
adaptivetau: efficient stochastic simulations in R

Philip Johnson

Abstract

Stochastic processes underlie all of biology, from the large-scale

processes of evolution to the fine-scale processes of biochemical inter-

actions. Consequently, the analysis of biological data frequently ne-

cessitates the use of Markov models. While these models sometimes

yield analytic solutions, simulations can provide intuition when ana-

lytic results are intractable. This vignette presents a few examples of

adaptivetau applied to biological problems.

Introduction

Fundamentally, stochastic effects become critical to take into account when
the quantities in a system are small enough that extinction becomes probable.
This vignette presents three such biological systems:

1. (ecology) Lotka-Volterra predator-prey dynamics predict oscillations in
the population sizes of predator and prey species for certain parameters
[Lotka, 1920]. However, when the population of either species nears
zero, chance effects can lead to extinction of that species and thus a
halt to the oscillations.

2. (evolution) When a new mutation arises in a population of size N , it
will eventually be either lost (reaching 0% frequency) or fix (reaching
100% frequency). If the allele is selectively neutral, then with prob-
ability (N − 1)/N , the stochastic process of genetic drift will lead to
the new allele disappearing from the population instead of reaching
fixation [Kimura, 1957].

3. (epidemiology) In general, emerging zoonotic infections are poorly adapted
to humans and thus unlikely to be transmitted from the initial infected
person to significantly more people. However, continued contact be-
tween humans and an animal reservoir will give the pathogen more

1

chances to become human adapted, leading to a larger epidemic [Lloyd-
Smith et al., 2009].

Crucially, these stochastic processes are all Markovian — the future state of
the process depends only on the present state (i.e., it is independent of the
history).

Here, we focus on simulating trajectories from a continuous-time Markov
process for which the transition rates are not a function of time (i.e. time-
homogeneous). The straightforward (and exact) method of simulating such
a process requires many iterations of 1) drawing a random exponentially-
distributed waiting time until the next transition and 2) randomly selecting
the identity of the transition, weighted by the relative transition rates. This
solution, which is known as the Gillespie algorithm in the chemical physics
literature [Gillespie, 1976], becomes impractical as any one transition rate
grows large. Instead, models with larger transition rates require an ap-
proximate approach that increases simulation speed while still maintaining
reasonable accuracy. One way to perform this approximation is to reduce
the number of iterations by treating transition rates as constant over time
periods for which this approximation leads to little error.

The adaptivetau package in R implements both an exact solution and
an approximate solution known as the “adaptive tau-leaping algorithm” [Cao
et al., 2007]. Similar functionality exists in the publicly-available GillespieSSA
R package [Pineda-Krch, 2008]; however, our new implementation is much
faster, due in part to its underlying implementation in C++.

Methods

IMPORTANT: This section can be skipped if you just want to learn to use

the package, but the approximations involved in the adaptive tau-leaping al-

gorithm should be understood before interpreting simulation results!

First we define our notation and use it to describe the type of model
simulated by this package. Then we provide basic intuition for the adap-
tive tau-leaping algorithm, leaving a more detailed description to Cao et al.
[2007].

Let the state of the Markov process at time t, X(t), be completely de-
scribed by a vector of n ≥ 1 random variables X(t) := [X1(t), . . . , Xn(t)],
each of which is defined on the non-negative integers. Transitions between
states occur according to the instantaneous rate matrix, Q. In general, this
matrix will be extremely sparse, so we do not attempt to use it directly.
Instead, for each allowable transition, j, we define a rate, λj , and a vector

2

of n integers, ∆j := [δj,1, . . . , δj,n], that reflects the change in state if this
transition were followed: X(t)+∆j . An arbitrary number of transitions may
exist: j ∈ Z. Because we are modeling a time-homogeneous process, a tran-
sition rate λj cannot depend on t, although it may depend on the current
state, X(t). For a given state X(t), transitions that would lead to any of the
n state variables becoming negative must have rate 0.

Thus the stochastic model is completely defined by a vector giving the
initial state (X(0)), a set of allowable transitions ({∆j}) and a function to
calculate transition rates given the state (λ(X)).

Given a model, the package simulates a trajectory from time 0 to a user-
supplied stopping time, tf . Intuitively, the algorithm identifies time periods
during which all transition rates will remain approximately constant and
all n state variables will remain greater than zero with probability ∼ 1.
Then the simulator can “leap” over such a period of length τ and, for each
transition, add the net effect of the Poisson-distributed number of transitions
that should have occurred during this period: X(t + τ) ≈ X(t) +

∑
j yj∆j

where yj ∼ Poisson(τλj). The challenge arises in handling models for which
transition rates frequently change and in balancing efficiency with accuracy
when selecting these time periods to leap over. Here we implement the
algorithm of Cao et al. [2007].

Example 1: ecology

Consider a simple Lotka-Volterra ecological model in which a prey species
(X1) interacts with a predator species (X2). Traditionally, this would be
written using two differential equations:

dX1/dt = rX1 − αX1X2

dX2/dt = βX1X2 − δX2

However, these equations ignore stochastic variance and the possibility of
species extinction. We can reformulate them in a stochastic model with
state variables X(t) = [X1(t), X2(t)] and three transitions:

1. growth of prey: ∆1 = [+1, 0] with rate λ1 = rX1

2. predation: ∆2 = [−2,+1] with rate λ2 = βX1X2 (effectively, α = 2β)

3. death of predators: ∆3 = [0,−1] with rate λ3 = δX2

Now we can write this model in R for use with

3

> library(adaptivetau)

First we specify our transitions (∆) in sparse form, whereby we only give
non-zero entries in the transition matrix (note we could also supply the entire
matrix in matrix form; see the ‘ssa.adaptivetau’ help page for details):

> transitions = list(c(prey = +1), # trans 1: prey grows

+ c(prey = -2, pred = +1), # trans 2: predation

+ c(pred = -1)) # trans 3: predator dies

Next we write a function to calculate the rates of each transition (λ). The
order in which rates are returned by this function must match the order of
transitions specified by the matrix above:

> lvRateF <- function(x, params, t) {

+ return(c(params$r * x["prey"], # rate of prey growing

+ params$beta * x["prey"]*x["pred"] * # rate of predation

+ (x["prey"] >= 2),

+ params$delta * x["pred"])) # rate of predators dying

+ }

Note that the conditional (x["prey"] >= 2) above ensures that the preda-
tion transition can never create a negative number of prey (since 2 are sub-
tracted). Finally we run the simulations setting initial conditions (init.values),
parameters (params), and the simulation stop time (tf):

> set.seed(4) # set random number generator seed to be reproducible

> simResults = ssa.adaptivetau(init.values = c(prey = 1000, pred = 500),

+ transitions, lvRateF,

+ params = list(r=10, beta=0.01, delta=10),

+ tf=12)

We plot the results in Figure 1 using the following code:

> matplot(simResults[,"time"], simResults[,c("prey","pred")], type='l',

+ xlab='Time', ylab='Counts (log scale)', log='y')

> legend("bottomleft", legend=c("prey", "predator"), lty=1:2, col=1:2)

Exact vs approximate algorithms

The above code uses the adaptive tau-leaping approximation for simulation.
An exact simulation requires more computational time, but captures more
fine-scale variance, as you can see by running another simulation using the
ssa.exact command:

4

0 2 4 6 8 10 12

1
5

50
50

0
50

00

Time

C
ou

nt
s

(lo
g

sc
al

e)

prey
predator

Figure 1: Simulated trajectory from the Lotka-Voltera model under the adap-
tive tau-leaping approximation.

> simResults = ssa.exact(init.values = c(prey = 1000, pred = 500),

+ transitions, lvRateF,

+ params = list(r=10, beta=0.01, delta=10),

+ tf=12)

Alternatively, you can improve the approximation by reducing the ϵ variable
in the tau-leaping parameters (tl.params) when calling ssa.adaptivetau

(in the earlier example, ϵ takes its default value of 0.05):

> simResults = ssa.adaptivetau(init.values = c(prey = 1000, pred = 500),

+ transitions, lvRateF,

+ params = list(r=10, beta=0.01, delta=10),

+ tf=12,

+ tl.params = list(epsilon = 0.005))

Note we have explicitly linked the death of prey to growth in the predator
population by placing these two actions in a single transition and incorpo-
rating the parameter α into the ∆2 vector. Alternatively, these actions could
have been split into two independent transitions with state change vectors
[−1, 0] and [0,+1] and rates αX1X2 and βX1X2. This formulation would
yield slightly increased variance in the stochastic process since these actions
are uncoupled.

With the parameters and initial conditions used in this example, the
deterministic model predicts a steady state with dX1/dt = dX2/dt = 0,

5

while our stochastic trajectory has a dramatically different outcome with
prey becoming extinct around time 11. If we repeat the simulation many
times, we find the prey go extinct in approximately 1/3 of the simulations
(followed shortly by extinction of the predator) while the predator become
extinct in the other 2/3 of the simulations (and prey grow infinitely, revealing
a fundamental unrealistic aspect of this model).

Example 2: genetic drift

Consider a Moran model for the evolution of a population of size N in which
we track the number of individuals with a novel mutant allele (X) versus
the number of individuals with the ancestral allele (N − X). Since the
population size is a constant, this model has only one independent variable
(X). Under the Moran model, evolution occurs when one individual is chosen
to reproduce and, simultaneously, one individual is chosen to die. Thus
the model allows only “one-step” transitions in which X either decreases or
increases by one (∆1 = [−1] and ∆2 = [+1]). Both transitions occur at the
same rate: λ1 = λ2 =

X
N

N−X
N

.
Although this model has only one variable, we have two “critical values”

for this variable: X = 0 and X = N are both absorbing boundaries. The
adaptive tau-leaping approximation is always careful near 0 (the X = 0
boundary), but it is unaware of other critical values. We work around this
problem by creating an additional variable for the ancestral allele, such that
X2 = 0 when X1 = N .

> library(adaptivetau)

> transitions = cbind(c(-1,+1), # num individuals w/ derived allele decreases

+ c(+1,-1)) # num individuals w/ derived allele increases

> driftRateF <- function(x, params, t) {

+ rep(x[1] * x[2]/sum(x)^2, 2)

+ }

> set.seed(1) # set random number generator seed to be reproducible

> r=ssa.adaptivetau(c(500,500), transitions, driftRateF, params=NULL, tf=Inf)

Simulation results are plotted in Figure 2. The above code also demonstrates
an alternative stopping condition for the simulation: when tf=Inf, the sim-
ulation will run until all transition rates are 0 (in this case, when either allele
fixes in the population).

6

0e+00 2e+05 4e+05 6e+05

0
20

0
60

0
10

00

Time

N
um

be
r

of
 d

er
iv

ed
 a

lle
le

s

Figure 2: Genetic drift starting at frequency of 50% in a population of size
1000.

Example 3: epidemiology

We want to model the stuttering transmission of an infectious disease in the
initial stages of its movement from a non-human animal reservoir to a human
population. Our model is a slight modification on the standard Kermack-
McKendrick SIR compartment model: susceptible (S), infected with non-
human-adapted pathogen (I1), infected with human-adapted pathogen (I2),
and recovered (this last class is also immune) (R).

First, the differential equation representation:

dS/dt = −S(z + β1I1 + β1µI1 + β2I2)

dI1/dt = S(z + β1I1)− I1(δ1 + γ1)

dI2/dt = S(β1µI1 + β2I2)− I2(δ2 + γ2)

dR/dt = γ1I1 + γ2I2

where we assume transmissible contact with infected animals occurs at a
constant rate z, human-to-human transmissible contact occurs with rates
β1,2, human adaptation occurs with rate µ, death due to infection with rates
δ1,2 and recovery with rates γ1,2.

Now we will make a stochastic version of this model in R:

> library(adaptivetau)

> init.values = c(

7

+ S = 10^5, # susceptible humans

+ I1 = 0, # infected humans

+ I2 = 0, # infected humans

+ R = 0) # recovered (and immune) humans

> transitions = list(

+ c(S = -1, I1 = +1), # infection (animal-adapted strain)

+ c(S = -1, I2 = +1), # infection (human-adapted strain)

+ c(I1 = -1), # death due to infection

+ c(I2 = -1),

+ c(I1 = -1, R = +1), # recovery

+ c(I2 = -1, R = +1)

+)

> SIRrateF <- function(x, p, t) {

+ return(c(x["S"] * (p$zoonotic + p$beta[1]*x["I1"]), # infection rate

+ x["S"] * (p$beta[2]*x["I2"] + p$mu*p$beta[1]*x["I1"]),

+ params$delta[1]*x["I1"], # infected death rate

+ params$delta[2]*x["I2"],

+ params$gamma[1]*x["I1"], # recovery rate

+ params$gamma[2]*x["I2"]))

+ }

> params = list(zoonotic=1e-6, beta=c(1e-7, 1e-5), mu=0.1,

+ delta=c(1e-2,1e-5), gamma=c(0.1, 0.1))

> set.seed(3) # set random number generator seed to be reproducible

> r=ssa.adaptivetau(init.values, transitions, SIRrateF, params, tf=1000)

Output from this simulation appears in Figure 3.

Conclusion

While the above examples are simple, the adaptivetau package maintains
quick runtimes on models with hundreds of variables and thousands of tran-
sitions. Due to the approximations inherent in the adaptive tau-leaping algo-
rithm, the precise runtime depends strongly on the exact nature of the model
structure and parameters. However, this hybrid R/C++ implementation ap-
pears to be approximately 50 times faster than the pure R implementation
in the GillespieSSA package.

8

0 200 400 600 800 1000

1e
+

00
1e

+
02

1e
+

04

Time

In
di

vi
du

al
s

(lo
g

sc
al

e) S
I1
I2

Figure 3: Simulated trajectory from SIIR model of stuttering zoonotic trans-
mission. Zoonotic transmission occurs many times (red dashed line) before
the pathogen becomes human-adapted and creates a serious epidemic (blue
dotted line).

Acknowledgment

Funding: This work supported in part by National Science Foundation
DBI-0906041 to Philip Johnson and National Institutes of Health R01-AI049334
to Rustom Antia.

References

Y. Cao, D. T. Gillespie, and L. R. Petzold. Adaptive explicit-implicit tau-
leaping method with automatic tau selection. J Chem Phys, 126(22):
224101, 2007. URL http://eutils.ncbi.nlm.nih.gov/entrez/eutils/

elink.fcgi?cmd=prlinks&dbfrom=pubmed&retmode=ref&id=17581038.

Daniel T. Gillespie. A general method for numerically simulating the
stochastic time evolution of coupled chemical reactions. J Comput

Phys, 22(4):403 – 434, 1976. ISSN 0021-9991. doi: DOI:10.1016/
0021-9991(76)90041-3. URL http://www.sciencedirect.com/science/

article/B6WHY-4DD1NC9-CP/2/43ade5f11fb949602b3a2abdbbb29f0e.

M. Kimura. Some problems of stochastic processes in genetics. Ann Math

Stat, 28(4):882–901, 1957.

9

J. O. Lloyd-Smith, D. George, K. M. Pepin, V. E. Pitzer, J. R. Pul-
liam, A. P. Dobson, P. J. Hudson, and B. T. Grenfell. Epidemic
dynamics at the human-animal interface. Science, 326(5958):1362–7,
2009. URL http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.

fcgi?cmd=prlinks&dbfrom=pubmed&retmode=ref&id=19965751.

A. J. Lotka. Analytical note on certain rhythmic relations in or-
ganic systems. Proc Natl Acad Sci U S A, 6(7):410–5, 1920.
URL http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?

cmd=prlinks&dbfrom=pubmed&retmode=ref&id=16576509.

Mario Pineda-Krch. GillespieSSA: implementing the Gillespie stochastic sim-
ulation algorithm in R. Journal of Statistical Software, 25(12):1–18, 4 2008.
ISSN 1548-7660. URL http://www.jstatsoft.org/v25/i12.

10

