Package 'TSrepr'

January 20, 2025

Type Package

Title Time Series Representations

Version 1.1.0

Date 2020-07-12

Description Methods for representations (i.e. dimensionality reduction, preprocessing, feature extraction) of time series to help more accurate and effective time series data mining. Non-data adaptive, data adaptive, model-based and data dictated (clipped) representation methods are implemented. Also various normalisation methods (min-max, z-score, Box-Cox, Yeo-Johnson),

and forecasting accuracy measures are implemented.

License GPL-3 | file LICENSE

Encoding UTF-8

LazyData true

Depends R (>= 2.10)

Imports Rcpp (>= 0.12.12), MASS, quantreg, wavelets, mgcv, dtt

LinkingTo Rcpp

RoxygenNote 7.1.0

URL https://petolau.github.io/package/,

https://github.com/PetoLau/TSrepr/

BugReports https://github.com/PetoLau/TSrepr/issues

Suggests knitr, rmarkdown, ggplot2, data.table, moments, testthat

VignetteBuilder knitr

NeedsCompilation yes

Author Peter Laurinec [aut, cre] (<https://orcid.org/0000-0002-3501-8783>)

Maintainer Peter Laurinec <tsreprpackage@gmail.com>

Repository CRAN

Date/Publication 2020-07-13 06:50:15 UTC

Contents

clipping	. 3
coefComp	. 4
denorm_atan	. 5
denorm_boxcox	. 5
denorm_min_max	. 6
denorm_yj	
denorm_z	
elec_load	
fast_stat	
 maape	
mae	
mape	
mase	
mdae	
mse	
norm_atan	
norm_boxcox	
norm min max	
norm_min_max_list	
norm_min_max_params	
norm_yj	
norm_z	
norm_z_list	
norm_z_params	
repr_dct	
repr_dft	
repr_dwt	•
repr_exp	
repr_feaclip	• - •
repr_feacliptrend	
repr_featrend	
repr_gam	
repr_list	
1 -	
repr_lm	
repr_matrix	· 52
repr_paa	
repr_pip	
repr_pla	. 36
repr_sax	. 37
repr_seas_profile	. 38
repr_sma	. 39
repr_windowing	. 39
rleC	. 41
rmse	. 41
smape	. 42
trending	. 43

clipping

	TSrepr	4
Index	4	6

clipping

Creates bit-level (clipped representation) from a vector

Description

The clipping computes bit-level (clipped representation) from a vector.

Usage

clipping(x)

Arguments

х

the numeric vector (time series)

Details

Clipping transforms time series to bit-level representation.

It is defined as follows:

 $repr_t = 1ifx_t > \mu, 0otherwise,$

where x_t is a value of a time series and μ is average of a time series.

Value

the integer vector of zeros and ones

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

References

Bagnall A, Ratanamahatana C, Keogh E, Lonardi S, Janacek G (2006) A bit level representation for time series data mining with shape based similarity. Data Mining and Knowledge Discovery 13(1):11-40

Laurinec P, and Lucka M (2018) Interpretable multiple data streams clustering with clipped streams representation for the improvement of electricity consumption forecasting. Data Mining and Knowledge Discovery. Springer. DOI: 10.1007/s10618-018-0598-2

See Also

trending

3

Examples

clipping(rnorm(50))

coefComp

Functions for linear regression model coefficients extraction

Description

The functions computes regression coefficients from a linear model.

Usage

lmCoef(X, Y)

rlmCoef(X, Y)

11Coef(X, Y)

Arguments

Х	the model (design) matrix of independent variables
Υ	the vector of dependent variable (time series)

Value

The numeric vector of regression coefficients

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

See Also

lm, rlm, rq

Examples

```
design_matrix <- matrix(rnorm(10), ncol = 2)
lmCoef(design_matrix, rnorm(5))
rlmCoef(design_matrix, rnorm(5))
l1Coef(design_matrix, rnorm(5))</pre>
```

denorm_atan

Description

The denorm_atan denormalises time series from Arctangent function.

Usage

```
denorm_atan(x)
```

Arguments

x the numeric vector (time series)

Value

the numeric vector of denormalised values

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

See Also

denorm_z, denorm_min_max

Examples

```
denorm_atan(runif(50))
```

denorm_boxcox Two-parameter Box-Cox denormalisation

Description

The denorm_boxcox denormalises time series by two-parameter Box-Cox method.

Usage

denorm_boxcox(x, lambda = 0.1, gamma = 0)

Arguments

Х	the numeric vector (time series) to be denormalised
lambda	the numeric value - power transformation parameter (default is 0.1)
gamma	the non-negative numeric value - parameter for holding the time series positive (offset) (default is 0)

Value

the numeric vector of denormalised values

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

See Also

denorm_z, denorm_min_max, denorm_atan

Examples

denorm_boxcox(runif(50))

denorm_min_max Min-Max denormalisation

Description

The denorm_min_max denormalises time series by min-max method.

Usage

denorm_min_max(x, min, max)

Arguments

х	the numeric vector (time series)
min	the minimum value
max	the maximal value

Value

the numeric vector of denormalised values

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

denorm_yj

References

Laurinec P, Lucká M (2018) Clustering-based forecasting method for individual consumers electricity load using time series representations. Open Comput Sci, 8(1):38–50, DOI: 10.1515/comp-2018-0006

See Also

norm_min_max, norm_min_max_list

Examples

```
# Normalise values and save normalisation parameters:
norm_res <- norm_min_max_list(rnorm(50, 5, 2))
# Denormalise new data with previous computed parameters:
denorm_min_max(rnorm(50, 4, 2), min = norm_res$min, max = norm_res$max)
```

```
denorm_yj
```

Yeo-Johnson denormalisation

Description

The denorm_yj denormalises time series by Yeo-Johnson method

Usage

denorm_yj(x, lambda = 0.1)

Arguments

х	the numeric vector (time series) to be denormalised
lambda	the numeric value - power transformation parameter (default is 0.1)

Value

the numeric vector of denormalised values

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

See Also

denorm_z, denorm_min_max, denorm_boxcox

Examples

denorm_yj(runif(50))

denorm_z

Description

The denorm_z denormalises time series by z-score method.

Usage

denorm_z(x, mean, sd)

Arguments

х	the numeric vector (time series)
mean	the mean value
sd	the standard deviation value

Value

the numeric vector of denormalised values

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

References

Laurinec P, Lucká M (2018) Clustering-based forecasting method for individual consumers electricity load using time series representations. Open Comput Sci, 8(1):38–50, DOI: 10.1515/comp-2018-0006

See Also

norm_z, norm_z_list

Examples

```
# Normalise values and save normalisation parameters:
norm_res <- norm_z_list(rnorm(50, 5, 2))
# Denormalise new data with previous computed parameters:
denorm_z(rnorm(50, 4, 2), mean = norm_res$mean, sd = norm_res$sd)
```

elec_load

Description

A dataset containing the electricity consumption time series from 50 consumers of the length of 2 weeks. Every day is 48 measurements (half-hourly data). Each row represents one consumers time series.

Usage

elec_load

Format

A data frame with 50 rows and 672 variables.

Source

Anonymized.

Tust_stut	fa	st_	_st	at
-----------	----	-----	-----	----

Fast statistic functions (helpers)

Description

Fast statistic functions (helpers) for representations computation.

Usage

maxC(x)

minC(x)

meanC(x)

sumC(x)

medianC(x)

Arguments

x the numeric vector

Value

the numeric value

maape

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

Examples

```
maxC(rnorm(50))
```

minC(rnorm(50))

meanC(rnorm(50))

sumC(rnorm(50))

medianC(rnorm(50))

Description

the maape computes MAAPE (Mean Arctangent Absolute Percentage Error) of a forecast.

Usage

maape(x, y)

Arguments

Х	the numeric vector of real values
у	the numeric vector of forecasted values

Value

the numeric value in %

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

References

Sungil Kim, Heeyoung Kim (2016) A new metric of absolute percentage error for intermittent demand forecasts, International Journal of Forecasting 32(3):669-679

Examples

maape(runif(50), runif(50))

10

Description

mae

The mae computes MAE (Mean Absolute Error) of a forecast.

MAE

Usage

mae(x, y)

Arguments

Х	the numeric vector of real values
У	the numeric vector of forecasted values

Value

the numeric value

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

Examples

```
mae(runif(50), runif(50))
```

mape

MAPE

Description

the mape computes MAPE (Mean Absolute Percentage Error) of a forecast.

Usage

mape(x, y)

Arguments

Х	the numeric vector of real values
У	the numeric vector of forecasted values

Value

the numeric value in %

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

Examples

```
mape(runif(50), runif(50))
```

mase

MASE

Description

The mase computes MASE (Mean Absolute Scaled Error) of a forecast.

Usage

mase(real, forecast, naive)

Arguments

real	the numeric vector of real values
forecast	the numeric vector of forecasted values
naive	the numeric vector of naive forecast

Value

the numeric value

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

Examples

mase(rnorm(50), rnorm(50), rnorm(50))

mdae

Description

The mdae computes MdAE (Median Absolute Error) of a forecast.

Usage

mdae(x, y)

Arguments

Х	the numeric vector of real values
у	the numeric vector of forecasted values

Value

the numeric value

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

Examples

```
mdae(runif(50), runif(50))
```

mse

MSE

Description

The mse computes MSE (Mean Squared Error) of a forecast.

Usage

mse(x, y)

Arguments

х	the numeric vector of real values
У	the numeric vector of forecasted values

Value

the numeric value

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

Examples

mse(runif(50), runif(50))

norm_atan Arctangent normalisation

Description

The norm_atan normalises time series by Arctangent to max (-1,1) range.

Usage

 $norm_atan(x)$

Arguments

x the numeric vector (time series)

Value

the numeric vector of normalised values

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

See Also

norm_z, norm_min_max

Examples

norm_atan(rnorm(50))

14

norm_boxcox

Description

The norm_boxcox normalises time series by two-parameter Box-Cox normalisation.

Usage

norm_boxcox(x, lambda = 0.1, gamma = 0)

Arguments

х	the numeric vector (time series)
lambda	the numeric value - power transformation parameter (default is 0.1)
gamma	the non-negative numeric value - parameter for holding the time series positive (offset) (default is 0)

Value

the numeric vector of normalised values

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

See Also

norm_z, norm_min_max, norm_atan

Examples

norm_boxcox(runif(50))

norm_min_max Min-Max normalisation

Description

The norm_min_max normalises time series by min-max method.

Usage

norm_min_max(x)

Arguments

x the numeric vector (time series)

Value

the numeric vector of normalised values

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

See Also

norm_z

Examples

```
norm_min_max(rnorm(50))
```

norm_min_max_list Min-Max normalization list

Description

The norm_min_max_list normalises time series by min-max method and returns normalization parameters (min and max).

Usage

```
norm_min_max_list(x)
```

Arguments

x the numeric vector (time series)

Value

the list composed of:

norm_values the numeric vector of normalised values of time series **min** the min value

max the max value

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

norm_min_max_params

See Also

norm_z_list

Examples

```
norm_min_max_list(rnorm(50))
```

norm_min_max_params Min-Max normalisation with parameters

Description

The norm_min_max_params normalises time series by min-max method with defined parameters.

Usage

```
norm_min_max_params(x, min, max)
```

Arguments

х	the numeric vector (time series)
min	the numeric value
max	the numeric value

Value

the numeric vector of normalised values

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

See Also

norm_z_params

Examples

norm_min_max_params(rnorm(50), 0, 1)

norm_yj

Description

The norm_yj normalises time series by Yeo-Johnson normalisation.

Usage

 $norm_yj(x, lambda = 0.1)$

Arguments

х	the numeric vector (time series)
lambda	the numeric value - power transformation parameter (default is 0.1)

Value

the numeric vector of normalised values

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

See Also

norm_z, norm_min_max, norm_boxcox

Examples

norm_yj(runif(50))

norm_z

Z-score normalisation

Description

The norm_z normalises time series by z-score.

Usage

 $norm_z(x)$

Arguments

х

the numeric vector (time series)

norm_z_list

Value

the numeric vector of normalised values

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

See Also

norm_min_max

Examples

norm_z(runif(50))

norm_z_list Z-score normalization list

Description

The norm_z_list normalizes time series by z-score and returns normalization parameters (mean and standard deviation).

Usage

norm_z_list(x)

Arguments

х

the numeric vector (time series)

Value

the list composed of:

norm_values the numeric vector of normalised values of time series

mean the mean value

sd the standard deviation

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

See Also

norm_min_max_list

Examples

```
norm_z_list(runif(50))
```

norm_z_params Z-score normalisation with parameters

Description

The norm_z_params normalises time series by z-score with defined mean and standard deviation.

Usage

norm_z_params(x, mean, sd)

Arguments

х	the numeric vector (time series)
mean	the numeric value
sd	the numeric value - standard deviation

Value

the numeric vector of normalised values

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

See Also

norm_min_max_params

Examples

norm_z_params(runif(50), 0.5, 1)

20

repr_dct

Description

The repr_dct computes DCT (Discrete Cosine Transform) representation from a time series.

Usage

 $repr_dct(x, coef = 10)$

Arguments

х	the numeric vector (time series)
coef	the number of coefficients to extract from DCT

Details

The length of the final time series representation is equal to set coef parameter.

Value

the numeric vector of DCT coefficients

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

See Also

repr_dft, repr_dwt, dtt

Examples

repr_dct(rnorm(50), coef = 4)

repr_dft

Description

The repr_dft computes DFT (Discrete Fourier Transform) representation from a time series by FFT (Fast Fourier Transform).

Usage

 $repr_dft(x, coef = 10)$

Arguments

х	the numeric vector (time series)
coef	the number of coefficients to extract from FFT

Details

The length of the final time series representation is equal to set coef parameter.

Value

the numeric vector of DFT coefficients

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

See Also

repr_dwt, repr_dct, fft

Examples

repr_dft(rnorm(50), coef = 4)

repr_dwt

Description

The repr_dwt computes DWT (Discrete Wavelet Transform) representation (coefficients) from a time series.

Usage

repr_dwt(x, level = 4, filter = "d4")

Arguments

x	the numeric vector (time series)
level	the level of DWT transformation (default is 4)
filter	the filter name (default is "d6"). Can be: "haar", "d4", "d6",, "d20", "la8", "la10",, "la20", "b114", "b118", "b120", "c6", "c12",, "c30". See more info at wt.filter.

Details

This function extracts DWT coefficients. You can use various wavelet filters, see all of them here wt.filter. The number of extracted coefficients depends on the level selected. The final representation has length equal to floor($n / 2^{level}$), where n is a length of original time series.

Value

the numeric vector of DWT coefficients

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

References

Laurinec P, Lucka M (2016) Comparison of representations of time series for clustering smart meter data. In: Lecture Notes in Engineering and Computer Science: Proceedings of The World Congress on Engineering and Computer Science 2016, pp 458-463

See Also

repr_dft, repr_dct, dwt

Examples

```
# Interpretation: DWT with Daubechies filter of length 4 and
# 3rd level of DWT coefficients extracted.
repr_dwt(rnorm(50), filter = "d4", level = 3)
```

repr_exp

Exponential smoothing seasonal coefficients as representation

Description

The repr_exp computes exponential smoothing seasonal coefficients.

Usage

repr_exp(x, freq, alpha = TRUE, gamma = TRUE)

Arguments

х	the numeric vector (time series)
freq	the frequency of the time series
alpha	the smoothing factor (default is TRUE - automatic determination of smoothing factor), or number between 0 to 1
gamma	the seasonal smoothing factor (default is TRUE - automatic determination of seasonal smoothing factor), or number between 0 to 1

Details

This function extracts exponential smoothing seasonal coefficients and uses them as time series representation. You can set smoothing factors (alpha, gamma) manually, but recommended is automatic method (set to TRUE). The trend component is not included in computations.

Value

the numeric vector of seasonal coefficients

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

References

Laurinec P, Lucka M (2016) Comparison of representations of time series for clustering smart meter data. In: Lecture Notes in Engineering and Computer Science: Proceedings of The World Congress on Engineering and Computer Science 2016, pp 458-463

Laurinec P, Loderer M, Vrablecova P, Lucka M, Rozinajova V, Ezzeddine AB (2016) Adaptive time series forecasting of energy consumption using optimized cluster analysis. In: Data Mining Workshops (ICDMW), 2016 IEEE 16th International Conference on, IEEE, pp 398-405

24

repr_feaclip

See Also

repr_lm, repr_gam, repr_seas_profile,HoltWinters

Examples

repr_exp(rnorm(96), freq = 24)

repr_feaclip FeaClip representation of time series

Description

The repr_feaclip computes representation of time series based on feature extraction from bitlevel (clipped) representation.

Usage

repr_feaclip(x)

Arguments

x the numeric vector (time series)

Details

FeaClip is method of time series representation based on feature extraction from run lengths (RLE) of bit-level (clipped) representation. It extracts 8 key features from clipped representation.

There are as follows:

```
repr = \{max_1 - max.from runlengths of ones, \\ sum_1 - sum of runlengths of ones, \\ max_0 - max.from runlengths of zeros, \\ crossings - length of RLE encoding - 1, \\ f_0 - number of first zeros, \\ l_0 - number of first zeros, \\ f_1 - number of first ones, \\ l_1 - number of last ones \}.
```

Value

the numeric vector of length 8

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

References

Laurinec P, and Lucka M (2018) Interpretable multiple data streams clustering with clipped streams representation for the improvement of electricity consumption forecasting. Data Mining and Knowl-edge Discovery. Springer. DOI: 10.1007/s10618-018-0598-2

See Also

repr_featrend, repr_feacliptrend

Examples

repr_feaclip(rnorm(50))

repr_feacliptrend FeaClipTrend representation of time series

Description

The repr_feacliptrend computes representation of time series based on feature extraction from bit-level representations (clipping and trending).

Usage

```
repr_feacliptrend(x, func, pieces = 2L, order = 4L)
```

Arguments

х	the numeric vector (time series)
func	the aggregation function for FeaTrend procedure (sumC or maxC)
pieces	the number of parts of time series to split
order	the order of simple moving average

Details

FeaClipTrend combines FeaClip and FeaTrend representation methods. See documentation of these two methods (check See Also section).

Value

the numeric vector of frequencies of features

repr_featrend

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

References

Laurinec P, and Lucka M (2018) Interpretable multiple data streams clustering with clipped streams representation for the improvement of electricity consumption forecasting. Data Mining and Knowl-edge Discovery. Springer. DOI: 10.1007/s10618-018-0598-2

See Also

repr_featrend, repr_feaclip

Examples

repr_feacliptrend(rnorm(50), maxC, 2, 4)

repr_featrend FeaTrend representation of time series

Description

The repr_featrend computes representation of time series based on feature extraction from bitlevel (trending) representation.

Usage

```
repr_featrend(x, func, pieces = 2L, order = 4L)
```

Arguments

х	the numeric vector (time series)
func	the function of aggregation, can be sumC or maxC or similar aggregation func- tion
pieces	the number of parts of time series to split (default to 2)
order	the order of simple moving average (default to 4)

Details

FeaTrend is method of time series representation based on feature extraction from run lengths (RLE) of bit-level (trending) representation. It extracts number of features from trending representation based on number of pieces defined. From every piece, 2 features are extracted. You can define what feature will be extracted, recommended functions are max and sum. For example if max is selected, then maximum value of run lengths of ones and zeros are extracted.

Value

the numeric vector of the length pieces

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

See Also

repr_feaclip, repr_feacliptrend

Examples

```
# default settings
repr_featrend(rnorm(50), maxC)
```

```
# compute FeaTrend for 4 pieces and make more smoothed ts by order = 8
repr_featrend(rnorm(50), sumC, 4, 8)
```

```
repr_gam
```

GAM regression coefficients as representation

Description

The repr_gam computes seasonal GAM regression coefficients. Additional exogenous variables can be also added.

Usage

repr_gam(x, freq = NULL, xreg = NULL)

Arguments

Х	the numeric vector (time series)
freq	the frequency of the time series. Can be vector of two frequencies (seasonalities)
	or just an integer of one frequency.
xreg	the numeric vector or the data.frame with additional exogenous regressors

Details

This model-based representation method extracts regression coefficients from a GAM (Generalized Additive Model). The extraction of seasonal regression coefficients is automatic. The maximum number of seasonalities is 2 so it is possible to compute representation for double-seasonal time series. The first set seasonality (frequency) is main, so for example if we have hourly time series (freq = c(24, 24*7)), the number of extracted daily seasonal coefficients is 24 and the number of weekly seasonal coefficients is 7, because the length of second seasonality representation is always freq_1 / freq_2. The smooth function for seasonal variables is set to cubic regression spline. There is also possibility to add another independent variables (xreg).

28

repr_list

Value

the numeric vector of GAM regression coefficients

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

References

Laurinec P, Lucka M (2016) Comparison of representations of time series for clustering smart meter data. In: Lecture Notes in Engineering and Computer Science: Proceedings of The World Congress on Engineering and Computer Science 2016, pp 458-463

Laurinec P, Loderer M, Vrablecova P, Lucka M, Rozinajova V, Ezzeddine AB (2016) Adaptive time series forecasting of energy consumption using optimized cluster analysis. In: Data Mining Workshops (ICDMW), 2016 IEEE 16th International Conference on, IEEE, pp 398-405

Laurinec P, Lucká M (2018) Clustering-based forecasting method for individual consumers electricity load using time series representations. Open Comput Sci, 8(1):38–50, DOI: 10.1515/comp-2018-0006

See Also

repr_lm, repr_exp, gam

Examples

repr_gam(rnorm(96), freq = 24)

repr_list	Computation of list of representations list of time series with different
	lengths

Description

The repr_list computes list of representations from list of time series

Usage

```
repr_list(
    x,
    func = NULL,
    args = NULL,
    normalise = FALSE,
    func_norm = norm_z,
    windowing = FALSE,
    win_size = NULL
)
```

Arguments

х	the list of time series, where time series can have different lengths
func	the function that computes representation
args	the list of additional (or required) parameters of func (function that computes representation)
normalise	normalise (scale) time series before representations computation? (default is FALSE)
func_norm	the normalisation function (default is norm_z)
windowing	perform windowing? (default is FALSE)
win_size	the size of the window

Details

This function computes representation to an every member of a list of time series (that can have different lengths) and returns list of time series representations. It can be combined with windowing (see repr_windowing) and normalisation of time series.

Value

the numeric list of representations of time series

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

See Also

repr_windowing, repr_matrix

Examples

```
# Create random list of time series with different lengths
list_ts <- list(rnorm(sample(8:12, 1)), rnorm(sample(8:12, 1)), rnorm(sample(8:12, 1)))
repr_list(list_ts, func = repr_sma,
    args = list(order = 3))
</pre>
```

```
# return normalised representations, and normalise time series by min-max normalisation
repr_list(list_ts, func = repr_sma,
    args = list(order = 3), normalise = TRUE, func_norm = norm_min_max)
```

Description

The repr_lm computes seasonal regression coefficients from a linear model. Additional exogenous variables can be also added.

Usage

repr_lm(x, freq = NULL, method = "lm", xreg = NULL)

Arguments

x	the numeric vector (time series)
freq	the frequency of the time series. Can be vector of two frequencies (seasonalities) or just an integer of one frequency.
method	the linear regression method to use. It can be "lm", "rlm" or "l1".
xreg	the data.frame with additional exogenous regressors or the single numeric vector

Details

This model-based representation method extracts regression coefficients from a linear model. The extraction of seasonal regression coefficients is automatic. The maximum number of seasonalities is 2 so it is possible to compute representation for double-seasonal time series. The first set seasonality (frequency) is main, so for example if we have hourly time series (freq = c(24, 24*7)), the number of extracted daily seasonal coefficients is 24 and the number of weekly seasonal coefficients is 7, because the length of second seasonality representation is always freq_1 / freq_2. There is also possibility to add another independent variables (xreg).

You have three possibilities for selection of a linear model method.

- "lm" is classical OLS regression.
- "rlm" is robust linear model using psi huber function and is implemented in MASS package.
- "l1" is L1 quantile regression model (also robust linear regression method) implemented in package quantreg.

Value

the numeric vector of regression coefficients

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

References

Laurinec P, Lucka M (2016) Comparison of representations of time series for clustering smart meter data. In: Lecture Notes in Engineering and Computer Science: Proceedings of The World Congress on Engineering and Computer Science 2016, pp 458-463

Laurinec P, Loderer M, Vrablecova P, Lucka M, Rozinajova V, Ezzeddine AB (2016) Adaptive time series forecasting of energy consumption using optimized cluster analysis. In: Data Mining Workshops (ICDMW), 2016 IEEE 16th International Conference on, IEEE, pp 398-405

Laurinec P, Lucká M (2018) Clustering-based forecasting method for individual consumers electricity load using time series representations. Open Comput Sci, 8(1):38–50, DOI: 10.1515/comp-2018-0006

See Also

repr_gam, repr_exp

Examples

```
# Extracts 24 seasonal regression coefficients from the time series by linear model
repr_lm(rnorm(96), freq = 24, method = "lm")
```

```
# Try also robust linear models ("rlm" and "l1")
repr_lm(rnorm(96), freq = 24, method = "rlm")
repr_lm(rnorm(96), freq = 24, method = "l1")
```

repr_matrix

Computation of matrix of representations from matrix of time series

Description

The repr_matrix computes matrix of representations from matrix of time series

Usage

```
repr_matrix(
    x,
    func = NULL,
    args = NULL,
    normalise = FALSE,
    func_norm = norm_z,
    windowing = FALSE,
    win_size = NULL
)
```

32

repr_matrix

Arguments

x	the matrix, data.frame or data.table of time series, where time series are in rows of the table
func	the function that computes representation
args	the list of additional (or required) parameters of func (function that computes representation)
normalise	normalise (scale) time series before representations computation? (default is FALSE)
func_norm	the normalisation function (default is norm_z)
windowing	perform windowing? (default is FALSE)
win_size	the size of the window

Details

This function computes representation to an every row of a matrix of time series and returns matrix of time series representations. It can be combined with windowing (see repr_windowing) and normalisation of time series.

Value

the numeric matrix of representations of time series

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

See Also

repr_windowing, repr_list

Examples

```
# Create random matrix of time series
mat_ts <- matrix(rnorm(100), ncol = 10)
repr_matrix(mat_ts, func = repr_paa,
    args = list(q = 5, func = meanC))
# return normalised representations, and normalise time series by min-max normalisation
repr_matrix(mat_ts, func = repr_paa,
    args = list(q = 2, func = meanC), normalise = TRUE, func_norm = norm_min_max)
# with windowing
repr_matrix(mat_ts, func = repr_feaclip, windowing = TRUE, win_size = 5)
```

repr_paa

Description

The repr_paa computes PAA representation from a vector.

Usage

repr_paa(x, q, func)

Arguments

х	the numeric vector (time series)
q	the integer of the length of the "piece"
func	the aggregation function. Can be meanC, medianC, sumC, minC or maxC or similar aggregation function

Details

PAA with possibility to use arbitrary aggregation function. The original method uses average as aggregation function.

Value

the numeric vector

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

References

Keogh E, Chakrabarti K, Pazzani M, Mehrotra Sh (2001) Dimensionality Reduction for Fast Similarity Search in Large Time Series Databases. Knowledge and Information Systems 3(3):263-286

See Also

repr_dwt, repr_dft, repr_dct, repr_sma

Examples

repr_paa(rnorm(11), 2, meanC)

repr_pip

Description

The repr_pip computes PIP (Perceptually Important Points) representation from a time series.

Usage

repr_pip(x, times = 10, return = "points")

Arguments

х	the numeric vector (time series)
times	the number of important points to extract (default 10)
return	what to return? Can be important points ("points"), places of important points in a vector ("places") or "both" (data.frame).

Value

the values based on the argument return (see above)

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

References

Fu TC, Chung FL, Luk R, and Ng CM (2008) Representing financial time series based on data point importance. Engineering Applications of Artificial Intelligence, 21(2):277-300

Examples

repr_pip(rnorm(100), times = 12, return = "both")

repr_pla

Description

The repr_pla computes PLA (Piecewise Linear Approximation) representation from a time series.

Usage

repr_pla(x, times = 10, return = "points")

Arguments

х	the numeric vector (time series)
times	the number of important points to extract (default 10)
return	what to return? Can be "points" (segments), places of points (segments) in a vector ("places") or "both" (data.frame).

Value

the values based on the argument return (see above)

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

References

Zhu Y, Wu D, Li Sh (2007) A Piecewise Linear Representation Method of Time Series Based on Feature Points. Knowledge-Based Intelligent Information and Engineering Systems 4693:1066-1072

Examples

repr_pla(rnorm(100), times = 12, return = "both")

repr_sax

Description

The repr_sax creates SAX symbols for a univariate time series.

Usage

 $repr_sax(x, q = 2, a = 6, eps = 0.01)$

Arguments

х	the numeric vector (time series)
q	the integer of the length of the "piece" in PAA
а	the integer of the alphabet size
eps	is the minimum threshold for variance in x and should be a numeric value. If x has a smaller variance than eps, it will represented as a word using the middle alphabet.

Value

the character vector of SAX representation

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

References

Lin J, Keogh E, Lonardi S, Chiu B (2003) A symbolic representation of time series, with implications for streaming algorithms. Proceedings of the 8th ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery - DMKD'03

See Also

repr_paa, repr_pla

Examples

x <- rnorm(48)
repr_sax(x, q = 4, a = 5)</pre>

repr_seas_profile Mean seasonal profile of time series

Description

The repr_seas_profile computes mean seasonal profile representation from a time series.

Usage

repr_seas_profile(x, freq, func)

Arguments

х	the numeric vector (time series)	
freq	the integer of the length of the season	
func	the aggregation function. Can be meanC or medianC or similar aggregation function.	

Details

This function computes mean seasonal profile representation for a seasonal time series. The length of representation is length of set seasonality (frequency) of a time series. Aggregation function is arbitrary (best choice is for you maybe mean or median).

Value

the numeric vector

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

References

Laurinec P, Lucka M (2016) Comparison of representations of time series for clustering smart meter data. In: Lecture Notes in Engineering and Computer Science: Proceedings of The World Congress on Engineering and Computer Science 2016, pp 458-463

Laurinec P, Loderer M, Vrablecova P, Lucka M, Rozinajova V, Ezzeddine AB (2016) Adaptive time series forecasting of energy consumption using optimized cluster analysis. In: Data Mining Workshops (ICDMW), 2016 IEEE 16th International Conference on, IEEE, pp 398-405

Laurinec P, Lucká M (2018) Clustering-based forecasting method for individual consumers electricity load using time series representations. Open Comput Sci, 8(1):38–50, DOI: 10.1515/comp-2018-0006

See Also

repr_lm, repr_gam, repr_exp

repr_sma

Examples

```
repr_seas_profile(rnorm(48*10), 48, meanC)
```

repr_sma

Simple Moving Average representation

Description

The repr_sma computes Simple Moving Average (SMA) from a time series.

Usage

repr_sma(x, order)

Arguments

Х	the numeric vector (time series)
order	the order of simple moving average

Value

the numeric vector of smoothed values of the length = length(x) - order + 1

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

Examples

repr_sma(rnorm(50), 4)

repr_windowing Windowing of time series

Description

The repr_windowing computes representations from windows of a vector.

Usage

```
repr_windowing(x, win_size, func = NULL, args = NULL)
```

Arguments

х	the numeric vector (time series)
win_size	the length of the window
func	the function for representation computation. For example repr_feaclip or repr_trend.
args	the list of additional arguments to the func (representation computation func- tion). The args list must be named.

Details

This function applies specified representation method (function) to every non-overlapping window (subsequence, piece) of a time series.

Value

the numeric vector

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

References

Laurinec P, and Lucka M (2018) Interpretable multiple data streams clustering with clipped streams representation for the improvement of electricity consumption forecasting. Data Mining and Knowl-edge Discovery. Springer. DOI: 10.1007/s10618-018-0598-2

See Also

repr_paa, repr_matrix

Examples

```
# func without arguments
repr_windowing(rnorm(48), win_size = 24, func = repr_feaclip)
# func with arguments
repr_windowing(rnorm(48), win_size = 24, func = repr_featrend,
args = list(func = maxC, order = 2, pieces = 2))
```

rleC

Description

The rleC computes RLE from bit-level (clipping or trending representation) vector.

Usage

rleC(x)

Arguments

х

the integer vector (from clipping or trending)

Value

the list of values and counts of zeros and ones

Examples

clipping clipped <- clipping(rnorm(50)) rleC(clipped) # trending trended <- trending(rnorm(50)) rleC(trended)

rmse

RMSE

Description

The rmse computes RMSE (Root Mean Squared Error) of a forecast.

Usage

rmse(x, y)

Arguments

Х	the numeric vector of real values
У	the numeric vector of forecasted values

smape

Value

the numeric value

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

Examples

```
rmse(runif(50), runif(50))
```

|--|--|

Description

The smape computes sMAPE (Symmetric Mean Absolute Percentage Error) of a forecast.

Usage

smape(x, y)

Arguments

х	the numeric vector of real values
У	the numeric vector of forecasted values

Value

the numeric value in %

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

Examples

smape(runif(50), runif(50))

42

trending

Description

The trending Computes bit-level (trending) representation from a vector.

Usage

trending(x)

Arguments

x the numeric vector (time series)

Details

Trending transforms time series to bit-level representation.

It is defined as follows:

 $repr_t = 1ifx_t - x_{t+1} < 0, 0 otherwise,$

where x_t is a value of a time series.

Value

the integer vector of zeros and ones

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

See Also

clipping

Examples

trending(rnorm(50))

TSrepr

Description

Package contains methods for time series representations computation. Representation methods of time series are for dimensionality and noise reduction, emphasizing of main characteristics of time series data and speed up of consequent usage of machine learning methods.

Details

TSrepr
Package
2018-01-26 - Inf
GPL-3

The following functions for time series representations are included in the package:

- repr_paa Piecewise Aggregate Approximation (PAA)
- repr_dwt Discrete Wavelet Transform (DWT)
- repr_dft Discrete Fourier Transform (DFT)
- repr_dct Discrete Cosine Transform (DCT)
- repr_sma Simple Moving Average (SMA)
- repr_pip Perceptually Important Points (PIP)
- repr_sax Symbolic Aggregate Approximation (SAX)
- repr_pla Piecewise Linear Approximation (PLA)
- repr_seas_profile Mean seasonal profile
- repr_lm Model-based seasonal representations based on linear model (lm, rlm, 11)
- repr_gam Model-based seasonal representations based on generalized additive model (GAM)
- repr_exp Exponential smoothing seasonal coefficients
- repr_feaclip Feature extraction from clipping representation (FeaClip)
- repr_featrend Feature extraction from trending representation (FeaTrend)
- repr_feacliptrend Feature extraction from clipping and trending representation (FeaClip-Trend)

There are also implemented additional useful functions as:

- repr_windowing applies above mentioned representations to every window of a time series
- repr_matrix applies above mentioned representations to every row of a matrix of time series
- repr_list applies above mentioned representations to every member of a list of time series
- norm_z, norm_min_max, norm_boxcox, norm_yj, norm_atan normalisation functions

TSrepr

- norm_z_params, norm_min_max_params normalisation functions with defined parameters
- norm_z_list, norm_min_max_list normalisation functions with output also of scaling parameters
- denorm_z, denorm_min_max, denorm_boxcox, denorm_yj, denorm_atan denormalisation functions

Author(s)

Peter Laurinec

Maintainer: Peter Laurinec <tsreprpackage@gmail.com>

Index

```
* datasets
    elec_load, 9
clipping, 3, 43
coefComp, 4
denorm_atan, 5, 6, 45
denorm_boxcox, 5, 7, 45
denorm_min_max, 5, 6, 6, 7, 45
denorm_yj, 7, 45
denorm_z, 5-7, 8, 45
dtt. 21
dwt, 23
elec_load, 9
fast_stat, 9
fft, 22
gam, 29
HoltWinters, 25
11Coef (coefComp), 4
1m, 4
lmCoef(coefComp), 4
maape, 10
mae, 11
mape, 11
mase, 12
maxC (fast_stat), 9
mdae, 13
meanC(fast_stat), 9
medianC (fast_stat), 9
minC(fast_stat), 9
mse, 13
norm_atan, 14, 15, 44
norm_boxcox, 15, 18, 44
norm_min_max, 7, 14, 15, 15, 18, 19, 44
```

norm_min_max_list, 7, 16, 19, 45 norm_min_max_params, 17, 20, 45 norm_yj, 18, 44 norm_z, 8, 14-16, 18, 18, 44 norm_z_list, 8, 17, 19, 45 norm_z_params, 17, 20, 45 repr_dct, 21, 22, 23, 34, 44 repr_dft, 21, 22, 23, 34, 44 repr_dwt, 21, 22, 23, 34, 44 repr_exp, 24, 29, 32, 38, 44 repr_feaclip, 25, 27, 28, 44 repr_feacliptrend, 26, 26, 28, 44 repr_featrend, 26, 27, 27, 44 repr_gam, 25, 28, 32, 38, 44 repr_list, 29, 33, 44 repr_lm, 25, 29, 31, 38, 44 repr_matrix, 30, 32, 40, 44 repr_paa, 34, 37, 40, 44 repr_pip, 35, 44 repr_pla, 36, 37, 44 repr_sax, 37, 44 repr_seas_profile, 25, 38, 44 repr_sma, 34, 39, 44 repr_windowing, 30, 33, 39, 44 rleC, 41 rlm,4 rlmCoef(coefComp), 4 rmse, 41 rq, 4 smape, 42 sumC (fast_stat), 9 trending, 3, 43 TSrepr, 44 wt.filter, 23