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Resampling Fuzzy Numbers with
Statistical Applications: FuzzyResampling
Package
by Maciej Romaniuk, Przemysław Grzegorzewski

Abstract The classical bootstrap has proven its usefulness in many areas of statistical inference. How-
ever, some shortcomings of this method are also known. Therefore, various bootstrap modifications
and other resampling algorithms have been introduced, especially for real-valued data. Recently,
bootstrap methods have become popular in statistical reasoning based on imprecise data often mod-
eled by fuzzy numbers. One of the challenges faced there is to create bootstrap samples of fuzzy
numbers which are similar to initial fuzzy samples but different in some way at the same time. These
methods are implemented in FuzzyResampling package and applied in different statistical functions
like single-sample or two-sample tests for the mean. Besides describing the aforementioned functions,
some examples of their applications as well as numerical comparisons of the classical bootstrap with
the new resampling algorithms are provided in this contribution.

1 Introduction

The bootstrap introduced by Efron (1979) is one of the most important contemporary achievements
of computational statistics. It has proven its usefulness in various fields, e.g., in estimating standard
errors, computing confidence intervals, or hypothesis testing, especially if the actual population
distribution is unknown or the desired statistical procedures are not tractable analytically, and when
the sample size is not large enough to apply asymptotic methods (e.g, Efron and Tibshirani (1993)).
Then Giné and Zinn (1990) developed a bootstrapped approximation to the Central Limit Theorem
for generalized random elements, which allows to apply bootstrap for fuzzy random variables used
for modeling imprecise outputs of random experiments. This application is of extreme importance
because the absence of suitable models for the distribution of fuzzy random variables makes the
statistical reasoning difficult. Practice has shown that the use of the bootstrap to handle fuzzy data has
been very effective (e.g., Gil et al. (2006); González-Rodríguez et al. (2006); Montenegro et al. (2004);
Lubiano et al. (2016, 2017)).

An important disadvantage of the classical bootstrap, easily spotted especially for small sample
sizes, is that the bootstrap samples almost always contain repeated values and hence their variability
is lower when compared to the initial sample. This is more troublesome when the random distribution
of the assumed statistical model is continuous, since this feature is not properly reflected with the
classical bootstrap where each value has the same non-zero probability of appearing in the bootstrap
sample. To overcome this problem many modifications of Efron’s approach were proposed in the
literature, like the smoothed bootstrap (Silverman and Young, 1987). The same shortcomings and
remarks apply to bootstrap methods applied in a fuzzy environment. Here it would also be desirable
to generate samples consisting of fuzzy observations that are almost identical to those contained in
the original sample, but nevertheless different from them to some extent. Several methods have been
proposed to deal with this problem (Grzegorzewski and Romaniuk, 2022b). One can divide them into
two main groups. The first one group shares the generation of new fuzzy numbers which keep some
“characteristic points” of the membership functions describing initial fuzzy values. For the second
group, we are interested in the preservation of some basic characteristics of the initial values, like their
canonical representation (Delgado et al., 1998). Both approaches seem to be fruitful in many aspects
of the statistical inference (see Grzegorzewski et al. (2019, 2020b,a); Grzegorzewski and Romaniuk
(2022b); Romaniuk (2019); Romaniuk and Hryniewicz (2019)) and may be helpful in improving the
results of some real-life data analyses.

To allow potential users access to the aforementioned new bootstrap methods, several resampling
algorithms have been implemented in FuzzyResampling package (Romaniuk et al., 2022). They
have been complemented by some additional procedures which might be useful for the generation
of samples of trapezoidal fuzzy numbers, for estimation of the standard error (or the MSE), and for
testing hypotheses about the fuzzy mean (in the single or two samples problem), etc. The proposed
package can be applied together with other tools designed for data analysis. FuzzyResampling is, to
our knowledge, the first package in R (R Core Team, 2023) which provides a few resampling methods
for trapezoidal fuzzy numbers together with some statistical functions based on them.

In the following, we briefly compare FuzzyResampling with the existing packages, introduce a
necessary notation and describe the new resampling methods. Functions implemented in the package
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are illustrated with examples. Finally, the proposed resampling methods are compared with the
classical bootstrap in some important statistical problems (both theoretical and utilizing real-life data).

Related packages

There is an abundance of packages oriented toward the classic bootstrap and its statistical applications,
like boot (Canty and Ripley, 2022), with many functions and data originated from Davison and
Hinkley (1997) including the parametric and nonparametric resampling approaches, or bootstrap
(Tibshirani and Leisch, 2019), which contains functions and data related to Efron and Tibshirani (1993),
e.g. cross-validation or jackknife procedures.

There are also many R packages intended to handle fuzzy numbers that may be useful in statistical
reasoning with fuzzy data. Researchers can utilize FuzzyNumbers (Gagolewski and Caha, 2021) for
computing arithmetic operators, designing approximations, and finding possibility and necessity
values for arbitrary fuzzy numbers or some of their special types. FuzzySTs (Berkachy and Donze,
2020) might be helpful for fuzzification, calculation of different distances, numerical estimations of
fuzzy statistical measures and bootstrap distribution of the likelihood ratio, etc. Such packages as
SAFD (Trutschnig et al., 2013) or Sim.PLFN (Parchami, 2017) are devoted to simulation on fuzzy
numbers (see also Coroianu et al. (2013) for additional details).

However, to our knowledge, FuzzyResampling is the only package that provides the new resam-
pling methods, different from Efron’s classical approach, for trapezoidal fuzzy numbers and lets users
apply them to various problems of statistical inference. In particular, SAFD provides procedures for
the bootstrapped versions of the one- or two-sample tests for the mean of trapezoidal fuzzy numbers
(which are related to the C-test mentioned in this paper), but they are limited to the classical bootstrap.
Although it contains a function that generates stochastically perturbated new values based on the
input data frame, it only adds some random noise without keeping track of important characteristics
of the input fuzzy numbers (as is done in the resampling methods implemented in FuzzyResampling).

Fuzzy numbers – notation

For a more detailed introduction to the theory of fuzzy numbers, we refer the reader to Ban et al.
(2015). In the following, we provide only some necessary concepts and notation.

A fuzzy number A is characterized by its membership function A(x) which represents the degree
of membership of x into A. We assume that 0 ⩽ A(x) ⩽ 1, where A(x) = 1 indicates that x surely
belongs to A, while A(x) = 0 means that x surely does not belong to A. If A(x) ∈ (0, 1) then x
partially belongs to A.

Perhaps the most often used fuzzy numbers are known as the trapezoidal fuzzy numbers (TPFNs)
with their membership functions given by

A(x) =


x−a1
a2−a1

if a1 < x ⩽ a2,
1 if a2 ⩽ x ⩽ a3,
a4−x
a4−a3

if a3 ⩽ x < a4,
0 otherwise,

(1)

where a1, a2, a3, a4 ∈ R, and a1 ⩽ a2 ⩽ a3 ⩽ a4. Here, the interval [a2, a3], called the core, contains
all values which are fully compatible with the concept described by the fuzzy number A, while the
interval [a1, a4], called the support, indicates all real values that are compatible to some extent with A.
If A is a TPFN it can be described completely using only four real values a1, a2, a3, a4, so we can state
A = (a1, a2, a3, a4). If a2 = a3 then we have a triangular fuzzy number (TRFN), and A = (a1, a2, a4).

Another parametrization of a trapezoidal fuzzy number, which is especially useful for generating
fuzzy data and simulation studies, is given by

c =
a2 + a3

2
, s =

a3 − a2
2

, l = a2 − a1, r = a4 − a3, (2)

where c indicates the center of the core of a fuzzy number, s is equal to its core radius (the spread of
the core), and l and r stand for the spread of the left and the right arm of the membership function
A(x), respectively. Of course, we have c ∈ R, and s, l, r ⩾ 0.

To introduce basic arithmetic operations (such as addition, subtraction, etc.) for the fuzzy numbers,
the Zadeh extension principle should be applied (see Ban et al. (2015)). However, in the case of TPFNs,
some operations are easier to conduct, e.g., for A = (a1, a2, a3, a4) and B = (b1, b2, b3, b4), we have

A + B = (a1 + b1, a2 + b2, a3 + b3, a4 + b4), (3)
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so the result is also a TPFN.

Resampling approaches for fuzzy data

Let X̃ = (X̃1, . . . , X̃n) be a fuzzy random sample (Puri and Ralescu, 1986) and x̃ = (x̃1, . . . , x̃n) –
its actual realization. This sample will be called the primary sample or the initial sample. For the
classical Effron’s bootstrap, the bootstrap samples (or secondary samples) are drawn randomly with
replacement from the primary sample. In this way we can create b bootstrap samples and the i-th
element of the j-th secondary sample is denoted by x̃∗ij.

Because of the previously mentioned shortcomings of Efron’s approach, several modifications were
proposed in the case of real-valued data. New resampling methods for fuzzy data were introduced
recently in Grzegorzewski et al. (2019, 2020b,a); Romaniuk (2019); Romaniuk and Hryniewicz (2019).
All of them are implemented in FuzzyResampling package. We summarize them briefly below. For a
more detailed review, we refer the reader to Grzegorzewski and Romaniuk (2022b).

The proposed approaches can be divided into two groups. In the first one, following (2), each
TPFN x̃i is described by its “characteristic points”, like the left bound of the core lci = a2 = ci − si, the
core width wci = a3 − a2 = 2si, and the spreads li and ri. Then, given a primary sample x̃, four sets
are created: LC = {lc1, . . . , lcn, }, WC = {wc1, . . . , wcn, }, L = {l1, . . . , ln, } and R = {r1, . . . , rn, }. If
the d-method (Romaniuk and Hryniewicz, 2019) is applied then four numbers lc∗, wc∗, l∗, r∗ from the
respective sets LC, WC, L, R are drawn to construct a new bootstrapped element x̃∗. This procedure is
repeated n times to obtain a whole secondary sample. For the w-method (Romaniuk and Hryniewicz,
2019), instead of the equal probabilities on the discrete sets, the special density w(x) is used to construct
x∗i . This leads to a more diversified secondary sample than for the d-method. Both methods were also
applied in Romaniuk and Hryniewicz (2021) for interval-valued fuzzy numbers.

The second group of methods contains the following flexible bootstrap algorithms: VA-method
(Grzegorzewski et al., 2019, 2020a), EW-method (Grzegorzewski et al., 2020a), VAF-method (Grze-
gorzewski et al., 2020b) and VAA-method (Grzegorzewski and Romaniuk, 2022b). Contrary to
d-method or w-method, flexible approaches can be applied to primary samples of any fuzzy numbers,
but the generated outputs consist of TPFNs. However, the generated secondary samples preserve the
so-called canonical representations of the primary observations. Our flexible methods differ in the
type of preserved representation, which is summarized in Table 1.

Each of the flexible methods consists of four steps. Firstly, depending on the particular method,
some characteristics of fuzzy numbers – like the value Val(x̃i), ambiguity Amb(x̃i) (Delgado et al.,
1998), expected value EV(x̃i) (i.e. the middle point of the expected interval of a fuzzy number (Dubois
and Prade, 1987; Heilpern, 1992)), width w(x̃i) (Chanas, 2001), fuzziness Fuzz(x̃i) (Delgado et al.,
1998), left- and right-hand ambiguities AmbL(x̃i), AmbU(x̃i) – are calculated for each observation x̃i
of the primary sample. What values are determined depends on the user’s decision on which values
should be preserved during the generation of the bootstrap samples. While some characteristics will
be kept, others will be randomly generated from the uniform distribution. Finally, the remaining
values describing a TPFN are directly calculated based on the formulas depending on the resampling
approach. In Table 1 we list some flexible bootstrap methods along with an indication of which
parameters are preserved, which are randomly generated, and which are directly calculated.

Method Preserved Randomly generated Directly calculated
VA-method Val, Amb s, c l, r
EW-method EV, w s, c l, r
VAF-method Val, Amb, Fuzz c s, l, r
VAA-method Val, AmbL, AmbU s c, l, r

Table 1: Brief characteristic of the flexible bootstrap methods.

2 Overview of FuzzyResampling package

Below we briefly discuss functions implemented in FuzzyResampling package (version 0.6.0, available
via CRAN). All further examples in R can be self-repeated using a supplementary file.
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Generation of the initial sample

When the bootstrap is applied to solve any real-life problem the provided data is automatically
treated as the initial sample. However, to perform any simulation study many synthetic samples are
necessary, so effective data generators from various distributions are then strongly desirable. In the
case of reasoning with imprecise data, we need an algorithm which generates fuzzy numbers used for
modeling such data. In FuzzyResampling package two specialized functions to generate randomly
trapezoidal fuzzy numbers are available:

GeneratorNU (n, mu, sigma, a, b, increases = FALSE, ...)
GeneratorNExpUU (n, mu, sigma, lambda, b, c, increases = FALSE, ...)

The third function, GeneratorFuzzyNumbers, can be used for various random distributions describing
the “true origin” of TPFN, the increases of its core and the support. In this case, the respective functions
(e.g., rnorm) from stats package (R Core Team, 2023), together with their parameters’ names, can be
directly applied.

In both cases, to generate a TPFN, the parametrization described by (2) is used. In particular, to
obtain a single TPFN four values c, s, l, r are generated independently using random distributions
described in Table 2, where N(mu,sigma) stands for the normal distribution with the mean mu and
standard deviation sigma, U (0,a) denotes the uniform distribution on the interval (0, a), Exp (lambda)
stands for the exponential distribution with the parameter lambda, etc. More details concerning various
types of simulated fuzzy numbers can be found in, e.g., Grzegorzewski et al. (2020b); Grzegorzewski
and Romaniuk (2022a).

Function c s l r
GeneratorNU N(mu,sigma) U (0,a) U(0,b) U(0,b)
GeneratorNExpUU N(mu,sigma) Exp (lambda) U(0,b) U(0,c)

Table 2: Distributions used to simulate fuzzy numbers.

If we generate a sample of n fuzzy numbers using any of the considered functions we receive the
output as a matrix with n rows and four columns corresponding to values a1, a2, a3, a4 defined in (1)
(abbreviated further as “the ends”) if the parameter increases is set to FALSE, otherwise producing
values l, c − s, c + s, r described in (2) (abbreviated further as “the increments”). It is worth noting
that the parameter increases plays the same role of indicating the form of the output (or input) fuzzy
numbers in all functions in this package.

As an example consider the following code generating a sample of n = 10 trapezoidal fuzzy
numbers in the “ends” mode, i.e. a1, a2, a3, a4:

# seed PRNG
> set.seed(1234)

> sample1 <- GeneratorNU(10, mu = 0, sigma = 1, a = 0.2, b = 0.6)
> head(sample1,2)

[,1] [,2] [,3] [,4]
[1,] -1.6023884 -1.2703882 -1.1158475 -1.0715795
[2,] -0.1709531 0.2168906 0.3304666 0.5162785

Resampling methods

To perform the classical Efron’s bootstrap, the ClassicalBootstrap function should be applied. Func-
tions related to other methods (VA, EW, etc.) have the common form XXXMethod, where XXX stands for
the respective method abbreviation. For instance, we write EWMethod in the case of the EW approach.
A general structure of these functions is rather intuitive:

XXXMethod(initialSample, b = n, increases = FALSE)

where initialSample denotes the name of a matrix of input fuzzy numbers, b indicates the desired
size of the bootstrap sample (if b is not specified we assume it is equal to the initial sample n, i.e. the
number of rows in the input matrix), while with increases we set the mode (“ends” or “increments”)
used for describing fuzzy numbers both in the input and output matrices.

To generate the bootstrapped sample of b = n = 10 values using the classical Efron’s approach
based on the previously created initial sample sample1:
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> set.seed(1234)
>
> sampleEfron <- ClassicalBootstrap(sample1)
>
> head(sampleEfron,2)

[,1] [,2] [,3] [,4]
[1,] -1.3584678 -0.8991919 -0.7285674 -0.2195319
[2,] 0.0427377 0.3439362 0.6579900 0.9603501

Similarly, to perform the VA method for b = 20:

> set.seed(1234)
>
> sampleVA <- VAMethod(sample1, 20)
>
> head(sampleVA,2)

[,1] [,2] [,3] [,4]
[1,] -1.091883230 -1.0324841 -0.8074509 -0.06176483
[2,] 0.009038746 0.3607857 0.4974204 1.28148926

Calculation of the mid/spread distance

A distance between two fuzzy numbers often used in the statistical context is the so-called mid/spread
distance Dλ

θ proposed in Bertoluzza et al. (1995); Trutschnig et al. (2009). It can be designated by:

BertoluzzaDistance(fuzzyNumber1, fuzzyNumber2, theta = 1/3, increases = FALSE)

where fuzzyNumber1 and fuzzyNumber2 denote vectors containing the respective fuzzy numbers, theta
is the weight of the impact of the distance between the mid-points of α-cuts in contrast to the distance
between their spreads (usually theta=1/3 or theta=1).

To find the mid/spread distance between two fuzzy numbers from the sample sample1 we apply:

> BertoluzzaDistance(sample1[1,],sample1[2,])
[1] 1.488457

Estimation of SE/MSE

Bootstrap is often applied to estimate the standard error (SE) or the mean squared error (MSE) of the
considered estimator. If the resulting estimator of the mean is given by a trapezoidal fuzzy number
both SE and MSE can be obtained with the following function:

SEResamplingMean(initialSample, resamplingMethod = "ClassicalBootstrap",
repetitions = 100, trueMean = NA, theta = 1/3, increases = FALSE)

where initialSample indicates a matrix containing the initial sample, resamplingMethod denotes a
resampling method, and repetitions stands for the number of the bootstrap samples. If trueMean is
not set then SE is estimated by the formula

ŜE =

√√√√ 1
repetitions − 1

repetitions

∑
k=1

D2
θ

(
X̄∗i, X̄∗

)
, (4)

where Dθ is the mid/spread distance, while

X̄∗i =
1
n

n

∑
j=1

X∗ij, X̄∗ =
1

repetitions

repetitions

∑
i=1

X̄∗i, (5)

and where X∗ij is the j-th fuzzy value in the i-th bootstrap sample. Otherwise, MSE is estimated as
follows

M̂SE =
1

repetitions − 1

repetitions

∑
k=1

D2
θ

(
X̄∗i, EX

)
, (6)

where EX is the Aumann-type mean (Puri and Ralescu, 1986) of the fuzzy number given by trueMean
expressed by the four values (depending on the mode “ends” or “increments” specified in increases
parameter).

To estimate SE using the classical bootstrap and the previously generated sample1 we apply:
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> set.seed(1234)
> SEResamplingMean(sample1)
$mean
[1] -0.70650791 -0.40296248 -0.22308095 0.05157294

$SE
[1] 0.05715056

Here, mean is equal to X̄∗ while SE gives ŜE.

On the other hand, the MSE based on the VA method can be estimated as follows:

> set.seed(1234)
>
> SEResamplingMean(sample1,resamplingMethod = "VAMethod",trueMean = c(-0.4,-0.1,0.1,0.4))
$mean
[1] -0.4 -0.1 0.1 0.4

$SE
[1] 0.04421334

where SE actually gives M̂SE.

Bootstrapped one-sample test for the mean

Bootstrap methods are often used in hypothesis testing with fuzzy data. One of such tests, denoted
further as the one-sample C-test (Colubi, 2009; Lubiano et al., 2016), is designed to verify

H0 : EX = µ0 vs. H1 : EX ̸= µ0, (7)

where µ0 is a fixed fuzzy number assumed as the true fuzzy mean. This test can be invoked with the
following function:

OneSampleCTest(initialSample,mu_0,numberOfSamples = 100,theta = 1/3,
resamplingMethod = "ClassicalBootstrap",increases = FALSE)

where initialSample is a matrix describing the initial sample, mu_0 is the hypothetical mean µ0,
numberOfSamples is the number of bootstrap samples and resamplingMethod specifies the resampling
method. As the output, we receive the estimated p-value which can be used to make a final decision
(i.e. to reject or not reject the null hypothesis H0).

To check whether the true mean of the population represented by sample1 is a TPFN mu0
parametrized by (−0.4,−0.1, 0.1, 0.4) we can apply the C-test based on the classical bootstrap as
follows:

> set.seed(1234)
> OneSampleCTest(sample1, mu_0 = c(-0.4,-0.1,0.1,0.4))
[1] 0.31

To perform this test based on the VA method we apply:

> set.seed(1234)
>
> OneSampleCTest(sample1, mu_0 = c(-0.4,-0.1,0.1,0.4),
+ numberOfSamples = 1000, resamplingMethod = "VAMethod")
[1] 0.253

In both cases, there is no reason to reject the null hypothesis because the estimated p-values are greater
than any reasonable significance level (like the traditional 0.05).

Bootstrapped two-sample test for the mean

A similar procedure can be applied to check whether there is a significant difference between the
means of the two independent fuzzy samples. More precisely, we consider the two-sample C-test
(Lubiano et al., 2016) to verify

H0 : EX1 = EX2 vs. H1 : EX1 ̸= EX2, (8)

where EX1 and EX2 are the Aumann-type means of the first and second sample, respectively. Here
the desired p-value can be calculated by the following function
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TwoSampleCTest(initialSample1,initialSample2,numberOfSamples = 100,
theta = 1/3,resamplingMethod = "ClassicalBootstrap",increases = FALSE)

where initialSample1 and initialSample2 are matrices corresponding to the first and the second
initial sample, respectively, while other parameters remain identical as for OneSampleCTest.

Given previously generated sample1 and sample2 simulated with a slight shift (i.e. for mu = 0.2)
we verify (8) using the two-sample C-test based on the classical bootstrap. Thus we type the following
commands:

> set.seed(1234)
> sample2 <- GeneratorNU(10, mu = 0.2, sigma = 1, a = 0.2, b = 0.6)
>
> TwoSampleCTest(sample1, sample2,numberOfSamples = 1000)
[1] 0.678

Thus obtaining such a high p-value there is no reason to reject H0.

3 Comparison of the resampling methods with FuzzyResampling pack-
age

Now we numerically compare the introduced resampling methods with the classical bootstrap using
various statistical approaches like the standard error estimation or the power analysis.

Method comparison with SE/MSE

To compare the statistical properties of the considered resampling methods we firstly use SE/MSE for
the mean. In some papers, it is stated that the proposed new resampling methods usually have smaller
errors than the classical bootstrap (Grzegorzewski et al., 2020a,b; Grzegorzewski and Romaniuk,
2022b). To check this, one may use the following SEResamplingMean function

ComparisonSEMean (generator, sampleSize = 10, numberOfSamples = 100,
repetitions = 100,trueMean = NA, theta = 1/3, ...)

where generator indicates the algorithm applied to simulate fuzzy numbers (see Tab. 2), ... specifies
some additional parameters required by generator and numberOfSamples stands for the number of
experiment repetitions performed to minimize the undesired influence of random fluctuations.

To estimate SE for a small (e.g. n = 10) or moderate (e.g. n = 50) initial sample size we proceed as
follows:

> set.seed(1234567)

> outputSEsample3 <- ComparisonSEMean(generator = "GeneratorNExpUU",sampleSize = 10,
+ numberOfSamples = 10000,repetitions = 100,mu = 0,sigma = 4,lambda = 4,b = 0.4,c = 0.8)

> round(outputSEsample3, digits = 5)

ClassicalBootstrap VAMethod EWMethod VAFMethod DMethod WMethod VAAMethod
0.10756 0.10757 0.10753 0.10751 0.10763 0.10664 0.10764

As it can be seen the estimated SE for the new resampling methods may be significantly lower
(about 1%) than for the classical bootstrap. These results confirm the remarks given in Grzegorzewski
and Romaniuk (2022b) that “the w-method is usually the best approach for small sample sizes, while
the VAF-method is the best for moderate and big samples. In general, when considering various
models, it appears that the VAF-method and EW-method behave in a rather stable manner, while the
behavior of the VAA-method depends strongly on the type of data.” Some other examples can be
found in the supplemental file.

A similar comparison of the bootstrap methods can be done using the MSE:

> set.seed(1234567)

> outputMSEsample2 <- ComparisonSEMean(generator = "GeneratorNExpUU",sampleSize = 10,
+ numberOfSamples = 10000, repetitions = 100, trueMean = c(-0.45,-0.25,0.25,0.65),
+ mu = 0, sigma = 4, lambda = 4, b = 0.4, c = 0.8)
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> round(outputMSEsample1, digits = 5)

ClassicalBootstrap VAMethod EWMethod VAFMethod DMethod WMethod VAAMethod
0.16495 0.16499 0.16482 0.16470 0.16496 0.16315 0.16519

Here the relative difference is about 1.1% if the w-method is compared with the classical bootstrap.

Test size estimation

We can also compare the empirical size (i.e. the maximal percentage of rejections if the null hypothesis
holds) of the one-sample C-test based on different resampling approaches (see also Grzegorzewski
et al. (2020b)). To proceed with such a study, the following special function based on OneSampleCTest
is available:

ComparisonOneSampleCTest (generator,mu_0,shift=0,sampleSize = 10,numberOfSamples = 10,
initialSamples = 100,theta = 1/3,significance = 0.05, ...)

It generates a sequence of initial samples (their number is given in initialSamples and the size
is determined by sampleSize) for fuzzy numbers of the type specified by generator. Then some
deterministic shift of the size shift is added to each fuzzy observation in these samples. Next,
the function OneSampleCTest is executed to calculate the p-value for each combination of the initial
sample and resampling method. Then, by comparing the p-value with the assumed significance level
significance we make a decision whether to reject the null hypothesis H0 specified in (7) or not. The
output of this procedure is the percentage of rejections in the sequence of experiments. To estimate the
test size one should set shift=0. All other parameters of this function are passed to OneSampleCTest
or the respective generator.

Let us consider the following simulation experiment:

> set.seed(1234567)

> outputCSizetest1 <- ComparisonOneSampleCTest(generator="GeneratorNU",
+ mu_0 = c(-0.4,-0.1,0.1,0.4), sampleSize = 10,numberOfSamples = 100,
+ initialSamples = 1000,mu = 0, sigma = 1,a = 0.2,b = 0.6)

> round(outputCSizetest1, digits = 4)

ClassicalBootstrap VAMethod EWMethod VAFMethod DMethod WMethod VAAMethod
0.038 0.035 0.040 0.035 0.037 0.040 0.034

# check the distance to the "true value" 0.05
> round(outputCSizetest1-0.05, digits = 4)

ClassicalBootstrap VAMethod EWMethod VAFMethod DMethod WMethod VAAMethod
-0.012 -0.015 -0.010 -0.015 -0.013 -0.010 -0.016

It can be seen that the empirical sizes of the C-test combined with the new resampling methods
might be closer to the assumed significance level of 0.05 than obtained for Efron’s bootstrap. Some
other examples can be found in the supplemental file. The plot showing the estimated percentage of
rejections as a function of the significance level is shown in Fig. 1. Because the distance between these
two values (i.e. the percentage of rejections and the significance level) is usually low, the respective
differences are additionally plotted in Fig. 2 for all the resampling methods.

Our experiments confirm the conclusion stated in (Grzegorzewski et al., 2020a) that the classical
bootstrap was never the winner in such comparisons. New resampling methods usually behave much
better – especially the d-method and the VA-method. The EW-method behaves always in a relatively
stable manner and never drops below the third place.

Test power analysis

Our package also enables the power comparison for the one-sample C-test combined with different
resampling methods. This is possible by using the ComparisonOneSampleCTest function, which de-
termines the percentage of the null hypothesis rejection under increasing shift added to the initial
sample:

ComparePowerOneSampleCTest (generator,mu_0,shiftVector,sampleSize = 10,
numberOfSamples = 10,initialSamples = 100,theta = 1/3,significance = 0.05, ...)
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Figure 1: Test size depending on the signifi-
cance level for the one-sample C-test based on
the samples generated with GeneratorNU.
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Figure 2: Differences in test size between
the resampling methods and the significance
level.

This procedure produces a matrix with the successive shift values, set in the vector shiftVector,
specified in the rows and the corresponding percentages of rejections for the respective resampling
methods given in columns.

Below we show how to apply this function to comparisons based on very small samples (n = 5).
To minimize undesired random effects the following experiment was repeated 10000 times:

# prepare vector of shifts
> shifts <- seq(0.1,1,by = 0.05)

> set.seed(1234567)

> outputCPowerTest1 <- ComparePowerOneSampleCTest(generator="GeneratorNU",
+ mu_0 = c(-0.4,-0.1,0.1,0.4),shiftVector = shifts,sampleSize = 5,numberOfSamples = 100,
+ initialSamples = 10000,mu = 0,sigma = 1,a = 0.2,b = 0.6)

> head(round(outputCPowerTest1, digits = 4),4)

ClassicalBootstrap VAMethod EWMethod VAFMethod DMethod WMethod VAAMethod
0.1 0.0274 0.0302 0.0305 0.0314 0.0288 0.0276 0.0278
0.15 0.0278 0.0321 0.0321 0.0305 0.0304 0.0293 0.0297
0.2 0.0315 0.0357 0.0337 0.0325 0.0339 0.0326 0.0302
0.25 0.0386 0.0393 0.0386 0.0391 0.0395 0.0397 0.0366

The results given both in the output matrix and in Fig. 3 show that the new resampling methods have
greater power than the classical bootstrap approach. To better highlight the results, differences between
the power curves for each of the new resampling methods and Efron’s bootstrap are plotted in Fig. 4.
Observing these results we can agree with the conclusions of simulations reported in (Grzegorzewski
and Romaniuk, 2022b), that “In general (i.e. including other models) this method (VA-method) was
usually one of the best, especially for smaller sample sizes or a lower number of bootstrap replications
(e.g. b = 100). The VAA-method or the EW-method were usually just after VA-method; the d-method,
w- and the VAA-method were neither too good nor too bad, but the classical bootstrap (as compared
with other resampling methods) was usually the worse method in hypotheses testing.”

Two-sample test – a real-life case

Finally, we compare the resampling methods combined with the two-sample C-test applied to some
real-life imprecise data. Such data may appear naturally wherever we deal with expert opinions
expressed in everyday language. In our study, we consider the opinions of the experts related to
the Gamonedo cheese quality (a kind of blue cheese produced in Asturias, Spain). The inherently
imprecise assessments were modeled by the TPFNs (Ramos-Guajardo et al., 2019).

To check whether two given experts, say A and C, differ significantly in their opinions, we verify
the null hypothesis (8) of no difference (Grzegorzewski et al., 2020a). We can perform the desired test
using the following function based on TwoSampleCTest:

CompareRealCaseTwoSample(numberOfSamples, numberOfIterations)
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Figure 3: Power curves of the one-sample
C-test based on the samples generated with
GeneratorNU.
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Figure 4: Differences in power curves between
the new resampling methods and the classical
approach.

which delivers p-values of the two-sample C-test for all resampling methods. To eliminate un-
desired randomness each experiment (i.e. the bootstrap procedure for the single test) is repeated
numberOfIterations times and then the obtained p-values are averaged. The parameter numberOfSamples
is passed directly to TwoSampleCTest.

Then the following function is applied:

> set.seed(1234567)
> realCaseP <- CompareRealCaseTwoSample(numberOfSamples=100,numberOfIterations=10000)
>
> round(realCaseP,5)

ClassicalBootstrap VAMethod EWMethod VAFMethod DMethod WMethod VAAMethod
0.82055 0.91213 0.88388 0.85542 0.82179 0.82212 0.85455

Assuming any reasonable significance level, the null hypothesis H0 is not rejected. Thus, whichever
resampling method is applied, we may conclude that the given two experts do not differ significantly
in their opinions. However, the new resampling methods usually lead to greater p-values than the
classical bootstrap (i.e. we are “more sure” that H0 can be accepted).

4 Conclusions

The main goal of the proposed resampling algorithms for fuzzy samples of trapezoidal fuzzy numbers
is to overcome the shortcomings typical to the classical bootstrap. New approaches are implemented
in FuzzyResampling package and are supplemented with some ready-to-use functions useful in
statistical inference based on imprecise data. It is shown that, in some cases analyzed in this paper and
related literature, the suggested bootstrap algorithms are more effective than the classical one.

Obviously, many problems are still open. New methods and algorithms that would be helpful
in solving many problems faced by practitioners are still needed. In particular, an in-depth study on
the so-called “epistemic bootstrap” (Grzegorzewski and Romaniuk, 2021) would be useful to handle
“epistemic data” instead of the “ontic data” (Couso and Dubois, 2014) discussed in this paper.
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