Package ‘EasyMx’

January 20, 2025

Date 2023-01-27

Type Package

Title Easy Model-Builder Functions for 'OpenMx'
Imports methods

Description Utilities for building certain kinds of common matrices and models in
the extended structural equation modeling package, 'OpenMx'.

Depends R (>=3.0.0), OpenMx
Suggests rpf (>=0.45)

License GPL

Version 0.3-2

NeedsCompilation no
URL https://bitbucket.org/mhunter/easymx

BugReports https://bitbucket.org/mhunter/easymx/issues

Author Michael D. Hunter [aut, cre] (<https://orcid.org/0000-0002-3651-6709>),
Joshua N. Pritikin [ctb]

Maintainer Michael D. Hunter <mhunter.ou@gmail.com>
Repository CRAN
Date/Publication 2023-01-30 22:00:07 UTC

Contents
EasyMx-package e e 2
emxCholeskyComponent 3
emxCholeskyVariance 5
emxCommonPathwayComponent 6
emXCOVArIANCES . . .« v v v e e e e e e e e e e e e e e e e 7
emxFactorModel 8
emxGeneticFactorComponent 10
emxGeneticFactorVariance 11
emxGrowthModel 12

https://bitbucket.org/mhunter/easymx
https://bitbucket.org/mhunter/easymx/issues
https://orcid.org/0000-0002-3651-6709

2 EasyMXx-package

emxIndependentPathwayComponent 13
emxKroneckerVariance oL oo 14
emxLoadings L 15
eMXMEANS e e 16
emxMixtureModel 17
emxRegressionModel 19
emxRelatednessMatrix 20
emxResiduals 21
emxStateSpaceMixtureClassify L oo 22
emxStateSpaceMixtureModelo 24
emxThresholds 26
emxTwinModel L 26
emxVarianceComponents 28
emxVARModel e 29

Index 30

EasyMx-package EasyMx: Easy modeling in OpenMx
Description

EasyMx is a package for extended structural equation modeling. It is built as a higher-level frontend
on top of OpenMx. It is intended as an Easy introduction to OpenMx: Easy Mx. Try the example
below.

Details

All of the functions in the EasyMx package create OpenMx objects. These are most often MxMa-
trix, MxAlgebra, or MxModel objects. The primary difference between EasyMx and OpenMx is
design philosophy. OpenMx has its foundation in WYSIWID: What you say is what it does. This
requires the user to be very explicit. The EasyMx package is not as strong or flexible as OpenMx,
but it places less burden on the user. Many decisions are made automatically for the user. Some
of them are modifiable within EasyMx; for others the user is encouraged to use OpenMx, where
nearly everything is modifiable.

The package is broadly divided into two styles of functions: matrix builders and model builders.

The matrix builder functions are utilities for building common structural equation model matrices.
These include emxLoadings for factor loadings, emxResiduals for residual variances, emxCovariances
for latent or manifest covariances, emxMeans for means and intercepts matrices, and emxThresholds

for thresholds matrices when ordinal data are involved.

The model builder functions are higher-level utilities for building common kinds of structural equa-
tion models. The model builders often call several matrix builders. The model builders include
emxFactorModel for (multiple) factor models, emxGrowthModel for latent growth curve models,
and emxRegressionModel for full-information likelihood estimation of regression for observed
variables.

emxCholeskyComponent 3

There are also a few model builder functions for non-standard structural equation models. In partic-

ular, the emxVARModel function creates vector autoregressive models, and the emxStateSpaceMixtureModel

function creates state space mixture models.

A third category of functions encompasses special functions for behavior genetics modeling. Some
of these functions are matrix builders, and others are model builders. The lowest-level functions for

behavior genetics are emxCholeskyVariance, emxGeneticFactorVariance, emxRelatednessMatrix,

and emxKroneckerVariance.

A higher-level set of behavior genetics matrix builders create all the matrices and algebraic state-

ments needed for e.g. the A component of an ACE model. These functions are emxCholeskyComponent

and emxGeneticFactorComponent.

The highest-level of behavior genetics functions builds some basic twin models. The primary func-
tion for this is emxTwinModel.

Finally, a mixture model helper is provided: emxMixtureModel.

Examples

Make and run a one factor model

Not run:
require(EasyMx)

data(demoOneFactor)
fmod <- list(G=names(demoOneFactor))
fitl <- emxFactorModel (fmod, demoOneFactor, run=TRUE)

summary (fit1)

End(Not run)

emxCholeskyComponent Creates component for a Biometric Cholesky Model

Description

This function creates all the objects needed for a Cholesky component.

Usage

emxCholeskyComponent(x, xname, xvalues, xfree,

Arguments

X

Xname

xvalues

h=2, hname=paste@('H', xname), hvalues, hlabels)

character vector. The base names of the variables used for the matrix with no
repetition for twins (X, y, z not x1, y1, z1, x2, y2, z2).

character. Name of the component matrix.

numeric vector. Values of the component matrix.

4 emxCholeskyComponent

xfree logical vector. Whether each element of the component matrix is freely esti-
mates.
h numeric. The number of variables for the relatedness matrix, i.e. the number of

critters with relationships

hname character. Name of the relatedness matrix.
hvalues numeric vector. Values for the relatedness matrix.
hlabels character vector. Labels for the relatedness matrix.
Details
This function is a combination of emxCholesky Variance, emxRelatednessMatrix, and emxKroneck-
erVariance.
Value

A list with elements (1) the lower triangular matrix for the Cholesky, (2) the full positive definite
variance matrix, (3) the relatedness matrix, and (4) the Kronecker product of the variance matrix
and the relatedness matrix.

See Also

emxGeneticFactorComponent

Examples

Create an ACE model in 22 lines

require(EasyMx)

require (OpenMx)

data(twinData)

twinVar = names(twinData)

selVars <- c('ht1', 'bmil', 'ht2',6 'bmi2")

mzdzData <- subset(twinData, zyg %in% c(1, 3), c(selvars, 'zyg'))
mzdzData$RCoef <- c(1, NA, .5)[mzdzData$zyg]

nVar = length(selVars)/2

X <- paste@('x', 1:nVar)

acomp <- emxCholeskyComponent(x, 'A', hvalues=c(1, .5, 1), hlabels=c(NA, 'data.RCoef', NA))
ccomp <- emxCholeskyComponent(x, 'C', hvalues=c(1, 1, 1))

ecomp <- emxCholeskyComponent(x, 'E', hvalues=c(1, 0, 1))

totalVar <- mxAlgebra(AKron + CKron + EKron, 'V', dimnames=list(selVars, selVars))
totalMean <- emxMeans(selVars, type='twin')

expect <- mxExpectationNormal(totalVar$name, totalMean$name)

fitfun <- mxFitFunctionML()

comlist <- c(acomp, ccomp, ecomp, list(totalVar, totalMean, expect, fitfun))
model <- mxModel('model', comlist, mxData(mzdzData, 'raw'))

Not run:
run2 <- mxRun(model)

emxCholesky Variance 5

End(Not run)

emxCholeskyVariance Create a variance matrix in Cholesky form

Description

This function creates a Cholesky variance matrix and associated MxMatrix and MxAlgebra objects.

Usage

emxCholeskyVariance(x, name, values=.8, free=TRUE)

Arguments
X character vector. The names of the variables used for the matrix.
name character. The name of the variance matrix created.
values numeric vector. The starting values for the lower triangular matrix.
free logical vector. Whether the lower triangular elements are free.
Details

This is a helper function for creating a matrix that is symmetric and positive definite. Full co-
variance matrices are the most common case of these. In a behavior genetics modeling context,
Cholesky components can be created for Additive genetics, Common environments, and unique
Environments. These are unrestrictive models of the covariances of multiple phenotypes.

Value
A list with two components. The first component is the lower triangular MxMatrix. The second
component is an MxAlgebra, the result of which is the positive definite variance matrix.

See Also

emxGeneticFactorVariance

Examples

Create a Cholesky variance matrix called 'A’
require(EasyMx)

nVar <- 3

X <- paste@('x', 1:nVar)

amat <- emxCholeskyVariance(x, 'A'")

6 emxCommonPathwayComponent

emxCommonPathwayComponent
Creates component for a Biometric Common Pathway Model

Description

UNDER ACTIVE DEVELOPMENT. DO NOT TRUST. This function creates all the objects needed
for a Common Pathway component.

Usage

emxCommonPathwayComponent(x, xname, xvalues=.8, xfree=TRUE, xlbound=NA, xubound=NA,
h=2, hname=paste@('H', xname), hvalues, hlabels)

Arguments
X character vector. The base names of the variables used for the matrix with no
repetition for twins (X, y, z not x1, y1, z1, x2, y2, z2).
xname character. Name of the component matrix.
xvalues Matrix of fixed and/or starting values of parameters
xfree Matrix of TRUE (for free) and FALSE (for fixed) values
x1bound Matrix of numeric lower bounds for parameters
xubound Matrix of numeric upper bounds for parameters
h numeric. The number of variables for the relatedness matrix, i.e. the number of
critters with relationships
hname character. Name of the relatedness matrix.
hvalues numeric vector. Values for the relatedness matrix.
hlabels character vector. Labels for the relatedness matrix.
Details
This function is a combination of emxCholesky Variance, emxRelatednessMatrix, and emxKroneck-
erVariance.
Value

A list with elements (1) the lower triangular matrix for the Cholesky, (2) the full positive definite
variance matrix, (3) the relatedness matrix, and (4) the Kronecker product of the variance matrix
and the relatedness matrix.

See Also

emxGeneticFactorComponent

emxCovariances 7

Examples

Create an ACE model in 22 lines

require(EasyMx)

require (OpenMx)

data(twinData)

twinVar = names(twinData)

selVars <- c('ht1', 'bmil','ht2','bmi2")

mzdzData <- subset(twinData, zyg %in% c(1, 3), c(selvars, 'zyg'))
mzdzData$RCoef <- c(1, NA, .5)[mzdzData$zyg]

nVar = length(selVars)/2

X <- paste@('x', 1:nVar)

acomp <- emxCholeskyComponent(x, 'A', hvalues=c(1, .5, 1), hlabels=c(NA, 'data.RCoef', NA))
ccomp <- emxCholeskyComponent(x, 'C', hvalues=c(1, 1, 1))

ecomp <- emxCholeskyComponent(x, 'E', hvalues=c(1, 0, 1))

totalVar <- mxAlgebra(AKron + CKron + EKron, 'V', dimnames=list(selVars, selVars))
totalMean <- emxMeans(selVars, type='twin')

expect <- mxExpectationNormal(totalVar$name, totalMean$name)

fitfun <- mxFitFunctionML()

comlist <- c(acomp, ccomp, ecomp, list(totalVar, totalMean, expect, fitfun))
model <- mxModel('model', comlist, mxData(mzdzData, 'raw'))
Not run:

run2 <- mxRun(model)

End(Not run)

emxCovariances Create a set of covariances

Description

This function creates a covariance matrix as an MxMatrix or MxPath object.

Usage

emxCovariances(x, values, free, path=FALSE, type, name='Variances')

Arguments
X character vector. The names of the variables for which covariances are created.
values numeric vector. See Details.
free logical vector. See Details.
path logical. Whether to return the MxPath object instead of the MxMatrix.
type character. The kind of covariance structure to create. See Details.

name The name of the matrix created.

8 emxFactorModel

Details

Possible values for the type argument are “independent’, ’full’, and ’corr’. When type="independent',
the remaining arguments are passes to emxResiduals. The values and free arguments are only
used when the type argument is "independent’. For all other cases, they are ignored.

When type="'full', a full covariance matrix is created. That is, a symmetric matrix is created
with all unique elements freely estimated. The starting values for the variances are all 1; for the
covariances, all 0.5.

When type='corr’, a full correlation matrix is created. That is, a symmetric matrix is created with
all unique elements not on the diagonal freely estimated. The starting values for the correlations are
all 0.5. The variances are fixed at 1.

Value

Depending on the value of the path argument, either an MxMatrix or and MxPath object that can
be inspected, modified, and/or included in MxModel objects.

See Also

emxFactorModel, emxGrowthModel

Examples

Create a covariance matrix

require(EasyMx)

manVars <- paste@('x', 1:6)

latVars <- paste@('F', 1:2)
emxCovariances(manVars, type='full')
emxCovariances(latVars, type='corr', path=TRUE)

emxFactorModel Create a factor model

Description

This function creates a factor model as an MxModel object.

Usage

emxFactorModel (model, data, name, run=FALSE, identification, use, ordinal,
., parameterization=c("lisrel”, "ifa"), weight = as.character(NA))

emxModelFactor(model, data, name, run=FALSE, identification, use, ordinal,
., parameterization=c("lisrel”, "ifa"), weight = as.character(NA))

emxFactorModel 9
Arguments
model named list. Gives the factor loading pattern. See Details.
data data used for the model
name character. Optional name of the model created.
run logical. Whether to run the model before returning.
identification Not yet implemented. How the model is identified. Currently ignored.
use character vector. The names of the variables to use.
ordinal character vector. The names of the ordinal variables.
Force later arguments to be named. ... is ignored.
parameterization
character. Whether to specify the model as a LISREL SEM or as an Item Factor
Analysis
weight character. Name of the data column used for sample weights.
Details

The model argument must be a named list. The names of the list give the names of the latent
variables. Each list element gives the names of the variables that load onto that latent variable. This
may sound complicated, but the example below makes this more clear. It is intended to be visually

intuitive.

Value

An MxModel.

See Also

emxLoadings

Examples

Example
require(EasyMx)

data(myFADataRaw)

xmap <- list(Fl1=paste@('x', 1:6), F2=paste@('y', 1:3), F3=paste@('z', 1:3))

Not run:

mod <- emxFactorModel(xmap, data=myFADataRaw, run=TRUE)

End(Not run)

10

emxGeneticFactorComponent

emxGeneticFactorComponent

Creates component for a Genetic Factor Model

Description

This function creates all the objects needed for Genetic Factor component

Usage

emxGeneticFactorComponent(x, xname, xvalues=.8, xfree=TRUE, xlbound=NA, xubound=NA,

Arguments

X

Xxname
xvalues
xfree

x1bound
xubound

h

hname
hvalues

hlabels

Details

h=2, hname=paste@('H', xname), hvalues, hlabels)

character vector. The base names of the variables used for the matrix with no
repetition for twins (X, y, Z not x1, y1, z1, x2, y2, z2).

character. Name of the component matrix.

numeric vector. Values of the genetic factor loadings.
logical vector. Whether the genetic factor loadings are free.
numeric vector. Lower bounds of the factor loadings.
numeric vector. Upper bounds of the factor loadings.

numeric. The number of variables for the relatedness matrix, i.e. the number of
critters with relationships

character. Name of the relatedness matrix.
numeric vector. Values for the relatedness matrix.

character vector. Labels for the relatedness matrix.

This function is a combination of emxGeneticFactorVariance, emxRelatednessMatrix, and emxKro-

neckerVariance.

Value

A list with elements (1) the genetic factor loadings matrix, (2) the full positive definite variance
matrix, (3) the relatedness matrix, and (4) the Kronecker product of the variance matrix and the

relatedness matrix.

See Also

emxCholeskyComponent

emxGeneticFactorVariance 11

Examples

Create genetic factor A component for DZ twins

require(EasyMx)

xvars <- paste@('x', 1:4)

acomp <- emxGeneticFactorComponent(xvars, 'A', hvalues=c(1, .5, 1))

emxGeneticFactorVariance
Creates a variance matrix accoring to the Genetic Factor Model

Description

This function creates a variance matrix according to the genetic factor model

Usage

emxGeneticFactorVariance(x, name, values=.8, free=TRUE, lbound=NA, ubound=NA)

Arguments
X character vector. The names of the variables used for the matrix.
name character. The name of the variance matrix created.
values numeric vector. The starting values for the lower triangular matrix.
free logical vector. Whether the lower triangular elements are free.
1bound numeric vector. Lower bounds on free parameters.
ubound numeric vector. Upper bounds on free parameters.

Value

A list with two components. The first component is the factor loadings matrix. The second compo-
nent is an MxAlgebra, the result of which is the variance matrix implied by the factor loadings.

See Also

emxCholesky Variance

Examples

Create a genetic factor variance matrix
require(EasyMx)

xvars <- paste@('x', 1:2)
emxGeneticFactorVariance(xvars, 'D')

12 emxGrowthModel

emxGrowthModel Create a latent growth curve model

Description

This function creates a latent growth curve model as an MxModel object.

Usage

emxGrowthModel (model, data, name, run=FALSE, identification, use, ordinal, times)
emxModelGrowth(model, data, name, run=FALSE, identification, use, ordinal, times)

Arguments
model character or numeric. See Details.
data data used for the model
name character. Optional name of the model created.
run logical. Whether to run the model before returning.

identification Not yet implemented. How the model is identified. Currently ignored.

use character vector. The names of the variables to use.
ordinal character vector. The names of the ordinal variables.
times optional character or numeric vector. Either the numeric times of measurement

or the names of the variables in data that give the times of measurement.

Details

The model argument can be either a character or a number that tells the kind of growth curve to
make. If it is a character it currently must be one of "Intercept”, "Linear", "Quadratic", "Cubic",
"Quartic", or "Quintic", and it produces a polynomial growth curve of the corresponding type. If it
is a number, the function produces a polynomial growth curve of the corresponding order. Zero is
an intercept only, one is linear, two is quadratic; and so on.

When missing, the times are assumed to start at zero and increment by one until the number of
variables is completed.

Value

An MxModel

See Also

emxFactorModel, emxGrowthModel

emxIndependentPathwayComponent 13

Examples

Example

require(EasyMx)

data(myLongitudinalData)

Not run:

mod <- emxGrowthModel ('Linear', data=myLongitudinalData, use=names(myLongitudinalData), run=TRUE)

End(Not run)

emxIndependentPathwayComponent
Creates component for a Biometric Independent Pathway Model

Description
UNDER ACTIVE DEVELOPMENT. DO NOT TRUST. This function creates all the objects needed
for an Independent Pathway component.

Usage

emxIndependentPathwayComponent(x, xname, xvalues=.8, xfree=TRUE, x1bound=NA, xubound=NA,
h=2, hname=paste@('H', xname), hvalues, hlabels)

Arguments
X character vector. The base names of the variables used for the matrix with no
repetition for twins (X, y, z not x1, y1, z1, x2, y2, z2).
Xxname character. Name of the component matrix.
xvalues Matrix of fixed and/or starting values of parameters
xfree Matrix of TRUE (for free) and FALSE (for fixed) values
x1lbound Matrix of numeric lower bounds for parameters
xubound Matrix of numeric upper bounds for parameters
h numeric. The number of variables for the relatedness matrix, i.e. the number of
critters with relationships
hname character. Name of the relatedness matrix.
hvalues numeric vector. Values for the relatedness matrix.
hlabels character vector. Labels for the relatedness matrix.
Details

This function is a combination of emxCholesky Variance, emxRelatednessMatrix, and emxKroneck-
erVariance.

14 emxKroneckerVariance

Value

A list with elements (1) the lower triangular matrix for the Cholesky, (2) the full positive definite
variance matrix, (3) the relatedness matrix, and (4) the Kronecker product of the variance matrix
and the relatedness matrix.

See Also

emxGeneticFactorComponent

Examples

Create an ACE model in 22 lines

require(EasyMx)

require(OpenMx)

data(twinData)

twinVar = names(twinData)

selVars <- c('ht1', 'bmil','ht2', 'bmi2')

mzdzData <- subset(twinData, zyg %in% c(1, 3), c(selvars, 'zyg'))
mzdzData$RCoef <- c(1, NA, .5)[mzdzData$zyg]

nVar = length(selVars)/2

X <- paste@('x', 1:nVar)

acomp <- emxCholeskyComponent(x, 'A', hvalues=c(1, .5, 1), hlabels=c(NA, 'data.RCoef', NA))
ccomp <- emxCholeskyComponent(x, 'C', hvalues=c(1, 1, 1))

ecomp <- emxCholeskyComponent(x, 'E', hvalues=c(1, 0, 1))

totalVar <- mxAlgebra(AKron + CKron + EKron, 'V', dimnames=list(selVars, selVars))
totalMean <- emxMeans(selVars, type='twin')

expect <- mxExpectationNormal(totalVar$name, totalMean$name)

fitfun <- mxFitFunctionML()

comlist <- c(acomp, ccomp, ecomp, list(totalVar, totalMean, expect, fitfun))
model <- mxModel('model', comlist, mxData(mzdzData, 'raw'))
Not run:

run2 <- mxRun(model)

End(Not run)

emxKroneckerVariance Creates a large Variance matrix by Kroneckering two smaller matrices

Description

This function creates the wide format variance matrix when combined with a relatedness matrix

Usage

emxKroneckerVariance(h, v, name)

emxLoadings

Arguments

h

name

Details

15

MxMatrix. Left hand side of the Kronecker product. Typically the relatedness
matrix.

MxMatrix. Right hand side of the Kronecker product. Typically the variance
matrix.

character. Name of the resulting large matrix.

In many behavior genetic models, a relationship matrix is combined with a base variance matrix.
The combination is done with a Kronecker product so that the variance exists (possibly weighted
by zero or another number) for each member of the relationship.

Value

MxAlgebra

See Also

emxRelatednessMatrix

Examples

Create a loadings matrix

require(EasyMx)

x <- letters[23:26]

amat <- emxCholeskyVariance(x, 'A")

ahmat <- emxRelatednessMatrix(2, c(1, .5, 1), name='AH')
ab <- emxKroneckerVariance(ahmat, amat[[2]], 'AB')

emxLoadings

Create a factor loadings matrix

Description

This function creates a factor loadings matrix as an MxMatrix or MxPath object.

Usage

emxLoadings(x, values=.8, free=TRUE, path=FALSE)

Arguments

X
values
free
path

named list. Gives the factor loading pattern. See Details.

numeric vector. The starting values for the nonzero loadings.

logical vector. Whether the nonzero loadings are free.

logical. Whether to return the MxPath object instead of the MxMatrix.

16 emxMeans

Details

The x argument must be a named list. The names of the list give the names of the latent variables.
Each list element gives the names of the variables that load onto that latent variable. This may sound
complicated, but the example below makes this more clear. It is intended to be visually intuitive.

Value

Depending on the value of the path argument, either an MxMatrix or and MxPath object that can
be inspected, modified, and/or included in MxModel objects.

See Also

emxFactorModel

Examples

Create a loadings matrix

require(EasyMx)

xmap <- list(Fl1=paste@('x', 1:6), F2=paste@('y', 1:3), F3=paste@('z', 1:3))
emxLoadings(xmap)

emxLoadings(xmap, path=TRUE)

emxMeans Create a set of means

Description

This function creates a means matrix as an MxMatrix or MxPath object.

Usage

emxMeans(x, values=0, free=TRUE, path=FALSE, type='saturated', name, column=TRUE, labels)

Arguments
X character vector. The names of the variables for which means are created.
values numeric vector. See Details.
free logical vector. See Details.
path logical. Whether to return the MxPath object instead of the MxMatrix.
type character. The kind of covariance structure to create. See Details.
name The name of the matrix created.
column logical. Whether to create the means vector as a column or row.

labels character vector. Optional labels for the means.

emxMixtureModel 17

Details

Possible values for the type argument are ’saturated’, ’equal’, "twin’, ’special’.

Value
Depending on the value of the path argument, either an MxMatrix or and MxPath object that can
be inspected, modified, and/or included in MxModel objects.

See Also

emxFactorModel, emxGrowthModel

Examples

Create a covariance matrix
require(EasyMx)

manVars <- paste@('x', 1:6)
emxMeans(manVars, type='saturated')

emxMixtureModel Create a mixture model

Description

This function creates a mxiture model as an MxModel object.

Usage

emxMixtureModel (model, data, run=FALSE, p=NA, ...)
emxModelMixture(model, data, run=FALSE, p=NA, ...)

Arguments
model list. The MxModel objects that compose the mixture.
data data used for the model
run logical. Whether to run the model before returning.
p character. Optional name of the mixing proportions matrix.
Further Mx Objects passed into the mixture model.
Details

The model argument is list of MxModel objects. These are the classes over which the mixture
model operates.

The p argument is optional. If not specified, the function will create and properly scale the mixing
proportions for you. If specified, the Mx Object that gives the mixing proportions should be a
column vector (one-column matrix).

18 emxMixtureModel

Value

An MxModel.

See Also

emxLoadings

Examples

Factor Mixture Example

require(EasyMx)

data(myFADataRaw)

xmapl <- list(F1=paste@('x', 1:6), F2=paste@('y', 1:3), F3=paste@('z', 1:3))
mod1 <- emxFactorModel(xmap1, data=myFADataRaw, name='m1')

xmap2 <- list(F1=c(paste@('x', 1:6), paste@('y', 1:3), pasteo('z', 1:3)))
mod2 <- emxFactorModel(xmap2, data=myFADataRaw, name='m2')

mod <- emxMixtureModel(list(mod1l, mod2), data=myFADataRaw)
To estimate parameters either

1. mod <- mxRun(mod) or

2. include run=TRUE in the arguments above

summary (mod)

coef(mod)

Latent Profile Example
require(EasyMx)

ml <- omxSaturatedModel (demoOneFactor)[[1]]
ml <- mxRename(ml, 'profilel')

m2 <- omxSaturatedModel (demoOneFactor)[[1]]
m2 <- mxRename(m2, 'profile2')

mod <- emxMixtureModel(list(m1, m2), data=demoOneFactor)
To estimate parameters either

1. mod <- mxRun(mod) or

2. include run=TRUE in the arguments above

summary (mod)

coef (mod)

mxGetExpected(mod$profilel, 'covariance')
mxGetExpected(mod$profilel, 'means')
mxGetExpected(mod$profile2, 'covariance')
mxGetExpected(mod$profile2, 'means')

emxRegressionModel 19

emxRegressionModel Create a regression model

Description

This function creates a regression model as an MxModel object.

Usage

emxRegressionModel (model, data, type='Steven', run, ...)

emxModelRegression(model, data, type='Steven', run, ...)
Arguments

model formula. See Details.

data data used for the model

run logical. Whether to run the model before returning.

type character. Either ’Steven’ or Joshua’. See Details.

Further named arguments to be passed to 1m for the formula

Details

The model argument is a formula identical to what is used in 1m.

The type argument switches the kind of regression model that is specified. When there are no
missing data, the two versions will estimate the same regression parameters but type="'Steven' will
estimate addition parameters that are not estimated by type="'Joshua'. The type='Steven' model
is due to Steven Boker and many others. It estimates more parameters than a typical regression
analysis and has a different set of assumptions. More exactly, type='Steven' models the outcome
and all of the predictors as a multivariate Normal distribution. By contrast, type="'Joshua"' is due
to Joshua Pritikin and exactly replicates the typical regression model with its usual assumptions.
In particular, type='Joshua' models the regression residual as a univariate Normal distribution.
Predictors are assumed to have no measurement error (see Westfall & Yarkoni, 2016).

The benefit of type="'Steven' is that it handles missing data with full-information maximum like-
lihood (FIML; Enders & Bandalos, 2001), at the cost of using a different model with different
assumptions from ordinary least squares regression. The benefit of type='Joshua' is that it ex-
actly replicates regression as a maximum likelhood model, at the cost of having the same weakness
in terms of missing data as OLS regression.

Value

An MxModel.

20 emxRelatednessMatrix

References

Enders, C. K. & Bandalos, D. L. (2001). The relative performance of full information maximum
likelihood estimation for missing data in structural equation models. <i>Structural Equation Mod-
eling, 8</i>(3), 430-457.

Westfall, J. & Yarkoni, T. (2016). Statistically controlling for confounding constructs is harder than
you think. <i>PLoS ONE, 11</i>(3). doi:10.1371/journal.pone.0152719

See Also

Im

Examples

Example
require(EasyMx)
data(myRegDataRaw)
myrdr <- myRegDataRaw
myrdr[1, 4] <- NA

Not run:
run <- emxRegressionModel(y~1+x*z, data=myrdr, run=TRUE)
summary (run)

End(Not run)

summary (Im(y~1+xxz, data=myrdr))

emxRelatednessMatrix Create a relatedness matrix

Description
This function creates a relatedness matrix as an MxMatrix, often used in behavior genetics model-
ing.

Usage

emxRelatednessMatrix(nvar, values, labels, name='h")

Arguments
nvar numeric. The number of variables for the matrix, i.e. the number of rows or
columns.
values numeric vector. Values used in the matrix.
labels character vector. Labels of the elements in the matrix. See Details.

name character. The name of the matrix created.

emxResiduals 21

Details

The labels argument can be used to create a "definition variable" which populates the value from
one of the data columns for each row in the data. In this context, if the genetic relatedness coefficient
between a pair of individuals is given by a column in the data then that information can be used to
create in the relatedness matrix. Alternatively, multiple groups can be created

Value

An MxMatrix object.

See Also

emxGeneticFactorVariance

Examples

Create a Cholesky variance matrix called 'A’

require(EasyMx)

ahmat <- emxRelatednessMatrix(2, c(1, .5, 1), labels=c(NA, 'data.RCoef', NA), name='AH')
data.RCoef creates a definition variable and ignores the .5 value.

emxResiduals Create a residual variances matrix

Description

This function creates a factor loadings matrix as an MxMatrix or MxPath object.

Usage

emxResiduals(x, values=.2, free=TRUE, lbound=NA, ubound=NA, path=FALSE, type='unique')

Arguments
X character vector. The names of the variables for which residual variances are
created.
values numeric vector. The starting values for the variances.
free logical vector. Whether the variances are free.
1bound numeric vector. Lower bounds for the variances.
ubound numeric vector. Upper bounds for the variances.
path logical. Whether to return the MxPath object instead of the MxMatrix.

type character. The kind of residual variance structure to create. See Details.

22 emxStateSpaceMixtureClassify

Details

Possible values for the type argument are 'unique’ and ’identical’. When type='unique’', each
residual variances is a unique free parameter. When type='identical’, all of the residual vari-
ances are given by a single free parameter. In this case, all the residual variances are constrained to
be equal. However, no linear or non-liniear contraint function is used. Rather, a single parameter
occurs in multiple locations by using the same label.

Value

Depending on the value of the path argument, either an MxMatrix or and MxPath object that can
be inspected, modified, and/or included in MxModel objects.

See Also

emxFactorModel, emxGrowthModel

Examples

Create a residual variance matrix
require(EasyMx)

manVars <- paste@('x', 1:6)
emxResiduals(manVars, lbound=1e-6)
emxResiduals(manVars, type='identical')
emxResiduals(manVars, path=TRUE)

emxStateSpaceMixtureClassify
Classify time series in a state space mixture model

Description

This function classifies time series (usually people) in a state space mixture model.

Usage

emxStateSpaceMixtureClassify(model)

Arguments

model MxModel. The output from emxStateSpaceMixtureModel

Details

This is a helper function for state space mixture modeling. The function will almost exclusively
be used in conjunction with emxStateSpaceMixtureModel. The present function takes a state space
mixture model as input, and returns detailed information about the most likely class for each unique
ID.

emxStateSpaceMixtureClassify 23

Value

A named list with elements

estimated_classes
A vector of the most likely class for each person. Dimension is people.

joint_m211 A matrix of joint minus two summed log likelihoods of each person and each
class. Dimension is people by classes.

m211 A matrix of minus two summed log likelihoods of each person given each class.
Dimension is people by classes.

likelihood An array of the likelihoods (i.e., probability densities) of each combination of
time point, person, and class. Dimension is time points by people by classes.

See Also

emxStateSpaceMixtureModel , emxMixtureModel

Examples

Example
require(EasyMx)
data(myFADataRaw)

ds@ <- myFADataRaw[,1:3]

Make a VAR Model
vm <- emxVARModel (data=ds@, use=names(ds@), name='varmodel')

Re-label parameters to have different AR parameters

for class 1 and class 2

vml <- OpenMx::omxSetParameters(vm, labels=vm$Dynamics$labels,
newlabels=paste@(vm$Dynamics$labels, '_k1'), name='klassl')

vm2 <- OpenMx::omxSetParameters(vm, labels=vm$Dynamics$labels,
newlabels=paste@(vm$Dynamics$labels, '_k2'), name='klass2')

Pretend you have a data set of 50 people

each measured 10 times on 3 variables

ds1 <- myFADataRaw[, 1:3]

ds1$id <- rep(1:50, each=nrow(myFADataRaw)/50)

Not run:

Make the state space mixture model

ssmm <- emxStateSpaceMixtureModel(model=list(vml, vm2),
data=ds1, ID='id')

Fit model
ssmmr <- mxRun(ssmm)

Extract estimated classes and diagnostics
eclasses <- emxStateSpaceMixtureClassify(ssmmr)

End(Not run)

24 emxStateSpaceMixtureModel

emxStateSpaceMixtureModel
Create a state space mixture model

Description

This function creates a state space mixture model as an MxModel object.

Usage
emxStateSpaceMixtureModel (model, data, name, run=FALSE, use, ID, time, ...)
emxModelStateSpaceMixture(model, data, name, run=FALSE, use, ID, time, ...)
Arguments
model list of MxModel objects, each of which should be a state space model
data data used for the model
name character. Optional name of the model created.
run logical. Whether to run the model before returning.
use character vector. The names of the variables to use. Currently ignored.
ID character. Name of variable that identifies each unique person.
time character. Name of the variable that gives the time of each obsevation. Currently
ignored.
Force later arguments to be named. ... is ignored.
Details

The idea of state space mixture modeling is to model multiple, multivariate time series while al-
lowing for qualitative differences between the time series. Suppose you have a multivariate time
series for several people. You think some people should have the same time series model, but not
everyone. You think there should be a small number of homogeneous sets of people that follow the
same time series model, but you do not know which people or the exact parameter values of the
candidate time series models. This function presents one solution to this problem.

State space mixture modeling begins with a set of candidate state space models, and uses these state
space models as the mixture classes. The goal is to simultaneously estimate the free parameters of
the state space models, and estimate which multivariate time series (e.g., perseon) belongs to which
mixture class.

The component state space models may share some free parameters or none. Note that free param-
eters with the same name are constrained to be equal across all models. Conversely, unnamed free
parameters are given unique names and are allowed to differ for each person-mixture combination,
which creates a very large number of free parameters. We strongly encourage you to name all of
your free parameters in the model list to avoid melting your computer’s CPU.

emxStateSpaceMixtureModel 25

The model argument currently must be a list. The elements of the list should be MxModel objects.
Each list element forms a mixture class in the final model.

This function creates a multigroup mixture model where the mixture classes are the elements of the
model list argument. Each unique ID forms a group.

The data argument can be a list of data. frame objects with one element for each ID, or a single
data. frame with an ID variable that separates groups.

Value

An MxModel.

See Also

emxStateSpaceMixtureClassify , emxMixtureModel

Examples

Example
require(EasyMx)
data(myFADataRaw)

ds@ <- myFADataRaw[,1:3]

Make a VAR Model
vm <- emxVARModel (data=ds@, use=names(ds@), name='varmodel')

Re-label parameters to have different AR parameters

for class 1 and class 2

vml <- OpenMx::omxSetParameters(vm, labels=vm$Dynamics$labels,
newlabels=paste@(vm$Dynamics$labels, '_k1'), name='klassl')

vm2 <- OpenMx::omxSetParameters(vm, labels=vm$Dynamics$labels,
newlabels=paste@(vm$Dynamics$labels, '_k2'), name='klass2')

Pretend you have a data set of 50 people

each measured 10 times on 3 variables

ds1 <- myFADataRaw[, 1:3]

ds1$id <- rep(1:50, each=nrow(myFADataRaw)/50)

Not run:

Make and fit the state space mixture model

ssmm <- emxStateSpaceMixtureModel(model=1list(vm1, vm2),
data=ds1, ID='id', run=TRUE)

End(Not run)

26 emxTwinModel

emxThresholds Create a set of thresholds for ordinal data

Description

This function creates a threshold matrix as an MxMatrix object.

Usage

emxThresholds(data, ordinalCols, deviation=TRUE)

Arguments
data The data frame or matrix for which thresholds should be created.
ordinalCols optional character vector. The names of the ordinal variables in the data.
deviation logical. Return the list of OpenMx objects needed for the deviation form of the
threholds (default) or just the raw thresholds matrix
Value

An MxMatrix giving the thresholds.

See Also

emxFactorModel, emxGrowthModel

Examples

Example

require(EasyMx)

data(jointdata)

jointdatal, c(2, 4, 5)] <- mxFactor(jointdatal,c(2, 4, 5)1,
levels=sapply(jointdatal[,c(2, 4, 5)1, function(x){sort(unique(x))}))
emxThresholds(jointdata, c(FALSE, TRUE, FALSE, TRUE, TRUE))

emxTwinModel Creates behavior genetics Twin Model

Description

This function creates an MxModel and associated objects for a basic Twin model.

Usage

emxTwinModel (model, relatedness, data, run=FALSE, use, name='model', components='ACE')
emxModelTwin(model, relatedness, data, run=FALSE, use, name='model', components='ACE")

emxTwinModel 27

Arguments
model Description of the model. Currently ignored.
relatedness Description of the relatedness patterns. Currently the name of the variable that
gives the coefficient of relatedness.
data data.frame or matrix. The data set used in the model.
run logical. Whether to run the model before returning.
use character vector. Names of the variables used in the model.
name character. Name of the model.
components character. Name of the variance components to include. Current valid options
are ’ACE’ and "ADE’
Details

Because the model argument is ignored and the relatedness argument has limited use, this function
only constructs a very basic and rigid Twin model. It creates a Cholesky model with A, C, and E
components or a Cholesky model with A, D, and E components. The means are constrained equal
across twins.

Value

MxModel.

See Also

emxFactorModel

Examples

Create an ACE model in 1@ lines

8 of those are data handling.

2 are the actual model.

require(EasyMx)

require(OpenMx)

data(twinData)

twinVar = names(twinData)

selvVars <- c('ht1', 'bmil','ht2','bmi2")

mzdzData <- subset(twinData, zyg %in% c(1, 3), c(selvVars, 'zyg'))
mzdzData$RCoef <- c(1, NA, .5)[mzdzData$zyg]

Not run:
run3 <- emxTwinModel (model='Cholesky', relatedness='RCoef',

data=mzdzData, use=selVars, run=TRUE, name='TwCh')

End(Not run)

28 emx VarianceComponents

emxVarianceComponents Creates Variance Components Model

Description

This function creates a variance components model as an MxModel object.

Usage

emxVarianceComponents(model, data, run)

Arguments

model MxModel. See Details.

data matrix or data.frame. The used in the model

run logical. Whether to run the model before returning.
Details

This function does not really do anything currently. Do not use it.

Value

MxModel.

See Also

emxFactorModel

Examples

Create a loadings matrix
require(EasyMx)

emx VARModel 29

emxVARModel Create a vector autoregressive (VAR) model

Description

This function creates a vector autoregressive (VAR) model as an MxModel object.

Usage

emxVARModel (model, data, name, run=FALSE, use, ID)
emxModelVAR(model, data, name, run=FALSE, use, ID)

Arguments
model Currently ignored, but later will specify particular kinds of VAR models
data data used for the model
name character. Optional name of the model created.
run logical. Whether to run the model before returning.
use character vector. The names of the variables to use. Currently ignored.
1D character. Name of variable that identifies each unique person.

Details

The purpose of this function is to quickly specify a vector autoregressive model. It is currently in
the early stages of development and might change considerable with regard to the model argument
and the ID argument.

Value

An MxModel.

See Also

emxStateSpaceMixtureModel , emxFactorModel

Examples

Example
require(EasyMx)
data(myFADataRaw)

ds@ <- myFADataRaw[,1:3]

Make a VAR Model
vim <- emxVARModel (data=ds@, use=names(ds@), name='varmodel')

Index

EasyMx (EasyMx-package), 2
EasyMx-package, 2
emxCholeskyComponent, 3, 3, 10
emxCholeskyVariance, 3, 5, 11
emxCommonPathwayComponent, 6
emxCovariances, 2,7
emxFactorModel, 2, 8, 8, 12, 16, 17,22, 26-29
emxGeneticFactorComponent, 3, 4, 6, 10, 14
emxGeneticFactorVariance, 3, 5, 11, 21
emxGrowthModel, 2, 8, 12, 12, 17,22, 26
emxIndependentPathwayComponent, 13
emxKroneckerVariance, 3, 14
emxLoadings, 2, 9, 15, 18
emxMeans, 2, 16
emxMixtureModel, 3, 17, 23, 25
emxModelFactor (emxFactorModel), 8
emxModelGrowth (emxGrowthModel), 12
emxModelMixture (emxMixtureModel), 17
emxModelRegression
(emxRegressionModel), 19
emxModelStateSpaceMixture
(emxStateSpaceMixtureModel), 24
emxModelTwin (emxTwinModel), 26
emxModelVAR (emxVARModel), 29
emxRegressionModel, 2, 19
emxRelatednessMatrix, 3, 15, 20
emxResiduals, 2, 8, 21
emxStateSpaceMixtureClassify, 22, 25
emxStateSpaceMixtureModel, 3, 22, 23, 24,
29
emxThresholds, 2, 26
emxTwinModel, 3, 26
emxVarianceComponents, 28
emxVARModel, 3, 29

1m, 19, 20

30

	EasyMx-package
	emxCholeskyComponent
	emxCholeskyVariance
	emxCommonPathwayComponent
	emxCovariances
	emxFactorModel
	emxGeneticFactorComponent
	emxGeneticFactorVariance
	emxGrowthModel
	emxIndependentPathwayComponent
	emxKroneckerVariance
	emxLoadings
	emxMeans
	emxMixtureModel
	emxRegressionModel
	emxRelatednessMatrix
	emxResiduals
	emxStateSpaceMixtureClassify
	emxStateSpaceMixtureModel
	emxThresholds
	emxTwinModel
	emxVarianceComponents
	emxVARModel
	Index

