Package ‘SoupX’

January 20, 2025

Title Single Cell mRNA Soup eXterminator

Version 1.6.2

Date 2022-11-01

Author Matthew Daniel Young

Maintainer Matthew Daniel Young <my4@sanger . ac.uk>

Description Quantify, profile and remove ambient mRNA contamina-
tion (the * " soup") from droplet based single cell RNA-seq experiments. Imple-
ments the method described in Young et al. (2018) <doi:10.1101/303727>.

URL https://github.com/constantAmateur/SoupX

Suggests knitr, rstan, DropletUtils, rmarkdown, formatR

VignetteBuilder knitr

Imports ggplot2, Matrix, methods, Seurat (>=3.2.2)

Depends R (>=3.5.0)

LazyData true

LazyDataCompression xz

License GPL-2

Encoding UTF-8

RoxygenNote 7.1.1

NeedsCompilation no

Repository CRAN

Date/Publication 2022-11-01 14:00:03 UTC

Contents

adjustCounts e e
alloc e e
autoEstCont L e e e e e e e e e
calculateContaminationFraction
estimateNonExpressingCells L o

https://doi.org/10.1101/303727
https://github.com/constantAmateur/SoupX

2 adjustCounts
estimateSoup e e e e e e 10
expandClusters 11
initProgBar 12
loadlOX e 12
PBMC metaData e e 13
PBMC_SC o o e 14
plotChangeMap 15
plotMarkerDistributiono 16
plotMarkerMap e e e e 17
plotSoupCorrelation L. 19
print.SoupChannel 19
quickMarkers e e e e e e 20
SCTOY . . . e e e 21
StCIUSIErS e e 21
setContaminationFraction 22
setDR . . . o e 22
setSoupProfile 23
SoupChannel e 24
SoupX . ..o 25

Index 26

adjustCounts Remove background contamination from count matrix

Description

After the level of background contamination has been estimated or specified for a channel, calculate
the resulting corrected count matrix with background contamination removed.

Usage

adjustCounts(
sc,

clusters = NULL,

method = c("subtraction”, "soupOnly”, "multinomial”),
roundToInt = FALSE,

verbose = 1,

tol = 0.001,

pCut = 0.01,

adjustCounts 3

Arguments
sc A SoupChannel object.
clusters A vector of cluster IDs, named by celllDs. If NULL clusters auto-loaded from
sc. If FALSE, no clusters are used. See details.
method Method to use for correction. See details. One of *multinomial’, soupOnly’, or
’subtraction’
roundToInt Should the resulting matrix be rounded to integers?
verbose Integer giving level of verbosity. 0 = silence, 1 = Basic information, 2 = Very
chatty, 3 = Debug.
tol Allowed deviation from expected number of soup counts. Don’t change this.
pCut The p-value cut-off used when method="soupOnly"'.
Passed to expandClusters.
Details

This essentially subtracts off the mean expected background counts for each gene, then redistributes
any "unused" counts. A count is unused if its subtraction has no effect. For example, subtracting a
count from a gene that has zero counts to begin with.

As expression data is highly sparse at the single cell level, it is highly recommended that clustering
information be provided to allow the subtraction method to share information between cells. With-
out grouping cells into clusters, it is difficult (and usually impossible) to tell the difference between
a count of 1 due to background contamination and a count of 1 due to endogenous expression. This
ambiguity is removed at the cluster level where counts can be aggregated across cells. This infor-
mation can then be propagated back to the individual cell level to provide a more accurate removal
of contaminating counts.

To provide clustering information, either set clustering on the SoupChannel object with setClusters
or explicitly passing the clusters parameter.

If roundToInt=TRUE, this function will round the result to integers. That is, it will take the floor
of the connected value and then round back up with probability equal to the fractional part of the
number.

The method parameter controls how the removal of counts in performed. This should almost always
be left at the default ("subtraction’), which iteratively subtracts counts from all genes as described
above. The ’soupOnly’ method will use a p-value based estimation procedure to identify those
genes that can be confidently identified as having endogenous expression and removes everything
else (described in greater detail below). Because this method either removes all or none of the
expression for a gene in a cell, the correction procedure is much faster. Finally, the *multinomial’
method explicitly maximises the multinomial likelihood for each cell. This method gives essentially
identical results as ’subtraction’ and is considerably slower.

In greater detail, the ’soupOnly’ method is done by sorting genes within each cell by their p-value
under the null of the expected soup fraction using a Poisson model. So that genes that definitely do
have a endogenous contribution are at the end of the list with p=0. Those genes for which there is
poor evidence of endogenous cell expression are removed, until we have removed approximately
nUMIs*rho molecules. The cut-off to prevent removal of genes above nUMIs*rho in each cell is
achieved by calculating a separate p-value for the total number of counts removed to exceed nU-
MIs*rho, again using a Poisson model. The two p-values are combined using Fisher’s method and

4 alloc

the cut-off is applied to the resulting combined p-value calculated using a chi-squared distribution
with 4 degrees of freedom.

Value

A modified version of the table of counts, with background contamination removed.

Examples

out = adjustCounts(scToy)
#Return integer counts only
out = adjustCounts(scToy,roundToInt=TRUE)

alloc Allocate values to "buckets" subject to weights and constraints

Description

Allocates tgt of something to length(bucketLims) different "buckets" subject to the constraint
that each bucket has a maximum value of bucketLims that cannot be exceeded. By default counts
are distributed equally between buckets, but weights can be provided using ws to have the redistri-
bution prefer certain buckets over others.

Usage

alloc(tgt, bucketLims, ws = rep(1/length(bucketLims), length(bucketLims)))

Arguments
tgt Value to distribute between buckets.
bucketLims The maximum value that each bucket can take. Must be a vector of positive
values.
WS Weights to be used for each bucket. Default value makes all buckets equally
likely.
Value

A vector of the same length as bucketLims containing values distributed into buckets.

autoEstCont 5

autoEstCont Automatically calculate the contamination fraction

Description

The idea of this method is that genes that are highly expressed in the soup and are marker genes for
some population can be used to estimate the background contamination. Marker genes are identified
using the tfidf method (see quickMarkers). The contamination fraction is then calculated at the
cluster level for each of these genes and clusters are then aggressively pruned to remove those that
give implausible estimates.

Usage

autoEstCont(
sc,
topMarkers =
tfidfMin = 1,
soupQuantile = 0.9,
maxMarkers = 100,
contaminationRange = c(0.01, 0.8),
rhoMaxFDR = 0.2,
priorRho = 0.05,
priorRhoStdDev = 0.1,
doPlot = TRUE,
forceAccept = FALSE,
verbose = TRUE

NULL,

)
Arguments
sc The SoupChannel object.
topMarkers A data.frame giving marker genes. Must be sorted by decreasing specificity
of marker and include a column ’gene’ that contains the gene name. If set to
NULL, markers are estimated using quickMarkers.
tfidfMin Minimum value of tfidf to accept for a marker gene.

soupQuantile Only use genes that are at or above this expression quantile in the soup. This
prevents inaccurate estimates due to using genes with poorly constrained contri-
bution to the background.

maxMarkers If we have heaps of good markers, keep only the best maxMarkers of them.
contaminationRange
Vector of length 2 that constrains the contamination fraction to lie within this

range. Must be between O and 1. The high end of this range is passed to
estimateNonExpressingCells as maximumContamination.

rhoMaxFDR False discovery rate passed to estimateNonExpressingCells, to test if rho is
less than maximumContamination.

6 autoEstCont

priorRho Mode of gamma distribution prior on contamination fraction.
priorRhoStdDev Standard deviation of gamma distribution prior on contamination fraction.
doPlot Create a plot showing the density of estimates?

forceAccept Passed to setContaminationFraction. Should we allow very high contami-
nation fractions to be used.

verbose Be verbose?

Details

This set of marker genes is filtered to include only those with tf-idf value greater than tfidfMin.
A higher tf-idf value implies a more specific marker. Specifically a cut-off t implies that a marker
gene has the property that geneFreqGlobal < exp(-t/geneFreqInClust). See quickMarkers. It may
be necessary to decrease this value for data sets with few good markers.

This set of marker genes is filtered down to include only the genes that are highly expressed in the
soup, controlled by the soupQuantile parameter. Genes highly expressed in the soup provide a
more precise estimate of the contamination fraction.

The pruning of implausible clusters is based on a call to estimateNonExpressingCells. The pa-
rameters maximumContamination=max(contaminationRange) and rhoMaxFDR are passed to this
function. The defaults set here are calibrated to aggressively prune anything that has even the weak-
est of evidence that it is genuinely expressed.

For each cluster/gene pair the posterior distribution of the contamination fraction is calculated
(based on gamma prior, controlled by priorRho and priorRhoStdDev). These posterior distri-
butions are aggregated to produce a final estimate of the contamination fraction. The logic behind
this is that estimates from clusters that truly estimate the contamination fraction will cluster around
the true value, while erroneous estimates will be spread out across the range (0,1) without a ’pre-
ferred value’. The most probable value of the contamination fraction is then taken as the final global
contamination fraction.

Value

A modified SoupChannel object where the global contamination rate has been set. Information
about the estimation is also stored in the slot fit

Note

This function assumes that the channel contains multiple distinct cell types with different marker
genes. If you try and run it on a channel with very homogenous cells (e.g. a cell line, flow-sorted
cells), you will likely get a warning, an error, and/or an extremely high contamination estimate.
In such circumstances your best option is usually to manually set the contamination to something
reasonable.

See Also

quickMarkers

calculateContaminationFraction

Examples

#Use less specific markers

scToy = autoEstCont(scToy,tfidfMin=0.8)

#Allow large contamination fractions to be allocated
scToy = autoEstCont(scToy, forceAccept=TRUE)

#Be quiet

scToy = autoEstCont(scToy,verbose=FALSE, doPlot=FALSE)

calculateContaminationFraction
Calculate the contamination fraction

Description

This function computes the contamination fraction using two user-provided bits of information.
Firstly, a list of sets of genes that can be biologically assumed to be absent in at least some cells
in your data set. For example, these might be haemoglobin genes or immunoglobulin genes, which

should not be expressed outside of erythroyctes and antibody producing cells respectively.

Usage

calculateContaminationFraction(
sc,
nonExpressedGenelList,
useToEst,
verbose = TRUE,
forceAccept = FALSE

)
Arguments

sc A SoupChannel object.

nonExpressedGenelList
A list containing sets of genes which can be assumed to be non-expressed in a
subset of cells (see details).

useToEst A boolean matrix of dimensions ncol(toc) x length(nonExpressedGeneL.ist) in-
dicating which gene-sets should not be assumed to be non-expressed in each
cell. Row names must correspond to the names of nonExpressedGenelList.
Usually produced by estimateNonExpressingCells.

verbose Print best estimate.

forceAccept Passed to setContaminationFraction.

8 estimateNonExpressingCells

Details

Secondly, this function needs to know which cells definitely do not express the gene sets described
above. Continuing with the haemoglobin example, which are the erythrocytes that are producing
haemoglobin mRNAs and which are non-erythrocytes that we can safely assume produce no such
genes. The assumption made is any expression from a gene set in cell marked as a "non-expressor"
for that gene set, must be derived from the soup. Therefore, the level of contamination present can
be estimated from the amount of expression of these genes seen in these cells.

Most often, the genesets are user supplied based on your knowledge of the experiment and the
cells in which they are genuinely expressed is estimated using estimateNonExpressingCells.
However, they can also be supplied directly if other information is available.

Usually, there is very little variation in the contamination fraction within a channel and very little
power to detect the contamination accurately at a single cell level. As such, the default mode of
operation simply estimates one value of the contamination fraction that is applied to all cells in a
channel.

The global model fits a simple Poisson glm to the aggregated count data across all cells.

Finally, note that if you are not able to find a reliable set of genes to use for contamination estima-
tion, or you do not trust the values produced, the contamination fraction can be manually set by the
user using setContaminationFraction.

Value

A modified version of sc with estimates of the contamination (rho) added to the metaData table.

Examples

#Common gene list in real world data

geneList = list(HB=c('HBB', 'HBA2'))

#Gene list appropriate to toy data

geneList = 1list(CD7 = 'CD7')

ute = estimateNonExpressingCells(scToy,genelList)

sc = calculateContaminationFraction(scToy,genelList,ute)

estimateNonExpressingCells
Calculate which cells genuinely do not express a particular gene or
set of genes

Description

Given a list of correlated genes (e.g. Haemoglobin genes, Immunoglobulin genes, etc.), make an
attempt to estimate which cells genuinely do not express each of these gene sets in turn. The central
idea is that in cells that are not genuinely producing a class of mRNAs (such as haemoglobin genes),
any observed expression of these genes must be due to ambient RNA contamination. As such, if we
can identify these cells, we can use the observed level of expression of these genes to estimate the
level of contamination.

estimateNonExpressingCells 9

Usage

estimateNonExpressingCells(
sc,
nonExpressedGenelList,
clusters = NULL,
maximumContamination = 1,

FDR = 0.05
)
Arguments

sc A SoupChannel object.

nonExpressedGenelList
A list containing sets of genes which will be used to estimate the contamination
fraction.

clusters A named vector indicating how to cluster cells. Names should be cell IDs, values

cluster IDs. If NULL, we will attempt to load it from sc$metaData$clusters. If

set to FALSE, each cell will be considered individually.
maximumContamination

The maximum contamination fraction that you would reasonably expect. The

lower this value is set, the more aggressively cells are excluded from use in

estimation.

FDR A Poisson test is used to identify cells to exclude, this is the false discovery rate
it uses. Higher FDR = more aggressive exclusion.

Details

The ideal way to do this would be to have a prior annotation of your data indicating which cells
are (for instance) red blood cells and genuinely expression haemoglobin genes, and which do not
and so only express haemoglobin genes due to contamination. If this is your circumstance, there is
no need to run this function, you can instead pass a matrix encoding which cells are haemoglobin
expressing and which are not to calculateContaminationFraction via the useToEst parameter.

This function will use a conservative approach to excluding cells that it thinks may express one of
your gene sets. This is because falsely including a cell in the set of non-expressing cells may erro-
neously inflate your estimated contamination, whereas failing to include a genuine non-expressing
cell in this set has no significant effect.

To this end, this function will exclude any cluster of cells in which any cell is deemed to have
genuine expression of a gene set. Clustering of data is beyond the scope of this package, but can be
performed by the user. In the case of 10X data mapped using cellranger and loaded using 1oad10X,
the cellranger graph based clustering is automatically loaded and used.

To decide if a cell is genuinely expressing a set of genes, a Poisson test is used. This tests whether
the observed expression is greater than maximumContamination times the expected number of
counts for a set of genes, if the cell were assumed to be derived wholly from the background. This
process can be made less conservative (i.e., excluding fewer cells/clusters) by either decreasing the
value of the maximum contamination the user believes is plausible (maximumContamination) or
making the significance threshold for the test more strict (by reducing FDR).

10 estimateSoup

Value

A matrix indicating which cells to be used to estimate contamination for each set of genes. Typically
passed to the useToEst parameter of calculateContaminationFraction or plotMarkerMap.

See Also

calculateContaminationFraction plotMarkerMap

Examples

#Common gene list in real world data

geneList = list(HB=c('HBB', 'HBA2'))

#Gene list appropriate to toy data

genelList = list(CD7 = 'CD7")

ute = estimateNonExpressingCells(scToy,genelList)

estimateSoup Get expression profile of soup

Description

This is usually called by SoupChannel, rather than directly by the user. Uses the empty droplets in
the range provided to calculate the expression profile of the soup under the assumption that these
droplets only contain background.

Usage

estimateSoup(sc, soupRange = c(@, 100), keepDroplets = FALSE)

Arguments
sc A SoupChannel object.
soupRange Droplets with total UMI count in this range (excluding endpoints) are used to

estimate soup.

keepDroplets Storing the full table of counts for all droplets uses a lot of space and is really
only used to estimate the soup profile. Therefore, it is dropped after the soup
profile has been estimated unless this is set to TRUE.

Value

A modified version of sc with an extra soupProfile entry containing a data.frame with the soup
profile and confidence limits for all genes.

expandClusters 11

Examples

#lLoad droplet and count tables

tod = Seurat::Read10X(system.file('extdata', 'toyData', 'raw_gene_bc_matrices', 'GRCh38',
package="'SoupX'))

toc = Seurat::Read10X(system.file('extdata', 'toyData', 'filtered_gene_bc_matrices', 'GRCh38',
package="'SoupX'))

#Suppress calculation of soup profile automatically on load

sc = SoupChannel(tod, toc,calcSoupProfile=FALSE)

#Retain table of droplets

sc = estimateSoup(sc,keepDroplets=TRUE)

#0r use non-default values

sc = estimateSoup(sc, soupRange=c(60,100))

expandClusters Expands soup counts calculated at the cluster level to the cell level

Description

Given a clustering of cells and soup counts calculated for each of those clusters, determines a most
likely allocation of soup counts at the cell level.

Usage

expandClusters(clustSoupCnts, cellObsCnts, clusters, cellWeights, verbose = 1)

Arguments

clustSoupCnts Matrix of genes (rows) by clusters (columns) where counts are number of soup
counts for that gene/cluster combination.

cellObsCnts Matrix of genes (rows) by cells (columns) giving the observed counts
clusters Mapping from cells to clusters.

cellWeights Weighting to give to each cell when distributing counts. This would usually be
set to the number of expected soup counts for each cell.

verbose Integer giving level of verbosity. 0 = silence, 1 = Basic information, 2 = Very
chatty, 3 = Debug.

Value

A matrix of genes (rows) by cells (columns) giving the number of soup counts estimated for each
cell. Non-integer values possible.

12 load10X

initProgBar Create Seurat style progress bar

Description

Creates progress bar that won’t ruin log files and shows progress towards 100

Usage
initProgBar(min, max, ...)
Arguments
min Minimum value of parameter.
max Maximum value of parameter.
Passed to txtProgressBar
Value

A txtProgressBar object to use updating progress.

load10X Load a collection of 10X data-sets

Description

Loads unfiltered 10X data from each data-set and identifies which droplets are cells using the cell-
ranger defaults.

Usage

load10X(
dataDir,
cellIDs = NULL,
channelName = NULL,
readArgs = list(),
includeFeatures = c("Gene Expression”),
verbose = TRUE,

PBMC metaData 13

Arguments
dataDir Top level cellranger output directory (the directory that contains the raw_gene_bc_matrices
folder).
cellIDs Barcodes of droplets that contain cells. If NULL, use the default cellranger set.
channelName The name of the channel to store. If NULL set to either names(dataDir) or
dataDir is no name is set.
readArgs A list of extra parameters passed to Seurat: :Read10X.
includeFeatures
If multiple feature types are present, keep only the types mentioned here and
collapse to a single matrix.
verbose Be verbose?
Extra parameters passed to SoupChannel construction function.
Value

A SoupChannel object containing the count tables for the 10X dataset.

See Also

SoupChannel estimateSoup

Examples

sc = load10X(system.file('extdata', 'toyData',package="'SoupX'))

PBMC_metaData PBMC 4K meta data

Description

Collection of bits of meta data relating to the 10X PBMC 4K data.

Usage

data(PBMC_metaData)

Format

PBMC_metaData is a data.frame with 4 columns: RD1, RD2, Cluster, and Annotation.

14 PBMC sc

Details

This data set pertains to the 10X demonstration PBMC 4K data and includes metadata about it in
the data. frame named PBMC_metaData.

PBMC_metaData was created using Seurat (v2) to calculate a tSNE representation of the data and
cluster cells with these commands.

e set.seed(1)

* srat =CreateSeuratObject(sc$toc)

e srat =NormalizeData(srat)

* srat = ScaleData(srat)

* srat =FindVariableGenes(srat)

* srat = RunPCA(srat,pcs.compute=30)

* srat =RunTSNE(srat,dims.use=seq(30))

* srat =FindClusters(srat,dims.use=seq(30),resolution=1)

* PBMC_metaData = as.data.frame(srat@dr$tsne@cell.embeddings)

* colnames(PBMC_metaData) =c('RD1','RD2")

* PBMC_metaData$Cluster = factor(srat@meta.datalrownames(PBMC_metaData), 'res.1'])

* PBMC_metaData$Annotation = factor(c('7'='B','4'='B"','1'='T_CD4"','2'="'T_CD4"',"'3'="'T_CD8',"'5'="T_C

Source

https://support.10xgenomics.com/single-cell-gene-expression/datasets/2.1.0/pbmc4k

PBMC_sc SoupChannel from PBMC data

Description

SoupChannel created from 10X demonstration PBMC 4k data. The cells have been sub-sampled
by a factor of 2 to reduce file size of package.

Usage

data(PBMC_sc)

Format

PBMC_sc is a SoupChannel object with 33,694 genes and 2,170 cells.

https://support.10xgenomics.com/single-cell-gene-expression/datasets/2.1.0/pbmc4k

plotChangeMap 15

Details

PBMC_sc was created by running the following commands.

e set.seed(1137)

e tmpDir = tempdir (check=TRUE)

e download.file('http://cf.10xgenomics.com/samples/cell-exp/2.1.0/pbmc4k/pbmcdk_raw_gene_bc_matri
e download.file('http://cf.10xgenomics.com/samples/cell-exp/2.1.0/pbmc4k/pbmcdk_filtered_gene_bc_
e untar(file.path(tmpDir, 'tod.tar.gz'),exdir=tmpDir)

e untar(file.path(tmpDir, 'toc.tar.gz'),exdir=tmpDir)

e library(SoupX)

* PBMC_sc = load10X(tmpDir,calcSoupProfile=FALSE)

e PBMC_sc = SoupChannel (PBMC_sc$tod,PBMC_sc$toc[,sample(ncol (PBMC_sc$toc), round(ncol (PBMC_sc$toc)+

Source

https://support.10xgenomics.com/single-cell-gene-expression/datasets/2.1.0/pbmcdk

plotChangeMap Plot maps comparing corrected/raw expression

Description

Given some reduced dimensional representation of the data (such as UMAP or tSNE) that has been
calculated however you would like, this provides a way to visualise how the expression of a geneSet
changes after soup correction.

Usage
plotChangeMap(
sc,
cleanedMatrix,
geneSet,
DR,
dataType = c("soupFrac”, "binary”, "counts"),

logData = FALSE,
pointSize = 0.5

Arguments
sc SoupChannel object.
cleanedMatrix A cleaned matrix to compare against the raw one. Usually the output of adjustCounts.

geneSet A vector with the names of the genes to aggregate and plot evidence for.

https://support.10xgenomics.com/single-cell-gene-expression/datasets/2.1.0/pbmc4k

16 plotMarkerDistribution

DR A data.frame, with rows named by unique cell IDs (i.e., <ChannelName>_<Barcode>)
the first two columns of which give the coordinates of each cell in some reduced
dimension representation of the data.

dataType How should data be represented. Binary sets each cell to expressed or not,
counts converts everything to counts, soupFrac plots the fraction of the observed
counts that are identified as contamination (i.e., (old-new)/old) for each cell and
is the default.

logData Should we log the thing we plot?
pointSize Size of points
Value

A ggplot2 containing the plot.

Examples

out = adjustCounts(scToy)
gg = plotChangeMap(scToy,out, 'S100A9")

plotMarkerDistribution
Plots the distribution of the observed to expected expression for
marker genes

Description

If each cell were made up purely of background reads, the expression fraction would equal that
of the soup. This plot compares this expectation of pure background to the observed expression
fraction in each cell, for each of the groups of genes in nonExpressedGenelist. For each group of
genes, the distribution of this ratio is plotted across all cells. A value significantly greater than 1 (0
on log scale) can only be obtained if some of the genes in each group are genuinely expressed by
the cell. That is, the assumption that the cell is pure background does not hold for that gene.

Usage

plotMarkerDistribution(
sc,
nonExpressedGenelList,
maxCells = 150,
tfidfMin = 1,

plotMarkerMap 17

Arguments
sc A SoupChannel object.
nonExpressedGenelList
Which sets of genes to use to estimate soup (see calculateContaminationFraction).
maxCells Randomly plot only this many cells to prevent over-crowding.
tfidfMin Minimum specificity cut-off used if finding marker genes (see quickMarkers).
Passed to estimateNonExpressingCells
Details

This plot is a useful diagnostic for the assumption that a list of genes is non-expressed in most cell
types. For non-expressed cells, the ratio should cluster around the contamination fraction, while for
expressed cells it should be elevated. The most useful non-expressed gene sets are those for which
the genes are either strongly expressed, or not expressed at all. Such groups of genes will show up
in this plot as a bimodal distribution, with one mode containing the cells that do not express these
genes around the contamination fraction for this channel and another around a value at some value
equal to or greater than O (1 on non-log scale) for the expressed cells.

The red line shows the global estimate of the contamination for each group of markers. This is
usually lower than the low mode of the distribution as there will typically be a non-negligible
number of cells with 0 observed counts (and hence -infinity log ratio).

If nonExpressedGenelList is missing, this function will try and find genes that are very specific to
different clusters, as these are often the most useful in estimating the contamination fraction. This
is meant only as a heuristic, which can hopefully provide some inspiration as to a class of genes to
use to estimation the contamination for your experiment. Please do **NOT** blindly use the top
N genes found in this way to estimate the contamination. That is, do not feed this list of genes into
calculateContaminationFraction without any manual consideration or filtering as this *will
over-estimate your contamination* (often by a large amount). For this reason, these gene names are
not returned by the function.

Value

A ggplot2 object containing the plot.

Examples

gg = plotMarkerDistribution(scToy,list(CD7="CD7',LTB="'LTB"))

plotMarkerMap Plot ratio of observed to expected counts on reduced dimension map

18

Description

plotMarkerMap

Given some reduced dimensional representation of the data (such as UMAP or tSNE) that has been
calculated however you would like, this provides a way to visualise how likely a set of genes are to
be soup derived on that map. That is, given a set of genes, this function calculates how many counts
would be expected if that droplet were nothing but soup and compares that to the observed count.
This is done via a log2 ratio of the two values. A Poisson test is performed and points that have a
statistically significant enrichment over the background (at 5

Usage

plotMarkerMap(
sc,
geneSet,
DR,

ratLims = c(-2, 2),

FDR = 0.05,

useToEst = NULL,
pointSize = 2,
pointShape = 21,

pointStroke
naPointSize

Arguments

sc
geneSet
DR

ratLims
FDR

useToEst

pointSize
pointShape
pointStroke

naPointSize

Value

0.5,
0.25

SoupChannel object.
A vector with the names of the genes to aggregate and plot evidence for.

A data.frame, with rows named by unique cell IDs (i.e., <ChannelName>_<Barcode>)
the first two columns of which give the coordinates of each cell in some reduced
dimension representation of the data. Try and fetch automatically if missing.

Truncate log ratios at these values.
False Discovery Rate for statistical test of enrichment over background.

A vector (usually obtained from estimateNonExpressingCells), that will be
used to mark cells instead of the usual Poisson test.

Size of points
Shape of points
Stroke size for points

Point size for NAs.

A ggplot2 containing the plot.

Examples

gg = plotMarkerMap(scToy, 'CD7")

plotSoupCorrelation 19

plotSoupCorrelation Plot correlation of expression profiles of soup and aggregated cells

Description
Calculates an expression profile by aggregating counts across all cells and plots this (on a logl0
scale) against the expression profile of the soup.

Usage

plotSoupCorrelation(sc)

Arguments

sc A SoupChannel object.

Value

A ggplot2 object containing the plot.

print.SoupChannel Print method for SoupChannel

Description

Prints a summary of a SoupChannel object.

Usage
S3 method for class 'SoupChannel'’
print(x, ...)
Arguments
X A SoupChannel object.
Currently unused.
Value

Nothing. Prints message to console.

20 quickMarkers

quickMarkers Gets top N markers for each cluster

Description
Uses tf-idf ordering to get the top N markers of each cluster. For each cluster, either the top N or all
genes passing the hypergeometric test with the FDR specified, whichever list is smallest.

Usage
quickMarkers(toc, clusters, N = 10, FDR = 0.01, expressCut = 0.9)

Arguments
toc Table of counts. Must be a sparse matrix.
clusters Vector of length ncol(toc) giving cluster membership.
N Number of marker genes to return per cluster.
FDR False discover rate to use.
expressCut Value above which a gene is considered expressed.
Details

Term Frequency - Inverse Document Frequency is used in natural language processing to identify
terms specific to documents. This function uses the same idea to order genes within a group by how
predictive of that group they are. The main advantage of this is that it is extremely fast and gives
reasonable results.

To do this, gene expression is binarised in each cell so each cell is either considered to express or
not each gene. That is, we replace the counts with toc > zeroCut. The frequency with which a
gene is expressed within the target group is compared to the global frequency to calculate the tf-idf
score. We also calculate a multiple hypothesis corrected p-value based on a hypergeometric test,
but this is extremely permissive.

Value

data.frame with top N markers (or all that pass the hypergeometric test) and their statistics for each
cluster.

Examples

#Calculate markers of clusters in toy data

mrks = quickMarkers(scToy$toc,scToy$metaData$clusters)

Not run:

#Calculate markers from Seurat (v3) object

mrks = quickMarkers(srat@assays$RNA@count,srat@active.ident)

End(Not run)

scToy 21

scToy Toy SoupChanel object

Description

A SoupChannel object created from the toy data used in examples.

Usage

data(scToy)

Format

scToy is a SoupChannel object.

Details

The toy data is created from a modified version of the extremely reduced Seurat pbmc_small
dataset. It includes clusters, tSNE coordinates and a flat estimate of 0.1 contamination. It includes
data for only 226 genes and 62 cells and should not be used for anything other than testing functions
as it is not representative of real data in any way.

setClusters Sets clustering for SoupChannel

Description

Adds or updates clustering information to meta-data table in SoupChannel object.

Usage

setClusters(sc, clusters)

Arguments
sc A SoupChannel object.
clusters A named vector, where entries are the cluster IDs and names are celllDs. If no
names are provided, the order is assumed to match the order in sc$metaData.
Value

An updated SoupChannel object with clustering information stored.

Examples

sc = load10X(system.file('extdata', 'toyData’',package="'SoupX'))
mDat = read.table(system.file('extdata', 'toyData', 'metaData.tsv',package="'SoupX'),sep="\t")
sc = setClusters(sc,mDat$res.1)

22 setDR

setContaminationFraction
Manually set contamination fraction

Description

Manually specify the contamination fraction.

Usage

setContaminationFraction(sc, contFrac, forceAccept = FALSE)

Arguments
sc A SoupChannel object.
contFrac The contamination fraction. Either a constant, in which case the same value is
used for all cells, or a named vector, in which case the value is set for each cell.
forceAccept A warning or error is usually returned for extremely high contamination frac-
tions. Setting this to TRUE will turn these into messages and proceed.
Value

A modified SoupChannel object for which the contamination (rho) has been set.

Examples

sc = load10X(system.file('extdata', 'toyData',package="'SoupX'))
sc = setContaminationFraction(sc,9.1)

setDR Manually set dimension reduction for a channel

Description

Manually specify the dimension reduction

Usage

setDR(sc, DR, reductName = NULL)

setSoupProfile 23

Arguments

sc A SoupChannel object.

DR The dimension reduction coordinates (e.g., tSNE). This must be a data.frame,
with two columns giving the two dimension reduction coordinates. The data.frame
must either have row names matching the row names of sc$metaData, or be or-
dered in the same order as sc$metaData.

reductName What to name the reduction (defaults to column names provided).

Value

A modified SoupChannel object for which the dimension reduction has been set.

Examples

sc = load10X(system.file('extdata', 'toyData',package="'SoupX'))
mDat = read. table(system.file('extdata', 'toyData’', 'metaData.tsv',package="'SoupX'),sep="\t")
sc = setDR(sc,mDat[,c('tSNE_1"', 'tSNE_2')])

setSoupProfile Set soup profile

Description

Manually sets or updates the soup profile for a SoupChannel object.

Usage

setSoupProfile(sc, soupProfile)

Arguments
sc A SoupChannel object.
soupProfile A data.frame with columns est containing the fraction of soup for each gene,
counts containing the total counts for each gene and with row names corre-
sponding to the row names of sc$toc.
Value

An updated SoupChannel object with the soup profile set.

24 SoupChannel

Examples

#Suppose only table of counts is available

toc = Seurat::Read10X(system.file('extdata', 'toyData', 'filtered_gene_bc_matrices', 'GRCh38',
package="SoupX'))

#Suppress calculating soup profile automatically

sc = SoupChannel(toc,toc,calcSoupProfile=FALSE)

#And add manually

rowSums = Matrix::rowSums

soupProf = data.frame(row.names = rownames(toc),est=rowSums(toc)/sum(toc), counts=rowSums(toc))

sc = setSoupProfile(sc, soupProf)

SoupChannel Construct a SoupChannel object

Description

Creates a SoupChannel object that contains everything related to the soup estimation of a single

channel.
Usage
SoupChannel(tod, toc, metaData = NULL, calcSoupProfile = TRUE, ...)
Arguments
tod Table of droplets. A matrix with columns being each droplet and rows each
gene.
toc Table of counts. Just those columns of tod that contain cells.
metaData Meta data pertaining to the cells. Optional. Must be a data-frame with rownames
equal to column names of toc.
calcSoupProfile
By default, the soup profile is calculated using estimateSoup with default val-
ues. If you want to do something other than the defaults, set this to FALSE and
call estimateSoup manually.
Any other named parameters to store.
Value
A SoupChannel object.
See Also

SoupChannelList estimateSoup setSoupProfile setClusters

SoupX 25

Examples

#lLoad droplet and count tables

tod = Seurat::Read10X(system.file('extdata', 'toyData', 'raw_gene_bc_matrices', 'GRCh38"',
package="'SoupX'))

toc = Seurat::Read10X(system.file('extdata', 'toyData', 'filtered_gene_bc_matrices', 'GRCh38',
package="SoupX'))

#Default calculates soup profile

sc = SoupChannel(tod, toc)

names(sc)

#This can be suppressed

sc = SoupChannel(tod, toc,calcSoupProfile=FALSE)

names(sc)
SoupX SoupX: Profile, quantify and remove ambient RNA expression from
droplet based RNA-seq
Description

This package implements the method described in REF. First a few notes about nomenclature: soup
- Used a shorthand to refer to the ambient RNA which is contained in the input solution to droplet
based RNA-seq experiments and ends up being sequenced along with the cell endogenous RNAs
that the experiment is aiming to quantify. channel - This refers to a single run input into a droplet
based sequencing platform. For Chromium 10X 3’ sequencing there are currently 8 "channels" per
run of the instrument. Because the profile of the soup depends on the input solution, this is the
minimal unit on which the soup should be estimated and subtracted.

Details

The essential step in performing background correction is deciding which genes are not expressed
in a reasonable fraction of cells. This is because SoupX estimates the contamination fraction by
comparing the expression of these non-expressed genes in droplets containing cells to the soup
defined from empty droplets. For solid tissue, the set of Haemoglobin genes usually works well.
The key properties a gene should have are: - it should be easy to identify when it is truly expressed
(i.e., when it’s expressed, it should be highly expressed) - it should be highly specific to a certain
cell type or group of cell types so that when the expression level is low, you can be confident that
the expression is coming from the soup and not a very low level of expression from the cell

Spike-in RNAs are the best case scenario. In the case where you do not have spike-ins and
haemoglobin genes are not viable estimators, the user should begin by using the plotMarkerDis-
tribution function to plot those genes with bi-modal distributions that have a pattern of expression
across cells that is consistent with high cell-type specificity. The user should then select a set of
genes that can be used for estimation from this list. One or two high quality genes is usually suffi-
cient to obtain a good estimate for the average contamination level of a channel.

Index

+ datasets
PBMC_metaData, 13
PBMC_sc, 14
scToy, 21

adjustCounts, 2, 15
alloc, 4
autoEstCont, 5

calculateContaminationFraction, 7, 9, 10,
17

estimateNonExpressingCells, 5-8, 8, 17,
18

estimateSoup, 10, 24

expandClusters, 11

initProgBar, 12
load10X, 9, 12

PBMC_metaData, 13

PBMC_sc, 14

plotChangeMap, 15
plotMarkerDistribution, 16, 25
plotMarkerMap, 10, 17
plotSoupCorrelation, 19
print.SoupChannel, 19

quickMarkers, 5, 6, 17, 20

scToy, 21

setClusters, 3, 21
setContaminationFraction, 6-8, 22
setDR, 22

setSoupProfile, 23
SoupChannel, 10, 14, 21, 24
SoupX, 25

txtProgressBar, 12

26

	adjustCounts
	alloc
	autoEstCont
	calculateContaminationFraction
	estimateNonExpressingCells
	estimateSoup
	expandClusters
	initProgBar
	load10X
	PBMC_metaData
	PBMC_sc
	plotChangeMap
	plotMarkerDistribution
	plotMarkerMap
	plotSoupCorrelation
	print.SoupChannel
	quickMarkers
	scToy
	setClusters
	setContaminationFraction
	setDR
	setSoupProfile
	SoupChannel
	SoupX
	Index

