
Package ‘HTSCluster’
January 20, 2025

Type Package
Title Clustering High-Throughput Transcriptome Sequencing (HTS) Data
Version 2.0.11
Date 2023-09-04
Author Andrea Rau, Gilles Celeux, Marie-Laure Martin-Magniette, Cathy Maugis-

Rabusseau
Maintainer Andrea Rau <andrea.rau@jouy.inra.fr>

Depends R (>= 2.10.0)
Imports edgeR, plotrix, capushe, grDevices, graphics, stats
Suggests HTSFilter, Biobase
Description A Poisson mixture model is implemented to cluster genes from high-

throughput transcriptome sequencing (RNA-seq) data. Parameter estimation is
performed using either the EM or CEM algorithm, and the slope heuristics are
used for model selection (i.e., to choose the number of clusters).

License GPL (>= 3)
LazyLoad yes
NeedsCompilation no
Repository CRAN
Date/Publication 2023-09-05 08:00:02 UTC

Contents
HTSCluster-package . 2
highDimensionARI . 3
HTSClusterUsersGuide . 4
Init . 5
logLikePoisMix . 8
plot.HTSCluster . 11
PoisMixClus . 13
PoisMixMean . 18
PoisMixSim . 20
probaPost . 21
summary.HTSCluster . 23

1

2 HTSCluster-package

Index 25

HTSCluster-package Clustering high throughput sequencing (HTS) data

Description

A Poisson mixture model is implemented to cluster genes from high-throughput transcriptome se-
quencing (RNA-seq) data. Parameter estimation is performed using either the EM or CEM algo-
rithm, and the slope heuristics are used for model selection (i.e., to choose the number of clusters).

Author(s)

Andrea Rau, Gilles Celeux, Marie-Laure Martin-Magniette, Cathy Maugis-Rabusseau

Maintainer: Andrea Rau

References

Rau, A., Maugis-Rabusseau, C., Martin-Magniette, M.-L., Celeux G. (2015). Co-expression analy-
sis of high-throughput transcriptome sequencing data with Poisson mixture models. Bioinformatics,
31(9):1420-1427.

Rau, A., Celeux, G., Martin-Magniette, M.-L., Maugis-Rabusseau, C. (2011) Clustering high-
throughput sequencing data with Poisson mixture models. Inria Research Report 7786. Available
at https://inria.hal.science/inria-00638082.

Examples

set.seed(12345)

Simulate data as shown in Rau et al. (2011)
Library size setting "A", high cluster separation
n = 2000 observations

simulate <- PoisMixSim(n = 200, libsize = "A", separation = "high")
y <- simulate$y
conds <- simulate$conditions

Run the PMM model for g = 3
"TC" library size estimate, EM algorithm

run <- PoisMixClus(y, g=3, conds=conds, norm="TC")

Estimates of pi and lambda for the selected model

pi.est <- run$pi
lambda.est <- run$lambda

Not run: PMM for 4 total clusters, with one fixed class

https://inria.hal.science/inria-00638082

highDimensionARI 3

"TC" library size estimate, EM algorithm
##
run <- PoisMixClus(y, g = 3, norm = "TC", conds = conds,
fixed.lambda = list(c(1,1,1)))
##
##
Not run: PMM model for 4 clusters, with equal proportions
"TC" library size estimate, EM algorithm
##
run <- PoisMixClus(y, g = 4, norm = "TC", conds = conds,
equal.proportions = TRUE)
##
##
Not run: PMM model for g = 1, ..., 10 clusters, Split Small-EM init
##
run1.10 <- PoisMixClusWrapper(y, gmin = 1, gmax = 10, conds = conds,
norm = "TC")
##
##
Not run: PMM model for g = 1, ..., 10 clusters, Small-EM init
##
run1.10bis <- <- PoisMixClusWrapper(y, gmin = 1, gmax = 10, conds = conds,
norm = "TC", split.init = FALSE)
##
##
Not run: previous model equivalent to the following
##
for(K in 1:10) {
run <- PoisMixClus(y, g = K, conds = conds, norm = "TC")
}

highDimensionARI Calculate ARI for high-dimensional data via data splits

Description

This function is used to calculate Adjusted Rand Index (ARI) values for high-dimensional data.

Usage

highDimensionARI(x, y, splits = 2, verbose = FALSE)

Arguments

x Vector of classification labels
y Vector of classification labels
splits Number of subsets data should be split into
verbose TRUE if verbose output is desired

4 HTSClusterUsersGuide

Value

Value of Adjusted Rand Index for samples x and y

Author(s)

Andrea Rau

References

Rau, A., Maugis-Rabusseau, C., Martin-Magniette, M.-L., Celeux G. (2015). Co-expression analy-
sis of high-throughput transcriptome sequencing data with Poisson mixture models. Bioinformatics,
31(9):1420-1427.

Rau, A., Celeux, G., Martin-Magniette, M.-L., Maugis-Rabusseau, C. (2011). Clustering high-
throughput sequencing data with Poisson mixture models. Inria Research Report 7786. Available
at https://inria.hal.science/inria-00638082.

HTSClusterUsersGuide View HTSCluster User’s Guide

Description

Finds the location of the HTSCluster User’s Guide and optionally opens it.

Usage

HTSClusterUsersGuide(view=TRUE)

Arguments

view logical, should the document be opened using the default PDF document reader?

Details

The function vignette("HTSCluster") will find the short HTSCluster Vignette which describes
how to obtain the HTSCluster User’s Guide. The User’s Guide is not itself a true vignette because
it is not automatically generated using Sweave during the package build process. This means that it
cannot be found using vignette, hence the need for this special function.

If the operating system is other than Windows, then the PDF viewer used is that given by Sys.getenv("R_PDFVIEWER").
The PDF viewer can be changed using Sys.putenv(R_PDFVIEWER=).

Note that this function was adapted from that defined by Gordon Smyth in the edgeR package.

Value

Character string giving the file location. If view=TRUE, the PDF document reader is started and the
User’s Guide is opened, as a side effect.

https://inria.hal.science/inria-00638082

Init 5

Author(s)

Gordon Smyth

See Also

system

Examples

To get the location:
HTSClusterUsersGuide(view=FALSE)
To open in pdf viewer:
Not run: HTSClusterUsersGuide()

Init Parameter initialization for a Poisson mixture model.

Description

These functions implement a variety of initialization methods for the parameters of a Poisson mix-
ture model: the Small EM initialization strategy (emInit) described in Rau et al. (2011), a K-
means initialization strategy (kmeanInit) that is itself used to initialize the small EM strategy, the
splitting small-EM initialization strategy (splitEMInit) based on that described in Papastamoulis
et al. (2014), and a function to initialize a small-EM strategy using the posterior probabilities
(probaPostInit) obtained from a previous run with one fewer cluster following the splitting strat-
egy.

Usage

emInit(y, g, conds, norm, alg.type = "EM",
init.runs, init.iter, fixed.lambda, equal.proportions, verbose)

kmeanInit(y, g, conds, norm, fixed.lambda,
equal.proportions)

splitEMInit(y, g, conds, norm, alg.type, fixed.lambda,
equal.proportions, prev.labels, prev.probaPost, init.runs,
init.iter, verbose)

probaPostInit(y, g, conds, norm, alg.type = "EM",
fixed.lambda, equal.proportions, probaPost.init, init.iter,
verbose)

6 Init

Arguments

y (n x q) matrix of observed counts for n observations and q variables

g Number of clusters. If fixed.lambda contains a list of lambda values to be
fixed, g corresponds to the number of clusters in addition to those fixed.

conds Vector of length q defining the condition (treatment group) for each variable
(column) in y

norm The type of estimator to be used to normalize for differences in library size:
(“TC” for total count, “UQ” for upper quantile, “Med” for median, “DESeq” for
the normalization method in the DESeq package, and “TMM” for the TMM nor-
malization method (Robinson and Oshlack, 2010). Can also be a vector (of
length q) containing pre-estimated library size estimates for each sample.

alg.type Algorithm to be used for parameter estimation (“EM” or “CEM” for the EM or
CEM algorithms, respectively)

init.runs In the case of the Small-EM algorithm, the number of independent runs to be
performed. In the case of the splitting Small-EM algorithm, the number of clus-
ter splits to be performed in the splitting small-EM initialization.

init.iter The number of iterations to run within each Small-EM algorithm

fixed.lambda If one (or more) clusters with fixed values of lambda is desires, a list containing
vectors of length d (the number of conditions). Note that the values of lambda
chosen must satisfy the constraint noted in the technical report.

equal.proportions

If TRUE, the cluster proportions are set to be equal for all clusters. Default is
FALSE (unequal cluster proportions)

prev.labels A vector of length n of cluster labels obtained from the previous run (g-1 clus-
ters)

prev.probaPost An n x (g-1) matrix of the conditional probabilities of each observation belong-
ing to each of the g-1 clusters from the previous run

probaPost.init An n x (g) matrix of the conditional probabilities of each observation belonging
to each of the g clusters following the splitting strategy in the splitEMInit
function

verbose If TRUE, include verbose output

Details

In practice, the user will not directly call the initialization functions described here; they are indi-
rectly called for a single number of clusters through the PoisMixClus function (via init.type)
or via the PoisMixClusWrapper function for a sequence of cluster numbers (via gmin.init.type
and split.init).

To initialize parameter values for the EM and CEM algorithms, for the Small-EM strategy (Bier-
nacki et al., 2003) we use the emInit function as follows. For a given number of independent runs
(given by init.runs), the following procedure is used to obtain parameter values: first, a K-means
algorithm (MacQueen, 1967) is run to partition the data into g clusters (ẑ(0)). Second, initial param-
eter values π(0) and λ(0) are calculated (see Rau et al. (2011) for details). Third, a given number
of iterations of an EM algorithm are run (defined by init.iter), using π(0) and λ(0) as initial

Init 7

values. Finally, among the init.runs sets of parameter values, we use λ̂ and π̂ corresponding to
the highest log likelihood or completed log likelihood to initialize the subsequent full EM or CEM
algorithms, respectively.

For the splitting small EM initialization strategy, we implement an approach similar to that de-
scribed in Papastamoulis et al. (2014), where the cluster from the previous run (with g-1 clusters)
with the largest entropy is chosen to be split into two new clusters, followed by a small EM run as
described above.

Value

pi.init Vector of length g containing the estimate for π̂ corresponding to the highest log
likelihood (or completed log likelihood) from the chosen inialization strategy.

lambda.init (d x g) matrix containing the estimate of λ̂ corresponding to the highest log
likelihood (or completed log likelihood) from the chosen initialization strategy,
where d is the number of conditions and g is the number of clusters.

lambda (d x g) matrix containing the estimate of λ̂ arising from the splitting initialization
and small EM run for a single split, where d is the number of conditions and g
is the number of clusters.

pi Vector of length g containing the estimate for π̂ arising from the splitting initial-
ization and small EM run for a single split, where g is the number of clusters.

log.like Log likelihood arising from the splitting initialization and small EM run for a
single split.

Author(s)

Andrea Rau

References

Anders, S. and Huber, W. (2010) Differential expression analysis for sequence count data. Genome
Biology, 11(R106), 1-28.

Biernacki, C., Celeux, G., Govaert, G. (2003) Choosing starting values for the EM algorithm for
getting the highest likelhiood in multivariate Gaussian mixture models. Computational Statistics
and Data Analysis, 41(1), 561-575.

MacQueen, J. B. (1967) Some methods for classification and analysis of multivariate observations.
In Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability, number
1, pages 281-297. Berkeley, University of California Press.

Papastamoulis, P., Martin-Magniette, M.-L., and Maugis-Rabusseau, C. (2014). On the estimation
of mixtures of Poisson regression models with large number of components. Computational Statis-
tics and Data Analysis: 3rd special Issue on Advances in Mixture Models, DOI: 10.1016/j.csda.2014.07.005.

Rau, A., Celeux, G., Martin-Magniette, M.-L., Maugis-Rabusseau, C. (2011). Clustering high-
throughput sequencing data with Poisson mixture models. Inria Research Report 7786. Available
at https://inria.hal.science/inria-00638082.

Rau, A., Maugis-Rabusseau, C., Martin-Magniette, M.-L., Celeux G. (2015). Co-expression analy-
sis of high-throughput transcriptome sequencing data with Poisson mixture models. Bioinformatics,
31(9):1420-1427.

https://inria.hal.science/inria-00638082

8 logLikePoisMix

Robinson, M. D. and Oshlack, A. (2010) A scaling normalization method for differential expression
analysis of RNA-seq data. Genome Biology, 11(R25).

See Also

PoisMixClus for Poisson mixture model estimation for a given number of clusters, PoisMixClusWrapper
for Poisson mixture model estimation and model selection for a sequence of cluster numbers.

Examples

set.seed(12345)

Simulate data as shown in Rau et al. (2011)
Library size setting "A", high cluster separation
n = 500 observations

simulate <- PoisMixSim(n = 500, libsize = "A", separation = "high")
y <- simulate$y
conds <- simulate$conditions

Calculate initial values for lambda and pi using the Small-EM
initialization (4 classes, PMM-II model with "TC" library size)
##
init.values <- emInit(y, g = 4, conds,
norm = "TC", alg.type = "EM",
init.runs = 50, init.iter = 10, fixed.lambda = NA,
equal.proportions = FALSE, verbose = FALSE)
pi.init <- init.values$pi.init
lambda.init <- init.values$lambda.init

logLikePoisMix Log likelihood calculation for a Poisson mixture model

Description

Functions to calculate the log likelihood for a Poisson mixture model, the difference in log likeli-
hoods for two different sets of parameters of a Poisson mixture model or the log-likelihood for each
observation.

Usage

logLikePoisMix(y, mean, pi)
logLikePoisMixDiff(y, mean.new, pi.new, mean.old, pi.old)
mylogLikePoisMixObs(y, conds, s, lambda, pi)

logLikePoisMix 9

Arguments

y (n x q) matrix of observed counts for n observations and q variables

mean List of length g containing the (n x q) matrices of conditional mean expression
for all observations, as calculated by the PoisMixMean function, where g repre-
sents the number of clusters

mean.new List of length g containing the (n x q) matrices of conditional mean expression
for all observations for one set of parameters, as calculated by the PoisMixMean
function, where g represents the number of clusters

mean.old List of length g containing the (n x q) matrices of conditional mean expres-
sion for all observations for another set of parameters, as calculated by the
PoisMixMean function, where g represents the number of clusters

pi.new Vector of length g containing one estimate for π̂

pi.old Vector of length g containing another estimate for π̂

pi Vector of length g containing estimate for π̂

conds Vector of length q defining the condition (treatment group) for each variable
(column) in y

s Estimate of normalized per-variable library size

lambda (d x g) matrix containing the current estimate of lambda, where d is the number
of conditions (treatment groups) and g is the number of clusters

Details

The logLikePoisMixDiff function is used to calculate the difference in log likelihood for two
different sets of parameters in a Poisson mixture model; it is used to determine convergence in
the EM algorithm run by the PoisMixClus function. The logLikePoisMix function (taken largely
from the mylogLikePoisMix function from the poisson.glm.mix R package) calculates the log
likelihood for a given set of parameters in a Poisson mixture model and is used in the PoisMixClus
function for the calculation of the BIC and ICL. The mylogLikePoisMixObs function calculates the
log likelihood per observation for a given set of parameters in a Poisson mixture model.

Value

ll (Depending on the context), the log likelihood, difference in log likelihoods for
two different sets of parameters, or per-observation log-likelihood

Note

In the logLikePoisMixDiff function, we make use of the alternative mass function for a Poisson
density proposed by Loader (2000) to avoid computational difficulties. The logLikePoisMixDiff
function returns a default value of 100 if one or both of the log likelihoods associated with the two
parameter sets takes on a value of −∞.

Author(s)

Andrea Rau

10 logLikePoisMix

References

Loader, C. (2000) Fast and accurate computation of binomial probabilities. Available at https:
//lists.gnu.org/archive/html/octave-maintainers/2011-09/pdfK0uKOST642.pdf.

Rau, A., Maugis-Rabusseau, C., Martin-Magniette, M.-L., Celeux G. (2015). Co-expression analy-
sis of high-throughput transcriptome sequencing data with Poisson mixture models. Bioinformatics,
31(9):1420-1427.

Rau, A., Celeux, G., Martin-Magniette, M.-L., Maugis-Rabusseau, C. (2011) Clustering high-
throughput sequencing data with Poisson mixture models. Inria Research Report 7786. Available
at https://inria.hal.science/inria-00638082.

See Also

PoisMixClus for Poisson mixture model estimation and model selection; PoisMixMean to calculate
the per-cluster conditional mean of each observation

Examples

set.seed(12345)

Simulate data as shown in Rau et al. (2011)
Library size setting "A", low cluster separation
n = 200 observations

simulate <- PoisMixSim(n = 200, libsize = "A", separation = "low")
y <- simulate$y
conds <- simulate$conditions
w <- rowSums(y) ## Estimate of w
r <- table(conds) ## Number of replicates per condition
d <- length(unique(conds)) ## Number of conditions
s <- colSums(y) / sum(y) ## TC estimate of lib size
s.dot <- rep(NA, d) ## Summing lib size within conditions
for(j in 1:d) s.dot[j] <- sum(s[which(conds == unique(conds)[j])]);

Initial guess for pi and lambda
g.true <- 4
pi.guess <- simulate$pi
Recalibrate so that (s.dot * lambda.guess) = 1
lambda.sim <- simulate$lambda
lambda.guess <- matrix(NA, nrow = d, ncol = g.true)
for(k in 1:g.true) {

tmp <- lambda.sim[,k]/sum(lambda.sim[,k])
lambda.guess[,k] <- tmp/s.dot

}

Run the PMM-II model for g = 4
with EM algorithm and "TC" library size parameter
run <- PoisMixClus(y, g = 4, norm = "TC", conds = conds)
pi.est <- run$pi
lambda.est <- run$lambda

Mean values for each of the parameter sets

https://lists.gnu.org/archive/html/octave-maintainers/2011-09/pdfK0uKOST642.pdf
https://lists.gnu.org/archive/html/octave-maintainers/2011-09/pdfK0uKOST642.pdf
https://inria.hal.science/inria-00638082

plot.HTSCluster 11

mean.guess <- PoisMixMean(y, 4, conds, s, lambda.guess)
mean.est <- PoisMixMean(y, 4, conds, s, lambda.est)

Difference in log likelihoods
LL.diff <- logLikePoisMixDiff(y, mean.guess, pi.guess, mean.est, pi.est)
LL.diff ## -12841.11

plot.HTSCluster Visualize results from clustering using a Poisson mixture model

Description

A function to visualize the clustering results obtained from a Poisson mixture model.

Usage

S3 method for class 'HTSCluster'
plot(x, file.name = FALSE,

graphs = c("map", "map.bycluster", "lambda"), data=NA, ...)
S3 method for class 'HTSClusterWrapper'
plot(x, file.name = FALSE,

graphs = c("capushe", "ICL", "BIC"), capushe.validation=NA, ...)

Arguments

x An object of class "HTSCluster" or "HTSClusterWrapper"

file.name Optional file name if plots are to be saved in a PDF file.

graphs Type of graph to be included in plots. May be equal to "map", "may.bycluster",
"weighted.histograms", and/or "lambda" for objects of class "HTSCluster"
and c("ICL", "BIC") for objects of class "HTSClusterWrapper"

capushe.validation

Optional number of clusters to use for capushe validation (should be less than the
maximum number of clusters specificed in the "HTSClusterWrapper" object).

data (n x q) matrix of observed counts for n observations and q variables (only re-
quired for the plotting of weighted histograms)

... Additional arguments (mainly useful for plotting)

Details

For objects of class "HTSCluster", the plotting function provides the possibility for the following
visualizations:

1) A histogram of maximum conditional probabilities across all clusters.

2) Per-cluster boxplots of maximum conditional probabilities.

12 plot.HTSCluster

3) Weighted histograms of observation profiles (with weights equal to the corresponding conditional
probability for each observation in each cluster), plotted independently for each variable. Fitted
densities after fitting the Poisson mixture model are overlaid in red.

4) A global view of λ and π values for the selected model. When the number of conditions <= 2,
bar heights represent the value of λk for each cluster, and bar width corresponds to the value of πk.

For objects of class "HTSClusterWrapper", the plotting function provides the possibility for one
or all of the following visualizations:

1) ICL plot for all fitted models.

2) BIC plot for all fitted models.

5) Capushe diagnostic plots.

Author(s)

Andrea Rau

References

Rau, A., Maugis-Rabusseau, C., Martin-Magniette, M.-L., Celeux G. (2015). Co-expression analy-
sis of high-throughput transcriptome sequencing data with Poisson mixture models. Bioinformatics,
31(9):1420-1427.

Andrea Rau, Gilles Celeux, Marie-Laure Martin-Magniette, and Cathy Maugis-Rabusseau (2011).
Clustering high-throughput sequencing data with Poisson mixture models. Technical report RR-
7786, Inria Saclay – Ile-de-France.

See Also

PoisMixClus, PoisMixClusWrapper

Examples

set.seed(12345)

Simulate data as shown in Rau et al. (2011)
Library size setting "A", high cluster separation
n = 2000 observations
simulate <- PoisMixSim(n = 200, libsize = "A", separation = "high")
y <- simulate$y
conds <- simulate$conditions

Run the PMM-II model for g = 3
"TC" library size estimate, EM algorithm
run <- PoisMixClus(y, g = 3,

norm = "TC", conds = conds, init.type = "small-em")

Visualization of results (not run):
plot(run)

PoisMixClus 13

PoisMixClus Poisson mixture model estimation and model selection

Description

These functions implement the EM and CEM algorithms for parameter estimation in a Poisson mix-
ture model for clustering high throughput sequencing observations (e.g., genes) for a single number
of clusters (PoisMixClus) or a sequence of cluster numbers (PoisMixClusWrapper). Parameters
are initialized using a Small-EM strategy as described in Rau et al. (2011) or the splitting small-EM
strategy described in Papastamoulis et al. (2014), and model selection is performed using the ICL
criteria. Note that these functions implement the PMM-I and PMM-II models described in Rau et
al. (2011).

Usage

PoisMixClus(y, g, conds, norm = "TMM",
init.type = "small-em", init.runs = 1, init.iter = 10,
alg.type = "EM", cutoff = 10e-6, iter = 1000, fixed.lambda = NA,
equal.proportions = FALSE, prev.labels = NA,
prev.probaPost = NA, verbose = FALSE, interpretation = "sum",

EM.verbose = FALSE, wrapper = FALSE, subset.index = NA)

PoisMixClusWrapper(y, gmin = 1, gmax, conds,
norm = "TMM", gmin.init.type = "small-em",
init.runs = 1, init.iter = 10, split.init = TRUE, alg.type = "EM",
cutoff = 10e-6, iter = 1000, fixed.lambda = NA,
equal.proportions = FALSE, verbose = FALSE, interpretation = "sum",

EM.verbose = FALSE, subset.index = NA)

Arguments

y (n x q) matrix of observed counts for n observations and q variables

g Number of clusters (a single value). If fixed.lambda contains a list of lambda
values to be fixed, g corresponds to the number of clusters in addition to those
fixed.

gmin The minimum number of clusters in a sequence to be tested. In cases where
clusters are included with a fixed value of lambda, gmin corresponds to the min-
imum number of clusters in addition to those that are fixed.

gmax The maximum number of clusters in a sequence to be tested. In cases where
clusters are included with a fixed value of lambda, gmax corresponds to the max-
imum number of clusters in addition to those that are fixed.

conds Vector of length q defining the condition (treatment group) for each variable
(column) in y

norm The type of estimator to be used to normalize for differences in library size:
(“TC” for total count, “UQ” for upper quantile, “Med” for median, “DESeq” for

14 PoisMixClus

the normalization method in the DESeq package, and “TMM” for the TMM nor-
malization method (Robinson and Oshlack, 2010). Can also be a vector (of
length q) containing pre-estimated library size estimates for each sample. Note
that if the user provides pre-calculated normalization factors, the package will
make use of norm/sum(norm) as normalization factors.

init.type Type of initialization strategy to be used (“small-em” for the Small-EM strategy
described in Rau et al. (2011), and “kmeans” for a simple K-means initializa-
tion)

gmin.init.type Type of initialization strategy to be used for the minimum number of clusters in
a sequence (gmin): (“small-em” for the Small-EM strategy described in Rau et
al. (2011), and “kmeans” for a simple K-means initialization)

init.runs Number of runs to be used for the Small-EM strategy described in Rau et al.
(2011), with a default value of 1

init.iter Number of iterations to be used within each run for the Small-EM strategry, with
a default value of 10

split.init If TRUE, the splitting initialization strategy of Papastamoulis et al. (2014) will
be used for cluster sizes (gmin+1, ..., gmax). If FALSE, the initialization strategy
specified in gmin.init.type is used for all cluster sizes in the sequence.

alg.type Algorithm to be used for parameter estimation (“EM” or “CEM”)

cutoff Cutoff to declare algorithm convergence (in terms of differences in log likeli-
hoods from one iteration to the next)

iter Maximum number of iterations to be run for the chosen algorithm

fixed.lambda If one (or more) clusters with fixed values of lambda is desired, a list containing
vectors of length d (the number of conditions). specifying the fixed values of
lambda for each fixed cluster.

equal.proportions

If TRUE, the cluster proportions are set to be equal for all clusters. Default is
FALSE (unequal cluster proportions).

prev.labels A vector of length n of cluster labels obtained from the previous run (g-1 clus-
ters) to be used with the splitting small-EM strategy described in described in
Papastamoulis et al. (2014). For other initialization strategies, this parameter
takes the value NA

prev.probaPost An n x (g-1) matrix of the conditional probabilities of each observation belong-
ing to each of the g-1 clusters from the previous run, to be used with the splitting
small-EM strategy of described in Papastamoulis et al. (2012). For other initial-
ization strategies, this parameter takes the value NA

verbose If TRUE, include verbose output

interpretation If "sum", cluster behavior is interpreted with respect to overall gene expression
level (sums per gene), otherwise for "mean", cluster behavior is interpreted with
respect to mean gene expression (means per gene).

EM.verbose If TRUE, more informative output is printed about the EM algorithm, including
the number of iterations run and the difference between log-likelihoods at the
last and penultimate iterations.

subset.index Optional vector providing the indices of a subset of genes that should be used
for the co-expression analysis (i.e., row indices of the data matrix y.

PoisMixClus 15

wrapper TRUE if the PoisMixClus function is run from within the PoisMixClusWrapper
main function, and FALSE otherwise. This mainly helps to avoid recalculating
parameters several times that are used throughout the algorithm (e.g., library
sizes, etc.)

Details

Output of PoisMixClus is an S3 object of class HTSCluster, and output of PoisMixClusWrapper
is an S3 object of class HTSClusterWrapper.

In a Poisson mixture model, the data y are assumed to come from g distinct subpopulations (clus-
ters), each of which is modeled separately; the overall population is thus a mixture of these sub-
populations. In the case of a Poisson mixture model with g components, the model may be written
as

f(y; g,Ψg) =
n∏

i=1

g∑
k=1

πk

d∏
j=1

rj∏
l=1

P (yijl;θk)

for i = 1, . . . , n observations in l = 1, . . . , rj replicates of j = 1, . . . , d conditions (treatment
groups), where P (·) is the standard Poisson density, Ψg = (π1, . . . , πg−1,θ

′), θ′ contains all of the
parameters in θ1, . . . ,θg assumed to be distinct, and π = (π1, . . . , πg)

′ are the mixing proportions
such that πk is in (0,1) for all k and

∑
k πk = 1.

We consider the following parameterization for the mean θk = (µijlk). We consider

µijlk = wisjlλjk

where wi corresponds to the expression level of observation i, λk = (λ1k, . . . , λdk) corresponds to
the clustering parameters that define the profiles of the genes in cluster k across all variables, and
sjl is the normalized library size (a fixed constant) for replicate l of condition j.

There are two approaches to estimating the parameters of a finite mixture model and obtaining a
clustering of the data: the estimation approach (via the EM algorithm) and the clustering approach
(via the CEM algorithm). Parameter initialization is done using a Small-EM strategy as described
in Rau et al. (2011) via the emInit function. Model selection may be performed using the BIC or
ICL criteria, or the slope heuristics.

Value

lambda (d x g) matrix containing the estimate of λ̂

pi Vector of length g containing the estimate of π̂

labels Vector of length n containing the cluster assignments of the n observations

probaPost Matrix containing the conditional probabilities of belonging to each cluster for
all observations

log.like Value of log likelihood

BIC Value of BIC criterion

ICL Value of ICL criterion

alg.type Estimation algorithm used; matches the argument alg.type above)

16 PoisMixClus

norm Library size normalization factors used

conds Conditions specified by user

iterations Number of iterations run

logLikeDiff Difference in log-likelihood between the last and penultimate iterations of the
algorithm

subset.index If provided by the user, the indices of subset of genes used for co-expression
analyses

loglike.all Log likelihoods calculated for each of the fitted models for cluster sizes gmin,
..., gmax

capushe Results of capushe model selection, an object of class "Capushe"

ICL.all ICL values calculated for each of the fitted models for cluster sizes gmin, ...,
gmax

ICL.results Object of class HTSCluster giving the results from the model chosen via the
ICL criterion

BIC.results Object of class HTSCluster giving the results from the model chosen via the
BIC

DDSE.results Object of class HTSCluster giving the results from the model chosen via the
DDSE slope heuristics criterion

Djump.results Object of class HTSCluster giving the results from the model chosen via the
Djump slope heuristics criterion

all.results List of objects of class HTSCluster giving the results for all models for cluster
sizes gmin, ..., gmax

model.selection

Type of criteria used for model selection, equal to NA for direct calls to PoisMixClus
or "DDSE", "Djump", "BIC", or "ICL" for the respective selected models for calls
to PoisMixClusWrapper

Note

Note that the fixed.lambda argument is primarily intended to be used in the case when a single
cluster is fixed to have equal clustering parameters lambda across all conditions (i.e., λj1 = λ1 =
1); this is particularly useful when identifying genes with non-differential expression across all
conditions (see the HTSDiff R package for more details). Alternatively, this argument could be
used to specify a cluster for which genes are only expressed in a single condition (e.g., λ11 = 1 and
λj1 = 0 for all j > 1). Other possibilities could be considered, but note that the fixed values of
lambda must satisfy the constraint

∑
j λjksj. = 1 for all k imposed in the model; if this is not the

case, a warning message will be printed.

Author(s)

Andrea Rau

PoisMixClus 17

References

Anders, S. and Huber, W. (2010) Differential expression analysis for sequence count data. Genome
Biology, 11(R106), 1-28.

Papastamoulis, P., Martin-Magniette, M.-L., and Maugis-Rabusseau, C. (2014). On the estimation
of mixtures of Poisson regression models with large number of components. Computational Statis-
tics and Data Analysis: 3rd special Issue on Advances in Mixture Models, DOI: 10.1016/j.csda.2014.07.005.

Rau, A., Maugis-Rabusseau, C., Martin-Magniette, M.-L., Celeux G. (2015). Co-expression analy-
sis of high-throughput transcriptome sequencing data with Poisson mixture models. Bioinformatics,
31(9):1420-1427.

Rau, A., Celeux, G., Martin-Magniette, M.-L., Maugis-Rabusseau, C (2011). Clustering high-
throughput sequencing data with Poisson mixture models. Inria Research Report 7786. Available
at https://inria.hal.science/inria-00638082.

See Also

probaPost for the calculation of the conditional probability of belonging to a cluster; PoisMixMean
for the calculation of the per-cluster conditional mean of each observation; logLikePoisMixDiff
for the calculation of the log likelihood of a Poisson mixture model; emInit and kmeanInit for the
Small-EM parameter initialization strategy

Examples

set.seed(12345)

Simulate data as shown in Rau et al. (2011)
Library size setting "A", high cluster separation
n = 200 observations

simulate <- PoisMixSim(n = 200, libsize = "A", separation = "high")
y <- simulate$y
conds <- simulate$conditions

Run the PMM model for g = 3
"TC" library size estimate, EM algorithm

run <- PoisMixClus(y, g = 3, conds = conds, norm = "TC")

Estimates of pi and lambda for the selected model

pi.est <- run$pi
lambda.est <- run$lambda

Not run: PMM for 4 total clusters, with one fixed class
"TC" library size estimate, EM algorithm
##
run <- PoisMixClus(y, g = 3, norm = "TC", conds = conds,
fixed.lambda = list(c(1,1,1)))
##
##

https://inria.hal.science/inria-00638082

18 PoisMixMean

Not run: PMM model for 4 clusters, with equal proportions
"TC" library size estimate, EM algorithm
##
run <- PoisMixClus(y, g = 4, norm = "TC", conds = conds,
equal.proportions = TRUE)
##
##
Not run: PMM model for g = 1, ..., 10 clusters, Split Small-EM init
##
run1.10 <- PoisMixClusWrapper(y, gmin = 1, gmax = 10, conds = conds,
norm = "TC")
##
##
Not run: PMM model for g = 1, ..., 10 clusters, Small-EM init
##
run1.10bis <- <- PoisMixClusWrapper(y, gmin = 1, gmax = 10, conds = conds,
norm = "TC", split.init = FALSE)
##
##
Not run: previous model equivalent to the following
##
for(K in 1:10) {
run <- PoisMixClus(y, g = K, conds = conds, norm = "TC")
}

PoisMixMean Calculate the conditional per-cluster mean of each observation

Description

This function is used to calculate the conditional per-cluster mean expression for all observations.
This value corresponds to µ = (µijlk) = (ŵiλ̂jk) for the PMM-I model and µ = (µijlk) =

(ŵisjlλ̂jk) for the PMM-II model.

Usage

PoisMixMean(y, g, conds, s, lambda)

Arguments

y (n x q) matrix of observed counts for n observations and q variables

g Number of clusters

conds Vector of length q defining the condition (treatment group) for each variable
(column) in y

s Estimate of normalized per-variable library size

lambda (d x g) matrix containing the current estimate of lambda, where d is the number
of conditions (treatment groups) and g is the number of clusters

PoisMixMean 19

Value

A list of length g containing the (n x q) matrices of mean expression for all observations, conditioned
on each of the g clusters

Author(s)

Andrea Rau

References

Rau, A., Maugis-Rabusseau, C., Martin-Magniette, M.-L., Celeux G. (2015). Co-expression analy-
sis of high-throughput transcriptome sequencing data with Poisson mixture models. Bioinformatics,
31(9):1420-1427.

Rau, A., Celeux, G., Martin-Magniette, M.-L., Maugis-Rabusseau, C. (2011). Clustering high-
throughput sequencing data with Poisson mixture models. Inria Research Report 7786. Available
at https://inria.hal.science/inria-00638082.

See Also

PoisMixClus for Poisson mixture model estimation and model selection

Examples

set.seed(12345)

Simulate data as shown in Rau et al. (2011)
Library size setting "A", high cluster separation
n = 200 observations

simulate <- PoisMixSim(n = 200, libsize = "A", separation = "high")
y <- simulate$y
conds <- simulate$conditions
s <- colSums(y) / sum(y) ## TC estimate of lib size

Run the PMM-II model for g = 3
"TC" library size estimate, EM algorithm

run <- PoisMixClus(y, g = 3, norm = "TC", conds = conds)
pi.est <- run$pi
lambda.est <- run$lambda

Calculate the per-cluster mean for each observation
means <- PoisMixMean(y, g = 3, conds, s, lambda.est)

https://inria.hal.science/inria-00638082

20 PoisMixSim

PoisMixSim Simulate data from a Poisson mixture model

Description

This function simulates data from a Poisson mixture model, as described by Rau et al. (2011).
Data are simulated with varying expression level (wi) for 4 clusters. Clusters may be simulated
with “high” or “low” separation, and three different options are available for the library size setting:
“equal”, “A”, and “B”, as described by Rau et al. (2011).

Usage

PoisMixSim(n = 2000, libsize, separation)

Arguments

n Number of observations

libsize The type of library size difference to be simulated (“equal”, “A”, or “B”, as
described by Rau et al. (2011))

separation Cluster separation (“high” or “low”, as described by Rau et al. (2011))

Value

y (n x q) matrix of simulated counts for n observations and q variables

labels Vector of length n defining the true cluster labels of the simulated data

pi Vector of length 4 (the number of clusters) containing the true value of π

lambda (d x 4) matrix of λ values for d conditions (3 in the case of libsize = “equal”
or “A”, and 2 otherwise) in 4 clusters (see note below)

w Row sums of y (estimate of ŵ)

conditions Vector of length q defining the condition (treatment group) for each variable
(column) in y

Note

If one or more observations are simulated such that all variables have a value of 0, those rows are
removed from the data matrix; as such, in some cases the simulated data y may have less than n
rows.

The PMM-I model includes the parameter constraint
∑

k λjkrj = 1, where rj is the number of
replicates in condition (treatment group) j. Similarly, the parameter constraint in the PMM-II model
is

∑
j

∑
l λjksjl = 1, where sjl is the library size for replicate l of condition j. The value of

lambda corresponds to that used to generate the simulated data, where the library sizes were set as
described in Table 2 of Rau et al. (2011). However, due to variability in the simulation process, the
actually library sizes of the data y are not exactly equal to these values; this means that the value of
lambda may not be directly compared to an estimated value of λ̂ as obtained from the PoisMixClus
function.

probaPost 21

Author(s)

Andrea Rau

References

Rau, A., Celeux, G., Martin-Magniette, M.-L., Maugis-Rabusseau, C. (2011). Clustering high-
throughput sequencing data with Poisson mixture models. Inria Research Report 7786. Available
at https://inria.hal.science/inria-00638082.

Examples

set.seed(12345)

Simulate data as shown in Rau et al. (2011)
Library size setting "A", high cluster separation
n = 200 observations

simulate <- PoisMixSim(n = 200, libsize = "A", separation = "high")
y <- simulate$y
conds <- simulate$conditions

probaPost Calculate the conditional probability of belonging to each cluster in a
Poisson mixture model

Description

This function computes the conditional probabilities tik that an observation i arises from the kth

component for the current value of the mixture parameters.

Usage

probaPost(y, g, conds, pi, s, lambda)

Arguments

y (n x q) matrix of observed counts for n observations and q variables

g Number of clusters

conds Vector of length q defining the condition (treatment group) for each variable
(column) in y

pi Vector of length g containing the current estimate of π̂

s Vector of length q containing the estimates for the normalized library size pa-
rameters for each of the q variables in y

lambda (d x g) matrix containing the current estimate λ, where d is the number of con-
ditions (treatment groups)

https://inria.hal.science/inria-00638082

22 probaPost

Value

t (n x g) matrix made up of the conditional probability of each observation be-
longing to each of the g clusters

Note

If all values of tik are 0 (or nearly zero), the observation is assigned with probability one to belong
to the cluster with the closest mean (in terms of the Euclidean distance from the observation). To
avoid calculation difficulties, extreme values of tik are smoothed, such that those smaller than 1e-10
or larger than 1-1e-10 are set equal to 1e-10 and 1-1e-10, respectively.

Author(s)

Andrea Rau

References

Rau, A., Maugis-Rabusseau, C., Martin-Magniette, M.-L., Celeux G. (2015). Co-expression analy-
sis of high-throughput transcriptome sequencing data with Poisson mixture models. Bioinformatics,
31(9):1420-1427.

Rau, A., Celeux, G., Martin-Magniette, M.-L., Maugis-Rabusseau, C. (2011). Clustering high-
throughput sequencing data with Poisson mixture models. Inria Research Report 7786. Available
at https://inria.hal.science/inria-00638082.

See Also

PoisMixClus for Poisson mixture model estimation and model selection; PoisMixMean to calculate
the conditional per-cluster mean of each observation

Examples

set.seed(12345)

Simulate data as shown in Rau et al. (2011)
Library size setting "A", high cluster separation
n = 200 observations

simulate <- PoisMixSim(n = 200, libsize = "A", separation = "high")
y <- simulate$y
conds <- simulate$conditions
s <- colSums(y) / sum(y) ## TC estimate of lib size

Run the PMM-II model for g = 3
"TC" library size estimate, EM algorithm

run <- PoisMixClus(y, g = 3, norm = "TC",
conds = conds)

pi.est <- run$pi
lambda.est <- run$lambda

https://inria.hal.science/inria-00638082

summary.HTSCluster 23

Calculate the conditional probability of belonging to each cluster
proba <- probaPost(y, g = 3, conds = conds, pi = pi.est, s = s,
lambda = lambda.est)

head(round(proba,2))

summary.HTSCluster Summarize results from clustering using a Poisson mixture model

Description

A function to summarize the clustering results obtained from a Poisson mixture model.

Usage

S3 method for class 'HTSCluster'
summary(object, ...)
S3 method for class 'HTSClusterWrapper'
summary(object, ...)

Arguments

object An object of class "HTSCluster" or "HTSClusterWrapper"

... Additional arguments

Details

The summary function for an object of class "HTSCluster" provides the following summary of
results:

1) Number of clusters and model selection criterion used, if applicable.

2) Number of observations across all clusters with a maximum conditional probability greater than
90 model.

3) Number of observations per cluster with a maximum conditional probability greater than 90
selected model.

4) λ values for the selected model.

5) π values for the selected model.

The summary function for an object of class "HTSClusterWrapper" provides the number of clusters
selected for the BIC, ICL, DDSE, and Djump model selection approaches.

Author(s)

Andrea Rau

24 summary.HTSCluster

References

Rau, A., Maugis-Rabusseau, C., Martin-Magniette, M.-L., Celeux G. (2015). Co-expression analy-
sis of high-throughput transcriptome sequencing data with Poisson mixture models. Bioinformatics,
31(9):1420-1427.

Rau, A., Celeux, G., Martin-Magniette, M.-L., Maugis-Rabusseau, C. (2011). Clustering high-
throughput sequencing data with Poisson mixture models. Inria Research Report 7786. Available
at https://inria.hal.science/inria-00638082.

See Also

PoisMixClus, PoisMixClusWrapper

Examples

set.seed(12345)

Simulate data as shown in Rau et al. (2011)
Library size setting "A", high cluster separation
n = 2000 observations
simulate <- PoisMixSim(n = 200, libsize = "A", separation = "high")
y <- simulate$y
conds <- simulate$conditions

Run the PMM-II model for g = 3
"TC" library size estimate, EM algorithm
run <- PoisMixClus(y, g = 3,

norm = "TC", conds = conds, init.type = "small-em")

Summary of results:
summary(run)

https://inria.hal.science/inria-00638082

Index

∗ cluster
HTSCluster-package, 2
PoisMixClus, 13

∗ datagen
PoisMixSim, 20

∗ documentation
HTSClusterUsersGuide, 4

∗ methods
highDimensionARI, 3
logLikePoisMix, 8
plot.HTSCluster, 11
PoisMixMean, 18
probaPost, 21
summary.HTSCluster, 23

∗ models
HTSCluster-package, 2
Init, 5
plot.HTSCluster, 11
PoisMixClus, 13

emInit, 15, 17
emInit (Init), 5

highDimensionARI, 3
HTSCluster (HTSCluster-package), 2
HTSCluster-package, 2
HTSClusterUsersGuide, 4

Init, 5

kmeanInit, 17
kmeanInit (Init), 5

logLikePoisMix, 8
logLikePoisMixDiff, 17
logLikePoisMixDiff (logLikePoisMix), 8

mylogLikePoisMixObs (logLikePoisMix), 8

plot.HTSCluster, 11

plot.HTSClusterWrapper
(plot.HTSCluster), 11

PoisMixClus, 8–10, 12, 13, 19, 20, 22, 24
PoisMixClusWrapper, 8, 12, 24
PoisMixClusWrapper (PoisMixClus), 13
PoisMixMean, 9, 10, 17, 18, 22
PoisMixSim, 20
probaPost, 17, 21
probaPostInit (Init), 5

splitEMInit (Init), 5
summary.HTSCluster, 23
summary.HTSClusterWrapper

(summary.HTSCluster), 23
Sweave, 4
system, 5

25

	HTSCluster-package
	highDimensionARI
	HTSClusterUsersGuide
	Init
	logLikePoisMix
	plot.HTSCluster
	PoisMixClus
	PoisMixMean
	PoisMixSim
	probaPost
	summary.HTSCluster
	Index

