
Package ‘LongituRF’
January 20, 2025

Title Random Forests for Longitudinal Data

Version 0.9

Description Random forests are a statistical learning method widely used in many areas of scien-
tific research essentially for its ability to learn complex relationships between input and out-
put variables and also its capacity to handle high-dimensional data. However, current ran-
dom forests approaches are not flexible enough to handle longitudinal data. In this pack-
age, we propose a general approach of random forests for high-dimensional longitudi-
nal data. It includes a flexible stochastic model which allows the covariance struc-
ture to vary over time. Furthermore, we introduce a new method which takes intra-individual co-
variance into consideration to build random forests. The method is fully detailled in Capi-
taine et.al. (2020) <doi:10.1177/0962280220946080> Random forests for high-dimensional lon-
gitudinal data.

License GPL-2

Imports stats, randomForest, rpart, mvtnorm, latex2exp

Encoding UTF-8

LazyData true

RoxygenNote 7.1.1

Suggests testthat

NeedsCompilation no

Author Louis Capitaine [aut, cre] (<https://orcid.org/0000-0001-6800-2342>)

Maintainer Louis Capitaine <Louis.capitaine@u-bordeaux.fr>

Repository CRAN

Date/Publication 2020-08-31 09:10:07 UTC

Contents
DataLongGenerator . 2
MERF . 3
MERT . 5
predict.longituRF . 6
REEMforest . 8
REEMtree . 10

1

https://doi.org/10.1177/0962280220946080
https://orcid.org/0000-0001-6800-2342

2 DataLongGenerator

Index 12

DataLongGenerator Longitudinal data generator

Description

Simulate longitudinal data according to the semi-parametric stochastic mixed-effects model given
by:

Yi(t) = f(Xi(t)) + Zi(t)βi + ωi(t) + ϵi

with Yi(t) the output at time t for the ith individual; Xi(t) the input predictors (fixed effects) at
time t for the ith individual; Zi(t) are the random effects at time t for the ith individual; ωi(t) is
a Brownian motion with volatility γ2 = 0.8 at time t for the ith individual; ϵi is the residual error
with variance σ2 = 0.5. The data are simulated according to the simulations in low dimensional in
the low dimensional scheme of the paper <doi:10.1177/0962280220946080>

Usage

DataLongGenerator(n = 50, p = 6, G = 6)

Arguments

n [numeric]: Number of individuals. The default value is n=50.

p [numeric]: Number of predictors. The default value is p=6.

G [numeric]: Number of groups of predictors with temporal behavior, generates
p-G input variables with no temporal behavior.

Value

a list of the following elements:

• Y: vector of the output trajectories.

• X : matrix of the fixed-effects predictors.

• Z: matrix of the random-effects predictors.

• id: vector of the identifiers for each individual.

• time: vector the the time measurements for each individual.

Examples

oldpar <- par()
oldopt <- options()
data <- DataLongGenerator(n=17, p=6,G=6) # Generate the data
Let's see the output :
w <- which(data$id==1)
plot(data$time[w],data$Y[w],type="l",ylim=c(min(data$Y),max(data$Y)), col="grey")
for (i in unique(data$id)){

w <- which(data$id==i)

MERF 3

lines(data$time[w],data$Y[w], col='grey')
}
Let's see the fixed effects predictors:
par(mfrow=c(2,3), mar=c(2,3,3,2))
for (i in 1:ncol(data$X)){

w <- which(data$id==1)
plot(data$time[w],data$X[w,i], col="grey",ylim=c(min(data$X[,i]),
max(data$X[,i])),xlim=c(1,max(data$time)),main=latex2exp::TeX(paste0("$X^{(",i,")}$")))
for (k in unique(data$id)){

w <- which(data$id==k)
lines(data$time[w],data$X[w,i], col="grey")

}
}
par(oldpar)
options(oldopt)

MERF (S)MERF algorithm

Description

(S)MERF is an adaptation of the random forest regression method to longitudinal data introduced
by Hajjem et. al. (2014) <doi:10.1080/00949655.2012.741599>. The model has been improved
by Capitaine et. al. (2020) <doi:10.1177/0962280220946080> with the addition of a stochastic
process. The algorithm will estimate the parameters of the following semi-parametric stochastic
mixed-effects model:

Yi(t) = f(Xi(t)) + Zi(t)βi + ωi(t) + ϵi

with Yi(t) the output at time t for the ith individual; Xi(t) the input predictors (fixed effects) at
time t for the ith individual; Zi(t) are the random effects at time t for the ith individual; ωi(t) is the
stochastic process at time t for the ith individual which model the serial correlations of the output
measurements; ϵi is the residual error.

Usage

MERF(
X,
Y,
id,
Z,
iter = 100,
mtry = ceiling(ncol(X)/3),
ntree = 500,
time,
sto,
delta = 0.001

)

4 MERF

Arguments

X [matrix]: A Nxp matrix containing the p predictors of the fixed effects, column
codes for a predictor.

Y [vector]: A vector containing the output trajectories.

id [vector]: Is the vector of the identifiers for the different trajectories.

Z [matrix]: A Nxq matrix containing the q predictor of the random effects.

iter [numeric]: Maximal number of iterations of the algorithm. The default is set to
iter=100

mtry [numeric]: Number of variables randomly sampled as candidates at each split.
The default value is p/3.

ntree [numeric]: Number of trees to grow. This should not be set to too small a
number, to ensure that every input row gets predicted at least a few times. The
default value is ntree=500.

time [vector]: Is the vector of the measurement times associated with the trajectories
in Y,Z and X.

sto [character]: Defines the covariance function of the stochastic process, can be
either "none" for no stochastic process, "BM" for Brownian motion, OrnUhl for
standard Ornstein-Uhlenbeck process, BBridge for Brownian Bridge, fbm for
Fractional Brownian motion; can also be a function defined by the user.

delta [numeric]: The algorithm stops when the difference in log likelihood between
two iterations is smaller than delta. The default value is set to O.O01

Value

A fitted (S)MERF model which is a list of the following elements:

• forest: Random forest obtained at the last iteration.

• random_effects : Predictions of random effects for different trajectories.

• id_btilde: Identifiers of individuals associated with the predictions random_effects.

• var_random_effects: Estimation of the variance covariance matrix of random effects.

• sigma_sto: Estimation of the volatility parameter of the stochastic process.

• sigma: Estimation of the residual variance parameter.

• time: The vector of the measurement times associated with the trajectories in Y,Z and X.

• sto: Stochastic process used in the model.

• Vraisemblance: Log-likelihood of the different iterations.

• id: Vector of the identifiers for the different trajectories.

• OOB: OOB error of the fitted random forest at each iteration.

MERT 5

Examples

set.seed(123)
data <- DataLongGenerator(n=20) # Generate the data composed by n=20 individuals.
Train a SMERF model on the generated data. Should take ~ 50 seconds
The data are generated with a Brownian motion,
so we use the parameter sto="BM" to specify a Brownian motion as stochastic process
smerf <- MERF(X=data$X,Y=data$Y,Z=data$Z,id=data$id,time=data$time,mtry=2,ntree=500,sto="BM")
smerf$forest # is the fitted random forest (obtained at the last iteration).
smerf$random_effects # are the predicted random effects for each individual.
smerf$omega # are the predicted stochastic processes.
plot(smerf$Vraisemblance) # evolution of the log-likelihood.
smerf$OOB # OOB error at each iteration.

MERT (S)MERT algorithm

Description

(S)MERT is an adaptation of the random forest regression method to longitudinal data introduced by
Hajjem et. al. (2011) <doi:10.1016/j.spl.2010.12.003>. The model has been improved by Capitaine
et. al. (2020) <doi:10.1177/0962280220946080> with the addition of a stochastic process. The
algorithm will estimate the parameters of the following semi-parametric stochastic mixed-effects
model:

Yi(t) = f(Xi(t)) + Zi(t)βi + ωi(t) + ϵi

with Yi(t) the output at time t for the ith individual; Xi(t) the input predictors (fixed effects) at
time t for the ith individual; Zi(t) are the random effects at time t for the ith individual; ωi(t) is the
stochastic process at time t for the ith individual which model the serial correlations of the output
measurements; ϵi is the residual error.

Usage

MERT(X, Y, id, Z, iter = 100, time, sto, delta = 0.001)

Arguments

X [matrix]: A Nxp matrix containing the p predictors of the fixed effects, column
codes for a predictor.

Y [vector]: A vector containing the output trajectories.

id [vector]: Is the vector of the identifiers for the different trajectories.

Z [matrix]: A Nxq matrix containing the q predictor of the random effects.

iter [numeric]: Maximal number of iterations of the algorithm. The default is set to
iter=100

time [vector]: Is the vector of the measurement times associated with the trajectories
in Y,Z and X.

6 predict.longituRF

sto [character]: Defines the covariance function of the stochastic process, can be
either "none" for no stochastic process, "BM" for Brownian motion, OrnUhl for
standard Ornstein-Uhlenbeck process, BBridge for Brownian Bridge, fbm for
Fractional Brownian motion; can also be a function defined by the user.

delta [numeric]: The algorithm stops when the difference in log likelihood between
two iterations is smaller than delta. The default value is set to O.O01

Value

A fitted (S)MERF model which is a list of the following elements:

• forest: Tree obtained at the last iteration.

• random_effects : Predictions of random effects for different trajectories.

• id_btilde: Identifiers of individuals associated with the predictions random_effects.

• var_random_effects: Estimation of the variance covariance matrix of random effects.

• sigma_sto: Estimation of the volatility parameter of the stochastic process.

• sigma: Estimation of the residual variance parameter.

• time: The vector of the measurement times associated with the trajectories in Y,Z and X.

• sto: Stochastic process used in the model.

• Vraisemblance: Log-likelihood of the different iterations.

• id: Vector of the identifiers for the different trajectories.

Examples

set.seed(123)
data <- DataLongGenerator(n=20) # Generate the data composed by n=20 individuals.
Train a SMERF model on the generated data. Should take ~ 50 secondes
The data are generated with a Brownian motion,
so we use the parameter sto="BM" to specify a Brownian motion as stochastic process
smert <- MERF(X=data$X,Y=data$Y,Z=data$Z,id=data$id,time=data$time,sto="BM")
smert$forest # is the fitted random forest (obtained at the last iteration).
smert$random_effects # are the predicted random effects for each individual.
smert$omega # are the predicted stochastic processes.
plot(smert$Vraisemblance) #evolution of the log-likelihood.

predict.longituRF Predict with longitudinal trees and random forests.

Description

Predict with longitudinal trees and random forests.

predict.longituRF 7

Usage

S3 method for class 'longituRF'
predict(object, X, Z, id, time, ...)

Arguments

object : a longituRF output of (S)MERF; (S)REEMforest; (S)MERT or (S)REEMtree
function.

X [matrix]: matrix of the fixed effects for the new observations to be predicted.

Z [matrix]: matrix of the random effects for the new observations to be predicted.

id [vector]: vector of the identifiers of the new observations to be predicted.

time [vector]: vector of the time measurements of the new observations to be pre-
dicted.

... : low levels arguments.

Value

vector of the predicted output for the new observations.

Examples

set.seed(123)
data <- DataLongGenerator(n=20) # Generate the data composed by n=20 individuals.
REEMF <- REEMforest(X=data$X,Y=data$Y,Z=data$Z,id=data$id,time=data$time,mtry=2,ntree=500,sto="BM")
Then we predict on the learning sample :
pred.REEMF <- predict(REEMF, X=data$X,Z=data$Z,id=data$id, time=data$time)
Let's have a look at the predictions
the predictions are in red while the real output trajectories are in blue:
par(mfrow=c(4,5),mar=c(2,2,2,2))
for (i in unique(data$id)){

w <- which(data$id==i)
plot(data$time[w],data$Y[w],type="l",col="blue")
lines(data$time[w],pred.REEMF[w], col="red")

}
Train error :
mean((pred.REEMF-data$Y)^2)

The same function can be used with a fitted SMERF model:
smerf <-MERF(X=data$X,Y=data$Y,Z=data$Z,id=data$id,time=data$time,mtry=2,ntree=500,sto="BM")
pred.smerf <- predict(smerf, X=data$X,Z=data$Z,id=data$id, time=data$time)
Train error :
mean((pred.smerf-data$Y)^2)
This function can be used even on a MERF model (when no stochastic process is specified)
merf <-MERF(X=data$X,Y=data$Y,Z=data$Z,id=data$id,time=data$time,mtry=2,ntree=500,sto="none")
pred.merf <- predict(merf, X=data$X,Z=data$Z,id=data$id, time=data$time)
Train error :
mean((pred.merf-data$Y)^2)

8 REEMforest

REEMforest (S)REEMforest algorithm

Description

(S)REEMforest algorithm

Usage

REEMforest(
X,
Y,
id,
Z,
iter = 100,
mtry,
ntree = 500,
time,
sto,
delta = 0.001

)

Arguments

X [matrix]: A Nxp matrix containing the p predictors of the fixed effects, column
codes for a predictor.

Y [vector]: A vector containing the output trajectories.

id [vector]: Is the vector of the identifiers for the different trajectories.

Z [matrix]: A Nxq matrix containing the q predictor of the random effects.

iter [numeric]: Maximal number of iterations of the algorithm. The default is set to
iter=100

mtry [numeric]: Number of variables randomly sampled as candidates at each split.
The default value is p/3.

ntree [numeric]: Number of trees to grow. This should not be set to too small a
number, to ensure that every input row gets predicted at least a few times. The
default value is ntree=500.

time [time]: Is the vector of the measurement times associated with the trajectories
in Y,Z and X.

sto [character]: Defines the covariance function of the stochastic process, can be
either "none" for no stochastic process, "BM" for Brownian motion, OrnUhl for
standard Ornstein-Uhlenbeck process, BBridge for Brownian Bridge, fbm for
Fractional Brownian motion; can also be a function defined by the user.

delta [numeric]: The algorithm stops when the difference in log likelihood between
two iterations is smaller than delta. The default value is set to O.O01

REEMforest 9

Details

(S)REEMforest is an adaptation of the random forest regression method to longitudinal data intro-
duced by Capitaine et. al. (2020) <doi:10.1177/0962280220946080>. The algorithm will estimate
the parameters of the following semi-parametric stochastic mixed-effects model:

Yi(t) = f(Xi(t)) + Zi(t)βi + ωi(t) + ϵi

with Yi(t) the output at time t for the ith individual; Xi(t) the input predictors (fixed effects) at
time t for the ith individual; Zi(t) are the random effects at time t for the ith individual; ωi(t) is the
stochastic process at time t for the ith individual which model the serial correlations of the output
measurements; ϵi is the residual error.

Value

A fitted (S)REEMforest model which is a list of the following elements:

• forest: Random forest obtained at the last iteration.

• random_effects : Predictions of random effects for different trajectories.

• id_btilde: Identifiers of individuals associated with the predictions random_effects.

• var_random_effects: Estimation of the variance covariance matrix of random effects.

• sigma_sto: Estimation of the volatility parameter of the stochastic process.

• sigma: Estimation of the residual variance parameter.

• time: The vector of the measurement times associated with the trajectories in Y,Z and X.

• sto: Stochastic process used in the model.

• Vraisemblance: Log-likelihood of the different iterations.

• id: Vector of the identifiers for the different trajectories.

• OOB: OOB error of the fitted random forest at each iteration.

Examples

set.seed(123)
data <- DataLongGenerator(n=20) # Generate the data composed by n=20 individuals.
Train a SREEMforest model on the generated data. Should take ~ 50 secondes
The data are generated with a Brownian motion
so we use the parameter sto="BM" to specify a Brownian motion as stochastic process
SREEMF <- REEMforest(X=data$X,Y=data$Y,Z=data$Z,id=data$id,time=data$time,mtry=2,ntree=500,sto="BM")
SREEMF$forest # is the fitted random forest (obtained at the last iteration).
SREEMF$random_effects # are the predicted random effects for each individual.
SREEMF$omega # are the predicted stochastic processes.
plot(SREEMF$Vraisemblance) #evolution of the log-likelihood.
SREEMF$OOB # OOB error at each iteration.

10 REEMtree

REEMtree (S)REEMtree algorithm

Description

(S)REEMtree is an adaptation of the random forest regression method to longitudinal data intro-
duced by Sela and Simonoff. (2012) <doi:10.1007/s10994-011-5258-3>. The algorithm will esti-
mate the parameters of the following semi-parametric stochastic mixed-effects model:

Yi(t) = f(Xi(t)) + Zi(t)βi + ωi(t) + ϵi

with Yi(t) the output at time t for the ith individual; Xi(t) the input predictors (fixed effects) at
time t for the ith individual; Zi(t) are the random effects at time t for the ith individual; ωi(t) is the
stochastic process at time t for the ith individual which model the serial correlations of the output
measurements; ϵi is the residual error.

Usage

REEMtree(X, Y, id, Z, iter = 10, time, sto, delta = 0.001)

Arguments

X [matrix]: A Nxp matrix containing the p predictors of the fixed effects, column
codes for a predictor.

Y [vector]: A vector containing the output trajectories.

id [vector]: Is the vector of the identifiers for the different trajectories.

Z [matrix]: A Nxq matrix containing the q predictor of the random effects.

iter [numeric]: Maximal number of iterations of the algorithm. The default is set to
iter=100

time [vector]: Is the vector of the measurement times associated with the trajectories
in Y,Z and X.

sto [character]: Defines the covariance function of the stochastic process, can be
either "none" for no stochastic process, "BM" for Brownian motion, OrnUhl for
standard Ornstein-Uhlenbeck process, BBridge for Brownian Bridge, fbm for
Fractional Brownian motion; can also be a function defined by the user.

delta [numeric]: The algorithm stops when the difference in log likelihood between
two iterations is smaller than delta. The default value is set to O.O01

Value

A fitted (S)MERF model which is a list of the following elements:

• forest: Tree obtained at the last iteration.

• random_effects : Predictions of random effects for different trajectories.

• id_btilde: Identifiers of individuals associated with the predictions random_effects.

REEMtree 11

• var_random_effects: Estimation of the variance covariance matrix of random effects.

• sigma_sto: Estimation of the volatility parameter of the stochastic process.

• sigma: Estimation of the residual variance parameter.

• time: The vector of the measurement times associated with the trajectories in Y,Z and X.

• sto: Stochastic process used in the model.

• Vraisemblance: Log-likelihood of the different iterations.

• id: Vector of the identifiers for the different trajectories.

Examples

set.seed(123)
data <- DataLongGenerator(n=20) # Generate the data composed by n=20 individuals.
Train a SREEMtree model on the generated data.
The data are generated with a Brownian motion,
so we use the parameter sto="BM" to specify a Brownian motion as stochastic process
X.fixed.effects <- as.data.frame(data$X)
sreemt <- REEMtree(X=X.fixed.effects,Y=data$Y,Z=data$Z,id=data$id,time=data$time,
sto="BM", delta=0.0001)
sreemt$forest # is the fitted random forest (obtained at the last iteration).
sreemt$random_effects # are the predicted random effects for each individual.
sreemt$omega # are the predicted stochastic processes.
plot(sreemt$Vraisemblance) #evolution of the log-likelihood.

Index

DataLongGenerator, 2

MERF, 3
MERT, 5

predict.longituRF, 6

REEMforest, 8
REEMtree, 10

12

	DataLongGenerator
	MERF
	MERT
	predict.longituRF
	REEMforest
	REEMtree
	Index

