Package ‘TSP’

May 27, 2025
Type Package

Title Infrastructure for the Traveling Salesperson Problem
Version 1.2-5
Date 2025-05-27

Description Basic infrastructure and some algorithms for the traveling
salesperson problem (also traveling salesman problem; TSP).
The package provides some simple algorithms and
an interface to the Concorde TSP solver and its implementation of the
Chained-Lin-Kernighan heuristic. The code for Concorde
itself is not included in the package and has to be obtained separately.
Hahsler and Hornik (2007) <doi:10.18637/jss.v023.102>.

Classification/ACM G.1.6,G.2.1,G4
URL https://github.com/mhahsler/TSP

BugReports https://github.com/mhahsler/TSP/issues

Depends R (>=3.5.0)

Imports graphics, foreach, utils, stats, grDevices

Suggests maps, doParallel, testthat

Encoding UTF-8

RoxygenNote 7.3.1

License GPL-3

Copyright All code is Copyright (C) Michael Hahsler and Kurt Hornik.
NeedsCompilation yes

Author Michael Hahsler [aut, cre, cph] (ORCID:
<https://orcid.org/0000-0003-2716-1405>),
Kurt Hornik [aut, cph] (ORCID: <https://orcid.org/0000-0003-4198-9911>)

Maintainer Michael Hahsler <mhahsler@lyle.smu.edu>
Repository CRAN
Date/Publication 2025-05-27 16:40:02 UTC

https://doi.org/10.18637/jss.v023.i02
https://github.com/mhahsler/TSP
https://github.com/mhahsler/TSP/issues
https://orcid.org/0000-0003-2716-1405
https://orcid.org/0000-0003-4198-9911

2 ATSP

Contents
ATSP . . e 2
Concorde e e e e e 4
CUL_TOUL v vt e e e e e e e e e e e e 6
ETSP . . e 7
msert_dummy e e e e e e 9
reformulate_ ATSP_as_ TSP 11
solve_TSP e e 13
TOUR . . e 17
tour_length L 19
TSP . e e 20
TSPLIB e e 22
USCA . . e e 24

Index 25

ATSP Class ATSP — Asymmetric traveling salesperson problem
Description

Constructor to create an instance of the asymmetric traveling salesperson problem (ATSP) and some
auxiliary methods.

Usage

ATSP(x, labels = NULL, method = NULL)

as.ATSP(x)

S3 method for class 'matrix'
as.ATSP(x)

S3 method for class 'dist'
as.ATSP(x)

S3 method for class 'ATSP'
print(x, ...)

S3 method for class 'ATSP'
n_of_cities(x)

S3 method for class 'ATSP'
labels(object, ...)

S3 method for class 'ATSP'
image(x, order, col = gray.colors(64), ...)

ATSP 3

S3 method for class 'ATSP'

as.matrix(x, ...)
Arguments
X, object an object (a square matrix) to be converted into an ATSP or, for the methods, an
object of class ATSP.
labels optional city labels. If not given, labels are taken from x.
method optional name of the distance metric.

further arguments are passed on.

order order of cities as an integer vector or an object of class TOUR.
col color scheme for image.
Details

Objects of class ATSP are internally represented by a matrix (use as.matrix() to get just the ma-
trix).

ATSPs can be transformed into (larger) symmetric TSPs using reformulate_ATSP_as_TSP().

Value

* ATSP() returns x as an object of class ATSP.
e n_of_cities() returns the number of cities in x.

e labels() returns a vector with the names of the cities in x.

Author(s)
Michael Hahsler

See Also
Other TSP: Concorde, ETSP(), TSP(), TSPLIB, insert_dummy(), reformulate_ATSP_as_TSP(),
solve_TSP()

Examples

data <- matrix(runif(10*2), ncol = 10, dimnames = list(1:10, 1:10))

atsp <- ATSP(data)
atsp

use some methods
n_of_cities(atsp)
labels(atsp)

calculate a tour
tour <- solve_TSP(atsp, method = "nn")

4 Concorde

tour
tour_length(tour)

image(atsp, tour)

Concorde Using the Concorde TSP Solver

Description

The Concorde TSP Solver package contains several solvers. Currently, interfaces to the Concorde
solver (Applegate et al. 2001), one of the most advanced and fastest TSP solvers using branch-and-
cut, and the Chained Lin-Kernighan (Applegate et al. 2003) implementation are provided in TSP.
Concorde can solve TSPs and ETSPs directly. ATSPs are reformulated as larger TSP’s and then
solved.

Usage

concorde_path(path)
concorde_help()

linkern_help()

Arguments
path a character string with the path to the directory where the executables are in-
stalled.
Details

Installation of Concorde

The Concorde TSP Solver is freely available for academic research. It is not included in the TSP R
package and has to be obtained separately from the Concorde download page. Either download the
precompiled executables and place them in a suitable directory (make sure they are executable), or
you can get the source code and compile the program on your own. TSP needs to know where the
executables are. There are two options:

1. use concorde_path() to set the path to the directory containing the executables for concorde
and linkern, or
2. make sure that the executables are in the search path stored in the PATH environment variable
(see Sys.setenv()).
Using Concorde for solve_TSP()

solve_TSP() uses write_TSPLIB() to write the TSP for Concorde and tries to find the appropriate
precision value (digits after the decimal point) to convert the provided distances into the needed

http://www.math.uwaterloo.ca/tsp/concorde/downloads/downloads.htm

Concorde 5

integer value range. The precision value can also be specified in control in solve_TSP() with
method Concorde. Warning messages will alert the user if the conversion to integer values results
into rounding errors that are worse then what is specified in the precision control parameter.

To get a list of all available command line options which can be used via the clo option for
solve_TSP use concorde_help() and linkern_help(). Several options (‘-x’, ‘-0’, ‘-N’, ‘-Q’)
are not available via solve_TSP() since they are used by the interface.

If Concorde takes too long, then you can kill the *concorde’ process via your operating system and
you can continue with R.
Value

Nothing.

Author(s)
Michael Hahsler

References

Concorde home page, http://www.math.uwaterloo.ca/tsp/concorde/

David Applegate, Robert Bixby, Vasek Chvatal, William Cook (2001): TSP cuts which do not
conform to the template paradigm, Computational Combinatorial Optimization, M. Junger and D.
Naddef (editors), Springer-Verlag.

David Applegate and William Cook and Andre Rohe (2003): Chained Lin-Kernighan for Large
Traveling Salesman Problems, INFORMS Journal on Computing, 15, 82-92.

See Also
Other TSP: ATSP(), ETSP(), TSP(), TSPLIB, insert_dummy(), reformulate_ATSP_as_TSP(),
solve_TSP()

Examples

Not run:
see if Concorde is correctly installed
concorde_path()

set path to the Concorde executible if it is not in the search PATH
Example:

concorde_path("”~/concorde/")

concorde_help()

data(”USCA312")

run concorde in verbose mode (-v) with fast cuts only (-V)
solve_TSP(USCA312, method = "concorde”, control = list(clo = "-v -V"))

End(Not run)

http://www.math.uwaterloo.ca/tsp/concorde/

6 cut_tour

cut_tour Cut a tour to form a path

Description

Cuts a tour at a specified city to form a path.

Usage

cut_tour(x, cut, exclude_cut = TRUE)

S3 method for class 'TOUR'

cut_tour(x, cut, exclude_cut = TRUE)
Arguments
X an object of class TOUR.
cut the index or label of the city/cities to cut the tour.
exclude_cut exclude the city where we cut? If FALSE, the city at the cut is included in the
path as the first city.
Value

Returns a named vector with city ids forming the path. If multiple cuts are used then a list with
paths is returned.

Author(s)
Michael Hahsler

See Also
Other TOUR: TOUR(), solve_TSP(), tour_length()

Examples

data("USCA50")

find a path starting at Austin, TX

tour <- solve_TSP(USCA50)

path <- cut_tour(tour, cut = "Austin, TX", exclude_cut = FALSE)
path

cut the tours at two cities
tour <- solve_TSP(USCA5Q)
path <- cut_tour(tour, cut = c("Austin, TX", "Cambridge, MA"), exclude_cut = FALSE)

ETSP 7

path

cut a tour at the largest gap using a dummy city
tsp <- insert_dummy(USCA50@, label = "cut")
tour <- solve_TSP(tsp)

cut tour into path at the dummy city
path <- cut_tour(tour, "cut")
path

ETSP Class ETSP — Euclidean traveling salesperson problem

Description

Constructor to create an instance of a Euclidean traveling salesperson problem (TSP) represented
by city coordinates and some auxiliary methods.

Usage
ETSP(x, labels = NULL)
as.ETSP(x)

S3 method for class 'matrix'
as.ETSP(x)

S3 method for class 'data.frame'
as.ETSP(x)

S3 method for class 'ETSP'
as.TSP(x)

S3 method for class 'ETSP'
as.matrix(x, ...)

S3 method for class 'ETSP'
print(x, ...)

S3 method for class 'ETSP'
n_of_cities(x)

S3 method for class 'ETSP'
labels(object, ...)

S3 method for class 'ETSP'
image(x, order, col = gray.colors(64), ...)

8 ETSP

S3 method for class 'ETSP'

plot(x, y = NULL, tour = NULL, tour_lty = 2, tour_col = 2, labels = TRUE, ...)
Arguments

X, object an object (data.frame or matrix) to be converted into a ETSP or, for the methods,
an object of class ETSP.

labels logical; plot city labels.
further arguments are passed on.

order order of cities for the image as an integer vector or an object of class TOUR.

col color scheme for image.

tour,y a tour to be visualized.

tour_lty, tour_col
line type and color for tour.

Details
Objects of class ETSP are internally represented as a matrix objects (use as.matrix() to get the
matrix object).

Value

* ETSP() returns x as an object of class ETSP.
e n_of_cities() returns the number of cities in x.

e labels() returns a vector with the names of the cities in x.

Author(s)
Michael Hahsler

See Also

Other TSP: ATSP(), Concorde, TSP(), TSPLIB, insert_dummy(), reformulate_ATSP_as_TSP(),
solve_TSP()

Examples

create a random ETSP

n <- 20

x <- data.frame(x = runif(n), y = runif(n), row.names = LETTERS[1:n])
etsp <- ETSP(x)

etsp

use some methods
n_of_cities(etsp)

labels(etsp)

plot ETSP and solution

insert_dummy 9

tour <- solve_TSP(etsp)
tour

plot(etsp, tour, tour_col = "red")
plot with custom labels

plot(etsp, tour, tour_col = "red”, labels = FALSE)
text(etsp, paste(”"City”, rownames(etsp)), pos = 1)

insert_dummy Insert dummy cities into a distance matrix

Description

Inserts dummy cities into a TSP problem. A dummy city has the same, constant distance (0) to all
other cities and is infinitely far from other dummy cities. A dummy city can be used to transform a
shortest Hamiltonian path problem (i.e., finding an optimal linear order) into a shortest Hamiltonian
cycle problem which can be solved by a TSP solvers (Garfinkel 1985).

Usage

insert_dummy(x, n = 1, const

1
S

inf = Inf, label = "dummy")

S3 method for class 'TSP'
insert_dummy(x, n = 1, const = @, inf = Inf, label = "dummy")

S3 method for class 'ATSP'

insert_dummy(x, n = 1, const = @, inf = Inf, label = "dummy")

S3 method for class 'ETSP'

insert_dummy(x, n = 1, const = @, inf = Inf, label = "dummy")
Arguments

X an object with a TSP problem.

n number of dummy cities.

const distance of the dummy cities to all other cities.

inf distance between dummy cities.

label labels for the dummy cities. If only one label is given, it is reused for all dummy

cities.

Details

Several dummy cities can be used together with a TSP solvers to perform rearrangement clustering
(Climer and Zhang 2006).

The dummy cities are inserted after the other cities in x.

A const of 0 is guaranteed to work if the TSP finds the optimal solution. For heuristics returning
suboptimal solutions, a higher const (e.g., 2 * max(x)) might provide better results.

10 insert_dummy

Value

returns an object of the same class as x.

Author(s)
Michael Hahsler

References

Sharlee Climer, Weixiong Zhang (2006): Rearrangement Clustering: Pitfalls, Remedies, and Ap-
plications, Journal of Machine Learning Research 7(Jun), pp. 919-943.

R.S. Garfinkel (1985): Motivation and modelling (chapter 2). In: E. L. Lawler, J. K. Lenstra,
A H.G. Rinnooy Kan, D. B. Shmoys (eds.) The traveling salesman problem - A guided tour of
combinatorial optimization, Wiley & Sons.

See Also
Other TSP: ATSP(), Concorde, ETSP(), TSP(), TSPLIB, reformulate_ATSP_as_TSP(), solve_TSP()

Examples

Example 1: Find a short Hamiltonian path
set.seed(1000)
x <- data.frame(x = runif(20), y = runif(20), row.names = LETTERS[1:20])

tsp <- TSP(dist(x))

add a dummy city to cut the tour into a path
tsp <- insert_dummy(tsp, label = "cut")

tour <- solve_TSP(tsp)

tour

plot(x)
lines(x[cut_tour(tour, cut = "cut"),])

Example 2: Rearrangement clustering of the iris dataset
set.seed(1000)

data("iris")

tsp <- TSP(dist(iris[-5]))

insert 2 dummy cities to creates 2 clusters
tsp_dummy <- insert_dummy(tsp, n = 3, label = "boundary")

get a solution for the TSP
tour <- solve_TSP(tsp_dummy)

plot the reordered distance matrix with the dummy cities as lines separating
the clusters

image (tsp_dummy, tour)

abline(h = which(labels(tour)=="boundary”), col = "red")

reformulate_ ATSP_as_TSP 11

abline(v = which(labels(tour)=="boundary"), col = "red")

plot the original data with paths connecting the points in each cluster
plot(iris[,c(2,3)], col = iris[,5])

paths <- cut_tour(tour, cut = "boundary")

for(p in paths) lines(iris[p, c(2,3)1)

Note: The clustering is not perfect!

reformulate_ATSP_as_TSP
Reformulate a ATSP as a symmetric TSP

Description

A ATSP can be formulated as a symmetric TSP by doubling the number of cities (Jonker and
Volgenant 1983). The solution of the TSP also represents the solution of the original ATSP.

Usage

reformulate_ATSP_as_TSP(x, infeasible = Inf, cheap = -Inf)

filter_ATSP_as_TSP_dummies(tour, atsp)

Arguments
X an ATSP.
infeasible value for infeasible connections.
cheap value for distance between a city and its corresponding dummy city.
tour a TOUR created for a ATSP reformulated as a TSP.
atsp the original ATSP.
Details

To reformulate a ATSP as a TSP, for each city a dummy city (e.g, for 'New York’ a dummy city
’New York*’) is added. Between each city and its corresponding dummy city a very small (or
negative) distance with value cheap is used. To ensure that the solver places each cities always
occurs in the solution together with its dummy city, this cost has to be much smaller than the
distances in the TSP. The original distances are used between the cities and the dummy cities,
where each city is responsible for the distance going to the city and the dummy city is responsible
for the distance coming from the city. The distances between all cities and the distances between all
dummy cities are set to infeasible, a very large value which prevents the solver from using these
links. We use infinite values here and solve_TSP() treats them appropriately.

filter_ATSP_as_TSP_dummies() can be used to extract the solution for the original ATSP from
the tour found for an ATSP reformulated as a TSP. Note that the symmetric TSP tour does not
reveal the direction for the ATSP. The filter function computed the tour length for both directions
and returns the shorter tour.

12 reformulate_ ATSP_as_TSP

solve_TSP() has a parameter as_TSP which preforms the reformulation and filtering the dummy
cities automatically.

Note on performance: Doubling the problem size is a performance issue especially has a negative
impact on solution quality for heuristics. It should only be used together with Concorde when the
optimal solution is required. Most heuristics can solve ATSPs directly with good solution quality.

Value

reformulate_ATSP_as_TSP() returns a TSP object. filter_ATSP_as_TSP_dummies() returns a
TOUR object.

Author(s)
Michael Hahsler

References

Jonker, R. and Volgenant, T. (1983): Transforming asymmetric into symmetric traveling salesman
problems, Operations Research Letters, 2, 161-163.

See Also

Other TSP: ATSP(), Concorde, ETSP(), TSP(), TSPLIB, insert_dummy(), solve_TSP()

Examples

data("USCA50")

set the distances from anywhere to Austin to zero which makes it an ATSP
austin <- which(labels(USCA50) == "Austin, TX")

atsp <- as.ATSP(USCA50Q)

atsp[, austin] <- @

atsp

reformulate as a TSP (by doubling the number of cities with dummy cities marked with *)
tsp <- reformulate_ATSP_as_TSP(atsp)
tsp

create tour for the TSP. You should use Concorde to find the optimal solution.
tour_tsp <- solve_TSP(tsp, method = "concorde")

The standard heuristic is bad for this problem. We use it here because

Concord may not be installed.

tour_tsp <- solve_TSP(tsp)

head(labels(tour_tsp), n = 10)

tour_tsp

The tour length is -Inf since it includes cheap links

from a city to its dummy city.

get the solution for the original ATSP by filtering out the dummy cities.
tour_atsp <- filter_ATSP_as_TSP_dummies(tour_tsp, atsp = atsp)
tour_atsp

solve_TSP 13

head(labels(tour_atsp), n = 10)

This process can also be done automatically by using as_TSP = TRUE:
solve_TSP(atsp, method = "concorde”, as_TSP = TRUE)

The default heuristic can directly solve ATSPs with results close to the
optimal solution of 12715.
solve_TSP(atsp, control = list(rep = 10))

solve_TSP TSP solver interface

Description

Common interface to all TSP solvers in this package.

Usage
solve_TSP(x, method = NULL, control = NULL, ...)
S3 method for class 'TSP'
solve_TSP(x, method = NULL, control = NULL, ...)
S3 method for class 'ATSP'
solve_TSP(x, method = NULL, control = NULL, as_TSP = FALSE, ...)
S3 method for class 'ETSP'
solve_TSP(x, method = NULL, control = NULL, ...)
Arguments
X a TSP problem.
method method to solve the TSP (default: "arbitrary insertion" algorithm with two_opt
refinement.
control a list of arguments passed on to the TSP solver selected by method.
additional arguments are added to control.
as_TSP should the ATSP reformulated as a TSP for the solver?
Details
TSP Methods

Currently the following methods are available:

non

* "identity", "random" return a tour representing the order in the data (identity order) or a ran-
dom order. [TSP, ATSP]

14

solve_TSP

non "non

* "nearest_insertion", "farthest_insertion", "cheapest_insertion", "arbitrary_insertion" Nearest,

farthest, cheapest and arbitrary insertion algorithms for a symmetric and asymmetric TSP
(Rosenkrantz et al. 1977). [TSP, ATSP]

The distances between cities are stored in a distance matrix D with elements d(i,j). All
insertion algorithms start with a tour consisting of an arbitrary city and choose in each step a
city k not yet on the tour. This city is inserted into the existing tour between two consecutive
cities ¢ and 7, such that

is minimized. The algorithms stops when all cities are on the tour.

The nearest insertion algorithm chooses city k in each step as the city which is nearest to a
city on the tour.

For farthest insertion, the city & is chosen in each step as the city which is farthest to any city
on the tour.

Cheapest insertion chooses the city k such that the cost of inserting the new city (i.e., the
increase in the tour’s length) is minimal.

Arbitrary insertion chooses the city k randomly from all cities not yet on the tour.

Nearest and cheapest insertion tries to build the tour using cities which fit well into the partial
tour constructed so far. The idea behind behind farthest insertion is to link cities far away into
the tour fist to establish an outline of the whole tour early.

Additional control options:
— "start" index of the first city (default: a random city).

" "non

nn", "repetitive_nn" Nearest neighbor and repetitive nearest neighbor algorithms for symmet-
ric and asymmetric TSPs (Rosenkrantz et al. 1977). [TSP, ATSP]

The algorithm starts with a tour containing a random city. Then the algorithm always adds to
the last city on the tour the nearest not yet visited city. The algorithm stops when all cities are
on the tour.

Repetitive nearest neighbor constructs a nearest neighbor tour for each city as the starting
point and returns the shortest tour found.

Additional control options:
— "start" index of the first city (default: a random city).

"two_opt" Two edge exchange improvement procedure (Croes 1958). [TSP, ATSP]

This is a tour refinement procedure which systematically exchanges two edges in the graph
represented by the distance matrix till no improvements are possible. Exchanging two edges
is equal to reversing part of the tour. The resulting tour is called 2-optimal.

This method can be applied to tours created by other methods or used as its own method. In
this case improvement starts with a random tour.

Additional control options:
— "tour" an existing tour which should be improved. If no tour is given, a random tour is
used.
— "two_opt_repetitions" number of times to try two_opt with a different initial random tour
(default: 1).
"concorde" Concorde algorithm (Applegate et al. 2001). [TSP, ETSP]

Concorde is an advanced exact TSP solver for symmetric TSPs based on branch-and-cut. AT-
SPs can be solved using reformulate_ATSP_as_TSP() done automatically with as_TSP =

solve_TSP 15

TRUE. The program is not included in this package and has to be obtained and installed sepa-
rately.

Additional control options:

— "exe" a character string containing the path to the executable (see Concorde).

— "clo" a character string containing command line options for Concorde, e.g., control =
list(clo="-B-v"). See concorde_help() on how to obtain a complete list of avail-
able command line options.

— "precision" an integer which controls the number of decimal places used for the inter-
nal representation of distances in Concorde. The values given in x are multiplied by
10Precision pefore being passed on to Concorde. Note that therefore the results produced
by Concorde (especially lower and upper bounds) need to be divided by 10PTécision (e,
the decimal point has to be shifted precision placed to the left). The interface to Con-
corde uses write_TSPLIB().

* "linkern" Concorde’s Chained Lin-Kernighan heuristic (Applegate et al. 2003). [TSP, ETSP]

The Lin-Kernighan (Lin and Kernighan 1973) heuristic uses variable k edge exchanges to
improve an initial tour. The program is not included in this package and has to be obtained
and installed separately (see Concorde).

Additional control options: see Concorde above.

Treatment of NAs and infinite values in x

TSP and ATSP need to contain valid distances. NAs are not allowed. Inf is allowed and can be
used to model the missing edges in incomplete graphs (i.e., the distance between the two objects is
infinite) or infeasible connections. Internally, Inf is replaced by a large value given by max(x) +
2range(z). Note that the solution might still place the two objects next to each other (e.g., if x
contains several unconnected subgraphs) which results in a path length of Inf. -Inf is replaced by
min(x) — 2range(z) and can be used to encourage the solver to place two objects next to each
other.

Parallel execution support

All heuristics can be used with the control arguments repetitions (uses the best from that many
repetitions with random starts) and two_opt (a logical indicating if two_opt refinement should be
performed). If several repetitions are done (this includes method "repetitive_nn") then foreach is
used so they can be performed in parallel on multiple cores/machines. To enable parallel execution
an appropriate parallel backend needs to be registered (e.g., load doParallel and register it with
doParallel::registerDoParallel()).

Solving ATSP and ETSP

Some solvers (including Concorde) cannot directly solve ATSP directly. ATSP can be reformu-
lated as larger TSP and solved this way. For convenience, solve_TSP() has an extra argument
as_TSP which can be set to TRUE to automatically solve the ATSP reformulated as a TSP (see
reformulate_ATSP_as_TSP()).

Only methods "concorde" and "linkern" can solve ETSPs directly. For all other methods, ETSPs
are currently converted into TSPs by creating a distance matrix and then solved.

Value

An object of class TOUR.

16 solve_TSP

Author(s)
Michael Hahsler

References

David Applegate, Robert Bixby, Vasek Chvatal, William Cook (2001): TSP cuts which do not
conform to the template paradigm, Computational Combinatorial Optimization, M. Junger and D.
Naddef (editors), Springer.

D. Applegate, W. Cook and A. Rohe (2003): Chained Lin-Kernighan for Large Traveling Salesman
Problems. INFORMS Journal on Computing, 15(1):82-92.

G.A. Croes (1958): A method for solving traveling-salesman problems. Operations Research,
6(6):791-812.

S. Lin and B. Kernighan (1973): An effective heuristic algorithm for the traveling-salesman prob-
lem. Operations Research, 21(2): 498-516.

D.J. Rosenkrantz, R. E. Stearns, and Philip M. Lewis II (1977): An analysis of several heuristics
for the traveling salesman problem. SIAM Journal on Computing, 6(3):563—581.

See Also

Other TSP: ATSP(), Concorde, ETSP(), TSP(), TSPLIB, insert_dummy(), reformulate_ATSP_as_TSP()
Other TOUR: TOUR(), cut_tour(), tour_length()

Examples

solve a simple Euclidean TSP (using the default method)
etsp <- ETSP(data.frame(x = runif(20), y = runif(20)))
tour <- solve_TSP(etsp)

tour

tour_length(tour)

plot(etsp, tour)

compare methods
data("USCA50")

USCA50

methods <- c("identity”, "random”, "nearest_insertion”,
"cheapest_insertion”, "farthest_insertion”, "arbitrary_insertion”,
"nn", "repetitive_nn", "two_opt")

calculate tours
tours <- lapply(methods, FUN = function(m) solve_TSP(USCA50, method = m))
names(tours) <- methods

use the external solver which has to be installed separately
Not run:

tours$concorde <- solve_TSP(USCA50, method = "concorde”)
tours$linkern <- solve_TSP(USCA50, method = "linkern")

End(Not run)

TOUR 17

register a parallel backend to perform repetitions in parallel
Not run:

library(doParallel)

registerDoParallel()

End(Not run)

add some tours using repetition and two_opt refinements

tours$'nn+two_opt' <- solve_TSP(USCA50, method = "nn", two_opt = TRUE)
tours$'nn+rep_10' <- solve_TSP(USCA50, method = "nn", rep = 10)
tours$'nn+two_opt+rep_10' <- solve_TSP(USCA50, method = "nn", two_opt = TRUE, rep = 10)
tours$'arbitrary_insertion+two_opt' <- solve_TSP(USCA5Q)

show first tour
tours[[1]]

compare tour lengths

opt <- 14497 # obtained by Concorde

tour_lengths <- c(sort(sapply(tours, tour_length), decreasing = TRUE),
optimal = opt)

dotchart(tour_lengths / opt * 100 - 100, xlab = "percent excess over optimum")
TOUR Class TOUR — Solution to a traveling salesperson problem
Description

Class to store the solution of a TSP. Objects of this class are returned by TSP solvers in this package.
Essentially, an object of class TOUR is a permutation vector containing the order of cities to visit.

Usage
TOUR(x, method = NA, tsp = NULL)
as.TOUR(object)

S3 method for class 'numeric'
as.TOUR(object)

S3 method for class 'integer'
as.TOUR(object)

S3 method for class 'TOUR'
print(x, ...)

18 TOUR

Arguments
X an integer permutation vector or, for the methods an object of class TOUR.
method character string; method used to create the tour.
tsp TSP object the tour applies to. If available then the tour will include the tour
length. Also the labels of the cities will be available in the tour (otherwise the
labels of x are used).
object data (an integer vector) which can be coerced to TOUR.
further arguments are passed on.
Details

Since an object of class TOUR is an integer vector, it can be subsetted as an ordinary vector or
coerced to an integer vector using as.integer(). It also contains the names of the objects as
labels. Additionally, TOUR has the following attributes: "method”, "tour_length”.

For most functions, e.g., tour_length() or image.TSP(), the TSP/ATSP object used to find the
tour is still needed, since the tour does not contain the distance information.

Author(s)

Michael Hahsler

See Also

Other TOUR: cut_tour (), solve_TSP(), tour_length()

Examples

TOUR(1:10)

calculate a tour
data("USCA50")

tour <- solve_TSP(USCA5Q)
tour

get tour length directly from tour
tour_length(tour)

get permutation vector
as.integer(tour)

show labels
labels(tour)

tour_length 19

tour_length Calculate the length of a tour

Description

Calculate the length of a TOUR for a TSP.
Usage
tour_length(x, ...)

S3 method for class 'TSP'
tour_length(x, order, ...)

S3 method for class 'ATSP'
tour_length(x, order, ...)

S3 method for class 'ETSP'
tour_length(x, order, ...)

S3 method for class 'TOUR'
tour_length(x, tsp = NULL, ...)

S3 method for class 'integer'

tour_length(x, tsp = NULL, ...)
Arguments
X a TSP problem or a TOUR.
further arguments are currently unused.
order an object of class TOUR
tsp as TSP object.
Details

If no tsp is specified, then the tour length stored in x as attribute "tour_length" is returned. If
tsp is given then the tour length is recalculated using the specified TSP problem.

If a distance in the tour is infinite, the result is also infinite. If the tour contains positive and negative
infinite distances then the method returns NA.

Author(s)
Michael Hahsler

See Also
Other TOUR: TOUR(), cut_tour(), solve_TSP()

20

Examples

data("USCA50")

original order

tour_length(solve_TSP(USCA50, method="identity"))

length of a manually created (random) tour
tour <- TOUR(sample(seq(n_of_cities(USCA50))))

tour
tour_length(tour)

tour_length(tour, USCA5Q)

TSP

TSP

Class TSP — Symmetric traveling salesperson problem

Description

Constructor to create an instance of a symmetric traveling salesperson problem (TSP) and some
auxiliary methods.

Usage

TSP(x, labels =

as.

#it
as

##

as.

##
as

#i#

TSP(x)

S3 method for
.TSP(x)

S3 method for
TSP(x)

S3 method for
.dist(m, ...)

S3 method for

print(x, ...)

n_of_cities(x)

##

S3 method for

n_of_cities(x)

##

S3 method for

labels(object,

class

class

class

class

class

class

.2

S3 method for class
image(x, order, col = gray.colors(64),

NULL, method = NULL)

'dist’

'matrix’

"TSP'

'"TSP'

'"TSP'

'"TSP'

'"TSP'

TSP 21

Arguments
X, object an object (currently dist or a symmetric matrix) to be converted into a TSP or,
for the methods, an object of class TSP.
labels optional city labels. If not given, labels are taken from x.
method optional name of the distance metric. If x is a dist object, then the method is
taken from that object.
m a TSP object to be converted to a dist object.
further arguments are passed on.
order order of cities for the image as an integer vector or an object of class TOUR.
col color scheme for image.
Details

Objects of class TSP are internally represented as dist objects (use as.dist() to get the dist
object).

Not permissible paths can be set to a distance of +Inf. NAs are not allowed and -Inf will lead to
the algorithm only being able to find an admissible tour, but not the best one.

Value

* TSP() returns x as an object of class TSP.
e n_of_cities() returns the number of cities in x.

e labels() returns a vector with the names of the cities in x.

Author(s)
Michael Hahsler

See Also

Other TSP: ATSP(), Concorde, ETSP(), TSPLIB, insert_dummy(), reformulate_ATSP_as_TSP(),
solve_TSP()

Examples

data("iris”
d <- dist(iris[-51)

create a TSP
tsp <- TSP(d)
tsp

use some methods
n_of_cities(tsp)
labels(tsp)
image(tsp)

22 TSPLIB

TSPLIB Read and write TSPLIB files

Description

Reads and writes TSPLIB format files. TSPLIB files can be used by most TSP solvers. Sample
instances for the TSP in TSPLIB format are available on the TSPLIB homepage (see references).

Usage

read_TSPLIB(file, precision = @)

write_TSPLIB(x, file, precision = 6, inf = NULL, neg_inf = NULL)
S3 method for class 'TSP'
write_TSPLIB(x, file, precision = 6, inf = NULL, neg_inf = NULL)
S3 method for class 'ATSP'
write_TSPLIB(x, file, precision = 6, inf = NULL, neg_inf = NULL)
S3 method for class 'ETSP'
write_TSPLIB(x, file, precision = 6, inf = NULL, neg_inf = NULL)
Arguments
file file name or a connection.
precision controls the number of decimal places used to represent distances (see details).
If x already is integer, this argument is ignored and x is used as is.
X an object with a TSP problem. NAs are not allowed.
inf replacement value for Inf (TSPLIB format cannot handle Inf). If inf is NULL,
a large value of max(z) 4+ 2range(zx) (ignoring infinite entries) is used.
neg_inf replacement value for -Inf. If no value is specified, a small value of min(z) —
2range(x) (ignoring infinite entries) is used.
Details

In the TSPLIB format distances are represented by integer values. Therefore, if x contains double
values (which is normal in R) the values given in x are multiplied by 10P"¢¢#3i" before coercion to
integer. Note that therefore all results produced by programs using the TSPLIB file as input need
to be divided by 10P7¢c?sin (j.e., the decimal point has to be shifted precision placed to the left).

Currently only the following EDGE_WEIGHT_TYPEs are implemented: EXPLICIT, EUC_2D and EUC_3D.

Value

returns an object of class TSP or ATSP.

TSPLIB 23

Author(s)

Michael Hahsler

References

TSPLIB home page, http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/

See Also

Other TSP: ATSP(), Concorde, ETSP(), TSP(), insert_dummy(), reformulate_ATSP_as_TSP(),
solve_TSP()

Examples

Drilling problem from TSP

drill <- read_TSPLIB(system.file("examples/d493.tsp”, package = "TSP"))
drill

tour <- solve_TSP(drill, method = "nn", two_opt = TRUE)

tour

plot(drill, tour, cex=.6, col = "red"”, pch= 3, main = "TSPLIB: d493")

Write and read data in TSPLIB format
x <- data.frame(x=runif(5), y=runif(5))

create TSP, ATSP and ETSP (2D)
tsp <- TSP(dist(x))

atsp <- ATSP(dist(x))

etsp <- ETSP(x[,1:21)

write_TSPLIB(tsp, file="example.tsp")
#file.show("example.tsp”)

r <- read_TSPLIB("example.tsp")

r

write_TSPLIB(atsp, file="example.tsp")
#file.show("example.tsp")

r <- read_TSPLIB("example.tsp")

r

write_TSPLIB(etsp, file="example.tsp")
#file.show("example.tsp”)

r <- read_TSPLIB("example.tsp")

r

clean up
unlink("example.tsp")

http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/

24 USCA

USCA USCA312/USCAS0 — 312/50 cities in the US and Canada

Description
The USCA312 dataset contains the distances between 312 cities in the US and Canada as an object
of class TSP. USCA50@ is a subset of USCA312 containing only the first 50 cities.

Format
USCA312 and USCA5@ are objects of class TSP. USCA312_GPS is a data.frame with city name, long
and lat.

Details

The USCA312_GPS dataset contains the location (long/lat) of the 312 cities.

Author(s)
Michael Hahsler

Source

John Burkardt, CITIES - City Distance Datasets, Florida State University, Department of Scientific
Computing

Examples

data("USCA312")

calculate a tour
tour <- solve_TSP(USCA312)
tour

Visualize the tour if package maps is installed
if(require("maps")) {

library(maps)
data("USCA312_GPS")
head (USCA312_GPS)

plot ((USCA312_GPS[, c("long”, "lat")]1), cex = .3)
map("world”, col = "gray”, add = TRUE)
polygon(USCA312_GPS[, c("long”, "lat")JI[tour,], border = "red")

Index

+* TOUR
cut_tour, 6
solve_TSP, 13
TOUR, 17
tour_length, 19

* TSP
ATSP, 2
Concorde, 4
ETSP, 7
insert_dummy, 9
reformulate_ATSP_as_TSP, 11
solve_TSP, 13
TSP, 20
TSPLIB, 22

x classes
ATSP, 2
ETSP, 7
TOUR, 17
TSP, 20

x datasets
USCA, 24

+ documentation
Concorde, 4

x file
TSPLIB, 22

* manip
insert_dummy, 9

* optimize
cut_tour, 6
reformulate_ATSP_as_TSP, 11
solve_TSP, 13
tour_length, 19

as.ATSP (ATSP), 2
as.dist(), 21
as.dist.TSP(TSP), 20
as.ETSP (ETSP), 7
as.matrix.ATSP (ATSP), 2
as.matrix.ETSP (ETSP), 7
as.TOUR (TOUR), 17

25

as.TSP (TSP), 20
as.TSP.ETSP (ETSP), 7
ATSP, 2,4, 5,8,10-12, 15, 16, 21,23

Concorde, 3,4, 8, 10, 12, 15, 16, 21, 23
concorde (Concorde), 4
concorde_help (Concorde), 4
concorde_help(), 15

concorde_path (Concorde), 4
connection, 22

cut_tour, 6, 16, 18, 19

dist, 21
doParallel::registerDoParallel(), 15

ETSP, 3-5,7, 10, 12, 15, 16, 21, 23

filter_ATSP_as_TSP_dummies
(reformulate_ATSP_as_TSP), 11

image.ATSP (ATSP), 2

image.ETSP (ETSP), 7

image.TSP (TSP), 20

image.TSP(), 18

insert_dummy, 3, 5, 8,9, 12, 16, 21, 23

labels.ATSP (ATSP), 2
labels.ETSP (ETSP), 7
labels.TSP (TSP), 20
linkern_help (Concorde), 4

n_of_cities (TSP), 20
n_of_cities.ATSP (ATSP), 2
n_of_cities.ETSP (ETSP), 7

plot.ETSP (ETSP), 7
print.ATSP (ATSP), 2
print.ETSP (ETSP), 7
print.TOUR (TOUR), 17
print.TSP (TSP), 20

read_TSPLIB (TSPLIB), 22

26 INDEX

reformulate_ATSP_as_TSP, 3, 5, 8, 10, 11,
16,21, 23
reformulate_ATSP_as_TSP(), 3, 14, 15

solve_TSP, 3,5, 6,8, 10, 12,13, 18, 19,21, 23
solve_TSP(),4, 5,11, 12
Sys.setenv(), 4

TOUR, 6, 8,11, 12,15, 16,17,18, 19,21
tour_length, 6, 16, 18, 19
tour_length(), 18

TSP, 3-5, 8, 10-12, 15, 16, 19, 20, 23
TSPLIB, 3, 5, 8, 10, 12, 16, 21,22

USCA, 24

USCA312 (USCA), 24
USCA312_GPS (USCA), 24
USCA5@ (USCA), 24

write_TSPLIB (TSPLIB), 22
write_TSPLIB(), 4, 15

	ATSP
	Concorde
	cut_tour
	ETSP
	insert_dummy
	reformulate_ATSP_as_TSP
	solve_TSP
	TOUR
	tour_length
	TSP
	TSPLIB
	USCA
	Index

