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Spatial regimes

The SpatialRegimes package contains functions for the estimation of spatial
regimes ... but what it means, more closely, the term ”spatial regime”? Spatial
regime is an aggregation of neighboring units that are homogeneous in func-
tional terms or that ”share” the same relationship between a dependent variable
and some covariates.

Figure 1: Just a stylized example

1



Figure 1 shows a stylized case in which neighboring units show a different
relationship between a variable y and a covariate x; in the case of subjects in
green the relation y = f(x) assumes, in fact, estimated value equal to y = 3+2x,
while in the case of subjects in red y = 4 + 3x.

It is a tool, therefore, extremely useful when - for example - social and
economic phenomena show heterogeneous behaviors depending on the territories
in which they occur, territories that most often does not coincide with mere
administrative boundaries, but instead have to be identified at the same time
as the functional estimate.

The identified territories are maximally homogeneous in functional terms and
therefore help - for example - the researcher to control the real fixed regional
effects where the term regional is here to be understood not in an administrative
sense, but as a territorial aggregation where it is maximally homogeneous the
relationship you want to study.

The term ”spatial regime”, therefore, should not be understood as a synonym
for ”cluster”. More precisely, the term ”cluster” does not presuppose any func-
tional relationship between the variables considered, while the term ”regime” is
linked to a regressive relationship underlying the spatial process. Identifying dif-
ferent spatial regimes, therefore, is equivalent to estimating different functional
production regimes.

In order to illustrate the package more simply and/or interactively, a Shiny
application has been designed and it is available here:

https://fvidoli.shinyapps.io/SpatialRegimes_app/

In the second part of the vignette, we will focus our attention on a specific
function called SkaterF.

SkaterF function

SkaterF function allows to estimate territorially defined areas in which the pro-
duction units are maximally homogeneous in functional terms - defining a spatial
regimes - and at the same time inhomogeneous with the other ones.

These areas, which are the hierarchical subdivision of the territory, are iden-
tified as spatially bound areas or as areas in which adjacent units (intended
as neighboring, bordering, contiguous) are constrained to be part of the same
cluster; this constraint, therefore, allows to obtain homogeneous closed areas or
in which all units belong to the same cluster.

For a more detailed explanation of this method, please see: Vidoli et al.
(2022).

So let’s begin with a practical example!

A quick set-up

Let’s start by loading the library SpatialRegimes and the simulated dataset Sim-
Data; in this dataset 500 units, their respective coordinates, three covariates
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called A, L and K and a variable that identifies the membership to a specific
area (clu) have been simulated. The dependent variable Y has been generated
as:

Y =


13 + 0.5 ∗A+ 0.3 ∗ L+ 0.2 ∗K + ϵ, if i ∈ cluster 1
11 + 0.8 ∗A+ 0.1 ∗ L+ 0.1 ∗K + ϵ, if i ∈ cluster 2
9 + 0.3 ∗A+ 0.2 ∗ L+ 0.5 ∗K + ϵ, if i ∈ cluster 3
7 + 0.4 ∗A+ 0.3 ∗ L+ 0.3 ∗K + ϵ, if i ∈ cluster 4
5 + 0.2 ∗A+ 0.6 ∗ L+ 0.2 ∗K + ϵ, if i ∈ cluster 5

(1)

where ϵ is a normally distributed error term ∈ N (0, 1).

> library(SpatialRegimes)

> data(SimData)

> coords = cbind(SimData$long, SimData$lat)

Our aim is, therefore, to use SkaterF function to estimate the adherence to
the simulated functional cluster as plotted below.

> plot(lat~long,SimData,col=clu,pch=16)
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The first step is the construction of the neighborhood that can be carried
out according to several choices; please refer to the https://cran.r-project.
org/web/packages/spdep/vignettes/nb.pdf for an exhaustive review in R.
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> neighbours = tri2nb(coords, row.names = NULL)

> # Another type of relative neighbor graph:

> # neighbours <- graph2nb(gabrielneigh(coords), sym=TRUE)

> bh.nb <- neighbours

> lcosts <- nbcosts(bh.nb, SimData)

> nb <- nb2listw(bh.nb, lcosts, style="B")

After identifying the typology of neighborhood between units, functionmstree
from spdep package is used to identify the minimal spanning tree as the smaller
class of possible partitions of a graph by pruning edges with high dissimilarity.

> mst.bh <- mstree(nb,5)

> edges1 = mst.bh[,1:2]

The figure of the minimal spanning tree is shown below.

> plot(mst.bh, coords, col=2,

+ cex.lab=.5, cex.circles=0.035, fg="blue")
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Therefore, all the input are in place to provide to our function to identify -
according to the chosen neighborhood and the functional specification chosen -
the spatial regimes.
SkaterF function needs (like the k-means procedure) to indicate a number of cuts
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(ncuts)1 and it allows to indicate a minimum number of subjects within each
cluster (crit). OLS (method=1) is currently the only estimator implemented.

> ncuts1 = 4

> crit1 = 10

> coly1 = c("y_ols")

> colx1 = c("A","L","K")

> sk = SkaterF(edges = edges1,

+ data= SimData,

+ coly = coly1,

+ colx= colx1,

+ ncuts=ncuts1,

+ crit=crit1,

+ method=1)

> SimData$regimes = sk$groups

Results can be finally appreciated both through a visual spatial analysis and
by implementing regressive analysis, one for each group obtained.

> plot(lat~long,SimData,col=regimes,pch=16)
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1Please note that the desired number of spatial regimes is equal to ncuts +1.

5



T
a
b
le

1

D
ep
en

d
en

t
va
ri
a
bl
e:

Y

(1
)

(2
)

(3
)

(4
)

(5
)

A
0.
48
5∗

0
.4
0
6
∗∗

∗
0
.5
5
2
∗∗

∗
0
.2
0
0

0
.3
4
3

(0
.2
64
)

(0
.1
1
5
)

(0
.1
5
0
)

(0
.1
4
2
)

(0
.6
2
8
)

L
0.
24
5

0
.3
2
8∗

∗∗
0
.2
8
8
∗∗

0
.5
4
1
∗∗

∗
−
0
.1
4
5

(0
.1
93
)

(0
.1
1
7
)

(0
.1
3
3
)

(0
.1
5
0
)

(0
.8
2
5
)

K
0.
49
6
∗∗

0
.7
7
1
∗∗

∗
0
.3
2
6
∗∗

0
.5
8
9
∗∗

∗
1
.7
0
1
∗∗

(0
.2
07
)

(0
.1
1
2
)

(0
.1
4
2
)

(0
.1
5
3
)

(0
.7
2
8
)

C
on

st
an

t
6.
64
0∗

∗∗
7
.5
9
7
∗∗

∗
1
1
.3
8
4
∗∗

∗
4
.4
2
7
∗∗

∗
5
.6
3
4

(0
.9
94
)

(0
.5
5
9
)

(0
.6
6
4
)

(0
.6
9
9
)

(3
.3
8
7
)

O
b
se
rv
at
io
n
s

31
1
4
5

1
5
1

1
4
6

2
7

R
2

0.
30
0

0
.3
3
2

0
.1
3
8

0
.1
8
3

0
.1
9
8

A
d
ju
st
ed

R
2

0.
22
2

0
.3
1
7

0
.1
2
0

0
.1
6
6

0
.0
9
3

R
es
id
u
al

S
td
.
E
rr
or

0.
90
3
(d
f
=

2
7
)

0
.9
8
6
(d
f
=

1
4
1
)

1
.2
5
4
(d
f
=

1
4
7
)

1
.2
9
7
(d
f
=

1
4
2
)

2
.5
0
8
(d
f
=

2
3
)

F
S
ta
ti
st
ic

3.
85
2∗

∗
(d
f
=

3
;
2
7
)

2
3
.3
2
6∗

∗∗
(d
f
=

3
;
1
4
1
)

7
.8
4
0∗

∗∗
(d
f
=

3
;
1
4
7
)

1
0
.6
2
9∗

∗∗
(d
f
=

3
;
1
4
2
)

1
.8
9
3
(d
f
=

3
;
2
3
)

N
o
te
:

∗ p
<
0
.1
;
∗∗
p
<
0
.0
5
;
∗∗

∗ p
<
0
.0
1

6



References

Francesco Vidoli, Giacomo Pignataro, and Roberto Benedetti. Identification
of spatial regimes of the production function of italian hospitals through
spatially constrained cluster-wise regression. Socio-Economic Planning Sci-
ences, 82:101223, 2022. ISSN 0038-0121. doi: https://doi.org/10.1016/j.seps.
2022.101223. URL https://www.sciencedirect.com/science/article/

pii/S0038012122000015.

7

https://www.sciencedirect.com/science/article/pii/S0038012122000015
https://www.sciencedirect.com/science/article/pii/S0038012122000015

