenes
(Lm). The experiment on each gene was replicated 4 times. Fluorescent labelled ¢cDNAs
were hybridized to compare the LLO™ liposomes vs. LLO™ liposomes expression on the
cytosol of mice. The data set numbers were 40430, 40571, 34905 and 34912.
To use DDHFm one needs to load the library and to access the cDNA data type:

> library("DDHFm")
> data(cdna)

The cdna matrix contains in formation on nrow(cdna) genes (rows) and ncol(cdna) repli-
cates. The real value of DDHFm is when there are replicates and the more replicates the
better.

At this stage it is worth plotting the “raw” data. This we can do with the following
code:

> cdna.mn <- apply(cdna,l1,mean)
> cdna.sd <- apply(cdna,1,sd)
> plot(cdna.mn, cdna.sd, xlab="Replicates mean", ylab="Replicates sd")

Figure 1 shows, for each gene, the standard deviation over replicates versus the mean. It
is clear here that there is strong relationship between the variance and mean. Variance
stabilization is a transform that attempts to make the variance constant as a function of
the mean.

Now let us apply our DDHFm transform to the cdna data and construct a mean-variance
plot similar to Figure 1.

> #
> # Do the DDHFm transform
> #
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Figure 1: Replicate standard deviation versus the replicate mean. There is a strong mean-
variance relationship
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cdna.dd <- DDHFm(cdna)

#

# Set some graphics parameters

#

op <- par(fg="gray90", tcl=-0.2, mgp=c(3,0.5,0))

#

# Compute replicate means and standard deviations

#

cdna.dd.mn <- apply(cdna.dd, 1,mean)

cdna.dd.sd <- apply(cdna.dd,1,sd)

#

# Plot the rep means and sds

#

plot(cdna.dd.mn, cdna.dd.sd, xlab="DDHFm rep mean", ylab="DDHFm rep sd",
col="gray90")

library("lokern")

cdna.dd.lo <- lokerns(x=cdna.dd.mn, y=cdna.dd.sd)

lines(cdna.dd.lo$x.out, cdna.dd.lo$est, col=2)

The DDHFm plot is shown in Figure 2. The red line is the best kernel smooth fit as
determined by the lokerns function from the lokern package.

For an interesting comparison let us repeat this analysis but this time using vsn from

the vsn package.
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library("vsn")

cdna.vsn <- vsn(cdna)

#

# Compute replicate means and standard deviations

#

cdna.vsn.mn <- apply(cdna.vsn,1,mean)

cdna.vsn.sd <- apply(cdna.vsn,1,sd)

#

# Plot the rep means and sds

#

plot(cdna.vsn.mn, cdna.vsn.sd, xlab="vsn rep mean", ylab="vsn rep sd",
col="gray90")

cdna.vsn.lo <- lokerns(x=cdna.vsn.mn, y=cdna.vsn.sd)

lines(cdna.vsn.lo$x.out, cdna.vsn.lo$est, col=3)

The comparison between the DDHFm- and vsn-transformed data in Figures 2 and 3 is
instructive. The green line for vsn is much less smooth than the comparable red one for
DDHFm. Also, the median bandwidth for vsn is much less than that for DDHFm indicating
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Figure 2: Replicate standard deviation versus the replicate mean for the DDHfm trans-
formed data. Red line is best lokerns kernel smoothing fit which is not far from horizontal
indicating good stabilization. The median bandwidth is 1.8.
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Figure 3: Replicate standard deviation versus the replicate mean for the vsn transformed
data. The green line is best lokerns kernel smooth fit. The median bandwidth was 0.4663.
The fitted line has more dips and peaks than the comparable on DDHFm fit.



that DDHFm has better stabilization. Recall further that these plots and kernel smooths
are based on 42624 observations, a lot of data, and hence we have strong evidence in this
case that DDHFm has stabilized better.

As a final comparison we compute the kernel smooth of the vsn transformed data but
using the bandwidth from the DDHFm kernel smooth (the reason being that one might raise
the objection that the vsn kernel smooth is only more variable because of the smaller

bandwidth).

cdna.vsn.lo.withsamebandwidthasdd <- lokerns(x=cdna.vsn.mn, y=cdna.vsn.sd,
inputb=TRUE, bandwidth=cdna.dd.lo$bandwidth)

plot (seq(from=0, to=1, length=300), cdna.vsn.lo$est, ylim=c(0,1.1),
xlab="x", ylab="VSN transformed scale", type='"n")

lines(seq(from=0, to=1, length=300), cdna.vsn.lo$est, col=3)

lines(seq(from=0, to=1, length=300),
cdna.vsn.lo.withsamebandwidthasdd$est, col=4)

lines(seq(from=0, to=1, length=300), cdna.dd.lo$est*0.4988, col=2)

VvV + v Vv + Vv + V

As Figure 4 shows even when the vsn data are smoothed using the identical bandwidth
to the DDHFm kernel smooth it (the blue line) is still more variable than the DDHFm
kernel smooth (red line). On the other hand one could look solely at the median smoothing
bandwidths for the kernel smoothers on the vsn and DDHFm transformed data (0.4663 and
1.8) and this is evidence itself that the vsn result here is less stabilized than DDHFm.

It is important to realize that the improvement due to DDHFm is in an overall sense
and much of the improvement is due to DDHFm incorporating replicate information in
a systematic way. The vsn variance stabilization works independently on each variable
and does not formally take account of replication. As a result on a per-variable basis vsn
does perform better. However, as technologies improve replication and increasing numbers
of replicates will mean that methods such as DDHFm which explicitly take account of
replicates will become even more valuable.

3 Application of the basic DDHF algorithm

The previous section demonstrated the application of the DDHFm method to cDNA data.
The DDHFm function relies on the ddhft.np.2 function to apply the actual data-driven
Haar-Fisz algorithm. Here follows an example of using the DDHF algorithm directly.

3.1 Poisson data

For this example, we will first create a Poisson intensity vector and plot it in Figure 5.
First, let us create a function that creates a Poisson intensity vector (of any size, mod 4).
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Figure 4: Kernel smooths: (green) kernel smooth of vsn-transformed data from Figure 3
with median bandwidth of 0.4663; (blue) kernel smooth of vsn-transformed data using
bandwidth array from the DDHFm kernel smooth (median bandwidth 1.8); (red) kernel
smooth of DDHFm-transformed data with median bandwidth of 1.8 but rescaled to have
same vertical scale as (green) vsn kernel smooth.



> makepiv <- function(nbit=4){

+ pl <- rep(3, nbit)

+ p2 <- rep(5,nbit)

+ p3 <- rep(1,nbit)

+ p4 <- rep(10, nbit)

+ xx <- seq(from=1, to=10, length=nbit*4)/3
+ p5 <- xx72

+ c¢(p1,p2,p3,p4,p5)

+ }

We’ll make a Poisson intensity vector of length 256 and this is plotted in Figure 5.

> piv <- makepiv(nbit = 32)
> 1 <- length(piv)
> ts.plot(piv, xlab = "x", ylab = "Intensity vector")

Now let us sample a Poisson sequence with this intensity vector and plot this in Figure 6.

> pseq <- rpois(l, lambda = piv)
> plot(1:1, pseq, xlab = "x", ylab = "Poisson sample from intensity vector")
> lines(1:1, piv, 1ty = 2)

Now we will apply the Haar-Fisz transform.

> pseq.ddhf <- ddhft.np.2(pseq)

> plot(pseq.ddhf$mu, pseq.ddhf$sigma2, xlab="Estimated mu", ylab="Estimated sd")
> lines(pseq.ddhf$mu, pseq.ddhf$sigma)

> lines(pseq.ddhf$mu, sqrt(pseq.ddhf$mu), 1ty = 2)

Figure 7 shows the results of the DDHF algorithm. It shows the computed mean-variance re-
lationship from the data by small circles. The values indicated by the circles are the mother
and father Haar wavelet coefficients at the finest scale. The blocky solid line indicates the
best isotonic regression fit (which finds the best monotonically increasing mean-variance
relationship). Figure 7 also plots the ordinary square-root function in a dashed line. Notice
how close the isotonic regression gets to the square root function. This is because in this
case for Poisson random variable the mean equals the variance and so we have that the
standard deviation is proportional to (actual equal to in this case) the square root of the
mean.
For estimation let us apply some light smoothing to the DDHF-transformed data.

> pseq2.ddhf <- pseq.ddhf

> library("wavethresh")

> hftwd <- wd(pseq.ddhf$hft, filter.number = 1, family = "DaubExPhase")
> madmad <- function(x) mad(x) "2
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Figure 5: Contrived Poisson intensity vector.
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Poisson sample from intensity vector
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Figure 6: Poisson sample realization from intensity vector.
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Figure 7: Computed mean-variance relationship (dots), estimated mean-variance relation-
ship (isotone regression, blocky line), sqrt root function for comparison purposes (dashed
line).
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hftwdT <- threshold(hftwd, policy = "universal', levels = hftwd$nlevels - 1, dev = madmad,
hftwd.thresh <- threshold(hftwd, policy = "manual", value = hftwdT)

hftwr <- wr(hftwd.thresh)

pseq2.ddhf$hft <- hftwr

plot(1:1, pseq.ddhf$hft, xlab="x", ylab="Haar wavelet fit to DDHF data")

lines(1:1, hftwr)

vV V.V Vv Vv VvV

In the transformed domain Figure 8 shows the transformed data and a universal threshold
Haar wavelet shrinkage fit to it.

We then transform the Haar wavelet shrunk estimate back into the original domain
using the ddhft.np.inv function and plot the results in Figure 9.

pest2 <- ddhft.np.inv(pseq2.ddhf)

plot(1:1, pseq, xlab = "x", ylab = "Poisson data")

lines(1:1, pest2)

lines(1:1, piv, col = 2, 1lty = 2)

lines(1:1, pss <- smooth.spline(1:1, y = pseq)$y, col = 3)

hfssq <- sum((pest2 - piv)~2)

ssssq <- sum((pss - piv)~2)

title(sub = paste("SSQ: DDHF=", round(hfssq, 0), " SS=",
round(ssssq, 0)))

+ VvV VvV VvV Vv Vv VvV

Note in Figure 9 that the DDHF-transformed estimate is closer to the truth and is less
variable than that computed directly on the Poisson data (or should be). Possibly a better
comparison would be a wavelet shrunk estimate instead of a smoothing spline estimate (but
this is a question of the smoothing employed and not of the transform).

4 Appendix: The Data-Driven Haar-Fisz transform

The Haar-Fisz (HF) transform was introduced by [2] and the Data-Driven HF (DDHF)
transform in [4, 5].

4.1 Basic idea of Haar-Fisz

The basic idea of HF consists of two components. Suppose we have a sequence of n random
variables: X1,..., X, where n = 27 is a power of two for some J. First, the discrete
[7] wavelet transform forms ‘mother’ and ‘father’ wavelet coefficients at the finest scale:
dy = Xop — Xop41 and ¢ = Xop + Xop41. Then recursively applies these two operations
to form mother and father coefficients at coarser scales by:

Citlk = Cj2k + Cj2k+1 (1)

13
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Figure 8: DDHF-transformed data (points) and light smoothed Haar wavelet fit to this
data (line).
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Figure 9: Original Poisson distributed data (points) with true intensity function (red line).
The black line is the intensity estimate obtained through DDHF transformation (transform-
smooth-invert) and the green line is the direct smoothing spline estimate using the Poisson
data as input. (SSQ is error measure).
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and

djy1k = Cjok — Cjokt1 (2)
respectively for j = 1,...,J and k = 1,...,2/77. For example, the first scale 2 mother
wavelet coefficient is da 1 = X1+ X9 — X3+ X4 and the first scale 3 father wavelet coefficient
is c31 = Zle X;. Clearly as j increases the information contained in ¢;j and d;j refers
to progressively coarser scales. The forward Haar wavelet transform of X = {X;,..., X}
formally consists of

W= {csi;dsi;dy11,dj-12;--5d11,. .., dy i1}

which is the coarsest scale father wavelet and all of the mother wavelet coeflicients. The
inverse wavelet transform transforms W into X using identical formulae to (1) and (2).
Both the forward and inverse transforms are fast and memory efficient (both are of order

Suppose now that we assume that the X; are independently Poisson distributed with
parameter ;. Then, since the sum of Poisson random variables is itself Poisson it is always
the case that c;, is distributed as Poisson and d;  has a distribution which is the difference
of two independent Poisson random variables. Define

fik = dj,k/cjl',/k2 (3)

to be the HF coefficient at scale j and location k. A theorem by [3| shows that f; is
asymptotically normal (under an asymptotic regime whereby the underlying intensities of
the component Poisson random variables tend to infinity, and the intensities of the two
random variables involved in d; tend to each other). [2] use this result and demonstrate
that f; is approximately normal with a constant variance that does not depend on the
intensity parameters A;. Applying the inverse Haar wavelet transform to the sequence

{CJ,l; Jovifo—1a, fo—12so 5 it f1,2J—1}

results in a variance stabilized sequence U = {Uy,...,U,} with constant variance and
marginal distribution close to normality. The Fisz theory applies to distributions other
than Poisson, e.g. for x? data but with a different power in the denominator. Subsequent
work has extended the idea in other directions: for images in [2| and using more general
wavelets than Haar in [8].

4.2 Data-driven Haar-Fisz

The HF transform previous section relied on knowledge of the underlying distribution.
However, there are many instances where the underlying distribution is not known.

The Data-Driven Haar-Fisz (DDHF) transform works in situations where the underlying
distribution of the data is not known and estimates the mean-variance relationship. The

16



assumptions of DDHF transform are (i) the input {X;}7 , is a sequence of independent,
positive random variables with finite positive means pu; = E(X;) > 0 and finite positive
variances o7 = Var(X;) > 0; (ii) n must be a power of two (although there are ways around
this); (iii) the variance o2 must be a non-decreasing function of the mean p;: o2 = h(u;)
where the function A is independent of . In the DDHF transform the mean-variance relation
h is assumed unknown and it is estimated from the finest scale mother and father wavelet
coefficients. So, again, a multiscale variance stabilization is achieved as with HF but this
time the precise relationship is not known and is estimated. Work by [5] shows that, at
least for Poisson and x? noise, the DDHF transform with h estimated does not perform

much worse than HF where the actual h is used.
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