Package ‘asympDiag’

March 27, 2025
Type Package
Title Diagnostic Tools for Asymptotic Theory
Version 0.3.1

Description Leveraging Monte Carlo simulations, this package provides
tools for diagnosing regression models. It implements a parametric
bootstrap framework to compute statistics, generates diagnostic
envelopes to assess goodness-of-fit, and evaluates type I error
control for Wald tests. By simulating data under the assumption that
the model is true, it helps to identify model mis-specifications and
enhances the reliability of the model inferences.

License MIT + file LICENSE
URL https://github.com/Alvaro-Kothe/asympDiag

BugReports https://github.com/Alvaro-Kothe/asympDiag/issues
Imports cli

Suggests glmmTMB, Ime4, MASS, Matrix, rlang, sandwich, survival,
testthat (>= 3.0.0), vctrs, withr

Config/testthat/edition 3
Encoding UTF-8
RoxygenNote 7.3.2
NeedsCompilation no

Author Alvaro Kothe [aut, cre, cph] (<https://orcid.org/0000-0003-2114-3193>),
Alexandre Patriota [aut]

Maintainer Alvaro Kothe <kothe65@gmail.com>
Repository CRAN
Date/Publication 2025-03-27 22:00:06 UTC

Contents

concat_pvalues . . . . ... e e
envelope . . . . . L e


https://github.com/Alvaro-Kothe/asympDiag
https://github.com/Alvaro-Kothe/asympDiag/issues
https://orcid.org/0000-0003-2114-3193

2 concat_pvalues
envelope_residual . . . . . . ... L 5
get_converged . . .. .. L e 6
get_fixef . . . . . L 6
get_model_Tesponse . . . . . ... e e e e e 7
get_refit . . . .o 8
GELLVCOV .« v v it e e e e e e e e e e e 8
parametric_bootstrap . . . . . .. L. L e e e e 9
plottAD_envelope . . . . . . . . . e e e e e e 11
plotAD_pvalues . . . . . . . . .. 12
PlOt_COOK . . . . . e e e 13
plot_ecdf_pvalue . . . . . . . . ... e 14
plot_res_vs_linear_predictor . . . . . . . .. . .. L 15
refit. model . . . . . L 16
select_covariates . . . . . . . ... e e e e e e 17
simulate_wald_pvalues . . . . . .. ... 19

Index 22

concat_pvalues Concatenate AD_pvalues object

Description

Concatenate AD_pvalues object

Usage

concat_pvalues(ld_pvalues)

Arguments

1d_pvalues list of elements of class AD_pvalues.

Value

Object of class AD_pvalues



envelope 3

envelope Generate Simulated Envelope

Description

Generates QQ-plot with simulated envelope residuals.

Usage

envelope(
model,
residual_fn = envelope_residual (model),
alpha = 0.05,
nsim = 100,
responses = NULL,
no_warnings = FALSE,
no_messages = FALSE,
converged_only = FALSE,
show_progress = TRUE,
plot.it = TRUE,
refit_fn = NULL,

)
Arguments

model A model to generate responses and compute the observed residuals.

residual_fn A function to calculate model residuals. The default is envelope_residual ()
for an absolute residual.

alpha The significance level for constructing the envelope bounds. Defaults to 0.05.

nsim The number of simulations to perform for envelope construction. Defaults to
100.

responses An optional list of values to be used as response variables to refit the model.

no_warnings If TRUE, ignore simulations that threw warnings.

no_messages If TRUE, ignore simulations that shown messages.

converged_only Use p-values from converged models only.

show_progress Display a progress bar for the simulation iteration.

plot.it Logical. Generate envelope plot.
refit_fn Function to refit the model with new responses. If NULL, defaults to get_refit(model,
Y, ...).

Extra arguments to get_refit()



4 envelope

Details

Simulates new responses using stats::simulate() and refits the model for each vector of new
responses using get_refit(). The function then computes residuals for each simulation, sorts
them, and constructs envelope bands and a median line based on the quantiles of these residuals.

refit_fn is a function that supposedly compute the refit of model. Use this method if the de-
fault get_refit() doesn’t work. If refit_fn is NULL, it’s value is defined as function(y, ...)
get_refit(model, y, ...).

Value

An object of class AD_envelope, which contains the following components:

observed A vector of observed quantiles from the model residuals.

outside A logical vector indicating whether each observation falls outside the constructed envelope
bounds.

lower The lower bounds of the envelope for each observation.
med The median bounds of the envelope for each observation.

upper The upper bounds of the envelope for each observation.

See Also

get_refit, simulate, rstudent, plot.AD_envelope, parametric_bootstrap()

Examples

fit <- 1Im(mpg ~ cyl, data = mtcars)
envelope(fit)

# Use pearson residuals, and plot it agains the expected normal quantiles.
env_measures <- envelope(fit,

residual_fn = function(x) residuals.lm(x, type = "pearson"), plot.it = FALSE
)

plot(env_measures, distribution = stats::gnorm, colors = c("gray"”, "black"))

## Using custom refit_fn
if (require(”survival”)) {
fit <- survreg(Surv(futime, fustat) ~ ecog.ps + rx, ovarian,
dist = "exponential”
)
fitted_rate <- 1 / fitted(fit)
new_responses <- replicate(100, rexp(length(fitted_rate), fitted_rate), simplify = FALSE)
refit_surv_ovarian <- function(.y) {
survreg(Surv(.y, fustat) ~ ecog.ps + rx, ovarian, dist = "exponential”)
}
env_measures <- envelope(fit,
responses = new_responses,
residual_fn = function(x) abs(residuals(x, type = "deviance")),
refit_fn = refit_surv_ovarian, plot.it = FALSE



envelope_residual 5

)
# Absolute residuals are best shown with halfnormal quantiles
plot(env_measures, distribution = function(p) gnorm((1 + p) / 2))

}

envelope_residual Recommended Residuals for Envelope Plots

Description

This function returns a function that computes residuals for envelope plots. These residuals are
typically absolute values to be compared against the half-normal distribution.

Usage
envelope_residual(object, ...)

## Default S3 method:
envelope_residual(object, ...)

## S3 method for class 'glm'
envelope_residual (object, ...)

## S3 method for class 'lm'

envelope_residual(object, ...)
Arguments
object An object for which model residuals can be extracted.

Additional arguments passed to the residual function.

Details
For objects of class glm, the default residuals are:

* Deviance residuals, except for poisson and binomial families.

e For poisson and binomial families, the residuals are rstudent (), for the case deletion resid-
ual.

For objects of class 1m, the default residuals are also rstudent().

For other classes, the default is stats: :residuals(), meaning no specialized recommendation is
currently provided.

Value

A function that computes residuals from an object



6 get_fixef

get_converged Did the model converged

Description

Retrieves if the model converged.

Usage

get_converged(object)

## Default S3 method:
get_converged(object)
Arguments

object A model to check for convergence.

Details

The default method retrieves object$converged. For models of class merMod it verifies if the
infinity norm of the Newton—Raphson step is less than 0.0001.

Value

A boolean value.

get_fixef Get fixed effects

Description

Extracts the fixed effects coefficients from a model.
Usage
get_fixef(object)

## Default S3 method:
get_fixef(object)

## S3 method for class 'merMod'
get_fixef(object)

## S3 method for class 'glmmTMB'
get_fixef(object)



get_model_response 7

Arguments

object A model object for which fixed effects are to be retrieved.

Details

By default it calls stats: :coef (). If the model class is merMod calls fixef.

Value

A numeric vector of fixed effects coefficients.

get_model_response Extract the Response Variable from a Model Object

Description

This function is designed to extract the response variable from a fitted model object.

Usage

get_model_response(object)

Arguments

object A fitted model from which the response variable should be extracted.

Details

The default method attempts to create a model frame using model. frame (). Any error encountered
during this process is caught and results in a NULL return value.

Value

The response variable extracted from the model. If it couldn’t be extracted, the function returns
NULL.

Examples

Im_model <- lm(mpg ~ wt + cyl, data = mtcars)
response <- get_model_response(1lm_model)
print(response)



8 get_vcov

get_refit Refit the Model

Description

Refit an existing regression model using a new response variable.

Usage
get_refit(object, newresp, ...)
Arguments
object A model.
newresp the new response, may be a vector or a matrix.
other arguments passed to refit or update.
Details

This generic method refit the object with the newresp. It shold maintain the object properties by
default, but some aspects of the default fitting method may be overwritten with the . . ..

Value

An updated model object, refitted using the new response variable.

See Also

stats::update(), Ime4: :refit()

get_vcov Get covariance matrix

Description

Retrieves the covariance matrix for the fixed effects.
Usage
get_vcov(object)

## Default S3 method:
get_vcov(object)

## S3 method for class 'glmmTMB'
get_vcov(object)



parametric_bootstrap 9

Arguments

object A model object for which the covariance matrix is to be retrieved.

Details

By default it calls stats: :vcov() to retrieve the covariances.

Value

A covariance matrix of the model object.

parametric_bootstrap  Perform Parametric Bootstrap Simulations

Description

This function performs parametric bootstrap simulations by generating new response values based
on the fitted model, refitting the model on these new responses, and computing a user-defined
statistic for each simulated model.

Usage

parametric_bootstrap(
model,
statistic,
nsim,
responses = NULL,
refit_fn = NULL,
show_progress = TRUE,
simplify = TRUE,
stat_hc = NULL,
show_message_count = TRUE,
show_warning_count = TRUE,
show_not_converged_count = TRUE,

)
Arguments
model A fitted model object that will be used to simulate responses.
statistic A function that computes the desired statistic from the refitted model. It must
take the refitted model as an argument.
nsim The number of simulations to perform.
responses An optional list of values to be used as response variables to refit the model.
refit_fn Function to refit the model with new responses. If NULL, defaults to get_refit(model,

Y, ...).



10 parametric_bootstrap

show_progress  Display a progress bar for the simulation iteration.

simplify logical or character string; should the result be simplified to a vector, matrix
or higher dimensional array if possible? If occurs any errors during the refit
procedure, the results will be a list, regardless of the value of this argument.

stat_hc A function that verifies if the computed statistic is correct. It should return
nothing, just throw errors to halt execution.

show_message_count
Show total of captured messages from refit_fn as a message. It only shows if
the number of messages is greater than 0.

show_warning_count
Show total of captured warnings from refit_fn as a warning. It only shows if
the number of warnings is greater than 0.

show_not_converged_count
Show total of models that didn’t converge as a warning. It only shows if the
number of models that didn’t converged is greater than 0.

Additional arguments to be passed to refit_fn.

Details

This function implements a parametric bootstrap procedure. It generates new response values from
the fitted model, refits the model for each simulated response, and computes a user-defined statistic
on the refitted model. The refit function can be customized through the refit_fn argument.

If show_progress is TRUE, the progress of the simulations will be displayed using a progress bar
from the cli package.

Value

A list containing the following elements:

result A list of length nsim if simplify is FALSE. Otherwise an atomic vector or matrix or list of
length nsim.

responses The list of simulated response values.

simulation_warning A logical vector indicating whether a warning occurred during model refit-
ting for each simulation.

converged A logical vector indicating whether the model refit converged for each simulation.

Examples

model <- lm(mpg ~ wt + hp, data = mtcars)

statistic <- function(model) coef(model)[["wt"]1]

bootstrap_results <- parametric_bootstrap(model, statistic, nsim = 100)
wt_coefs <- Reduce(c, bootstrap_results$result)

summary (wt_coefs)



plot. AD_envelope 11

plot.AD_envelope Envelope Plot

Description

Plot AD_envelope

Usage

## S3 method for class 'AD_envelope'
plot(
X,
colors = getOption("asympDiag.plot.AD_envelope.colors”),
xlab = "Expected quantiles”,
ylab = "Observed quantiles”,
distribution = function(p) stats::gnorm((1 + p)/2),
ylim = base: :range(c(x$observed, x$lower, x$upper), na.rm = TRUE, finite = TRUE),

Arguments
X AD_envelope object, usually the result of envelope()
colors Vector of length 2, with color for points outside and inside the envelope band,
respectively.
x1lab The label for the x-axis.
ylab The label for the y-axis.

distribution  quantile function for reference theoretical distribution.
ylim the y limits of the plot.

extra arguments passed to graphics::plot

Details

Create envelope plot. The expected quantile, by default, is from a half-normal distribution, as the de-
fault residuals from envelope_residual () are absolute. You may replace it with the distribution
argument.

Value

No return value, called for side effects



12 plot.AD_pvalues

plot.AD_pvalues Plot Empirical Cumulative Distribution Function (ECDF) of p-values

Description

This function creates several plots with the empirical cumulative distribution of the p-values ob-
tained through simulation.

Usage

## S3 method for class 'AD_pvalues'
plot(
X,
which = seq_len(length(x$test_coefficients) + 1),
caption = as.list(paste("ECDF of"”, c(names(x$test_coefficients), "all coefficients”))),
ks_test = TRUE,
signif = c(0.01, 0.05, 0.1),
discrepancy_tol = 0.1,
plot_uniform = TRUE,
uniform_legend = TRUE,
converged_only = FALSE,
no_warnings = FALSE,
no_messages = FALSE,
ylab = "Empirical cumulative distribution”,
xlab = "p-value”,
ask = prod(graphics::par(”"mfcol”)) < length(which) && grDevices::dev.interactive()
)

Arguments

X AD_pvalues object, usually the result of simulate_wald_pvalues()

which A vector specifying the indices of coefficients to plot. If index is bigger than the
number of coefficients it plots the joint p_value.

caption A character vector or a list with caption for each plot. If it’s a list, the list index
must match the coefficient index used by which. If it’s a vector, it’s values are
used in order.

ks_test If TRUE inserts Kolmogorov-Smirnov p-value in the graphic.

signif Points to verify discrepancy.

discrepancy_tol
Threshold to consider point discrepant.

plot_uniform Logical. If TRUE, plot uniform distribution.

uniform_legend Logical. If TRUE, a legend is added to the plot to distinguish between the p-
value and U(0, 1) curves. Defaults to TRUE.

converged_only Use p-values from converged models only.



plot_cook 13

no_warnings If TRUE, ignore simulations that threw warnings.

no_messages If TRUE, ignore simulations that shown messages.

ylab The label for the y-axis. Defaults to "Empirical cumulative distribution".
xlab The label for the x-axis. Defaults to "p-value".

extra arguments passed to graphics::plot

ask Logical. If TRUE, the user is prompted before each plot. Defaults to TRUE if in
an interactive session and the number of plots is greater than the available space;
otherwise, FALSE.

Details

If the asymptotic approximation is valid the distribution of the p-values should be close to an uni-
form distribution. Discrepancies are highlighted, by default it verifies the significance on the most
commonly used significance values are 0.01, 0.05 and 0.10.

The reported KS (Kolmogorov-Smirnov) test is the result of the "two-sided" stats: :ks.test()
function comparing the observed p-values distribution with the uniform. The test may reject the KS
test due to few simulations, make sure that the lines shown in the plot are smooth before drawing
any conclusions.

Value

A vector of joint p-values for all coefficients.

Examples

model <- Im(mpg ~ wt + hp, data = mtcars)
p_values_ld <- simulate_wald_pvalues(model, n_sim = 100)
plot(p_values_1d)

plot_cook Plot Cook’s distances

Description

Plot Cook’s distances

Usage

plot_cook(
model,
n_highlights = 0,
cut = FALSE,
xlab = "Index",
ylab = "Cook's distance”,



14 plot_ecdf_pvalue

Arguments

model Model with cooks.distance() method

n_highlights The number of observations with the highest Cook’s distance to highlight on the
plot. Defaults to O (no highlights).

cut Logical. If TRUE, adds a cutoff line at the mean plus four times the standard
deviation of Cook’s distance. Defaults to FALSE.

xlab The label for the x-axis. Defaults to "Index".

ylab The label for the y-axis. Defaults to "Cook’s distance".

Further arguments for graphics: :plot()

Value

An invisible object representing Cook’s distance values.

See Also

cooks.distance, plot
Examples
fit <- 1Im(mpg ~ cyl, data = mtcars)

plot_cook(fit)
plot_cook(fit, n_highlights = 2)

plot_ecdf_pvalue Plot Empirical Cumulative Distribution Function (ECDF) of p-values

Description

Plot Empirical Cumulative Distribution Function (ECDF) of p-values

Usage

plot_ecdf_pvalue(
p_values,
ks_test = TRUE,
signif = c(0.01, 0.05, 0.1),
discrepancy_tol = 0.1,
plot_uniform = TRUE,
uniform_legend = TRUE,

nn

main = ,
ylab = "Empirical cumulative distribution”,
xlab = "p-value”,



plot_res_vs_linear_predictor 15

Arguments
p_values vector of p-values
ks_test If TRUE inserts Kolmogorov-Smirnov p-value in the graphic.
signif Points to verify discrepancy.

discrepancy_tol
Threshold to consider point discrepant.

plot_uniform  Logical. If TRUE, plot uniform distribution.

uniform_legend Logical. If TRUE, a legend is added to the plot to distinguish between the p-
value and U(0, 1) curves. Defaults to TRUE.

main main caption passed to plot
ylab The label for the y-axis. Defaults to "Empirical cumulative distribution".
xlab The label for the x-axis. Defaults to "p-value".

extra arguments passed to graphics::plot

Value

No return value, called for side effects

plot_res_vs_linear_predictor
Plot Residuals against Linear Predictor

Description

Plot Residuals against Linear Predictor

Usage
plot_res_vs_linear_predictor(
model,
residual_fn = stats::rstandard,
xlab = "Linear Predictor”,
ylab = "Standardized deviance residuals”,
)
Arguments
model Model with methods predict() or fitted()
residual_fn A function to calculate model residuals. The default is stats: :rstandard.
x1lab The label for the x-axis. Defaults to "Linear Predictor".
ylab The label for the y-axis. Defaults to "Standardized deviance residuals".

Extra arguments to residual_fn and plot().



16 refit_model

Details

If the model was fitted using the glm() function, it will use the predict() method with type =
link, otherwise, it will use the fitted() method.

Value

An invisible list containing the linear predictor (x) and standardized deviance residuals (y).

Examples
fit <- 1Im(mpg ~ cyl, data = mtcars)
plot_res_vs_linear_predictor(fit)

plot_res_vs_linear_predictor(fit, residual_fn = rstudent)
plot_res_vs_linear_predictor(fit, residual_fn = residuals)

glm_fit <- glm(cyl ~ mpg, family = poisson(), data = mtcars)

plot_res_vs_linear_predictor(glm_fit)

plot_res_vs_linear_predictor(glm_fit, type = "pearson")
refit_model Refit Model
Description

Refit a model with a new response.

Usage
refit_model(object, newresp, ...)
Arguments
object A model.
newresp the new response, may be a vector or a matrix.
other arguments passed to refit or update.
Details

This function uses newresp to refit object replacing its old response variable. If the class is merMod
it uses refit, otherwise uses stats: :update().

The default method tries to update the model response using it’s stats::model. frame(), if it
errors it tries to update the model by inserting the newresp directly into the object formula.



select_covariates 17

Value

A model with same class as object.

select_covariates Select covariates

Description

Select covariates

Usage
select_covariates(
model,
threshold = 0.15,
direction = c("both”, "backward"”, "forward"),

addable_coefs = names(get_fixef(model)),

measure_fn = function(x) summary(x)[["coefficients”]11[, 41,
measure_one_at_time = FALSE,

minimize_only = FALSE,

max_steps = 1000,

return_step_results = FALSE,

do_not_remove = c("(Intercept)"),

)
Arguments
model A model with stats: :update(), stats::coef () methods.
threshold Value threshold to remove variable. It can be a fixed value or a function. The
variable is removed if measure_fn(model) > threshold and added if measure_fn(model)
<= threshold.
direction The direction of variable selection. Options include "backward", "forward", or

"both". Defaults to "both".

addable_coefs A vector of coefficients that can be added during forward selection. Defaults to
all coefficients in the model.

measure_fn Function with model as argument and returns values to be used by threshold. It
can also compare two models, where during forward step it calls measure_fn(candidate_model,
current_selected_model) and during backward step it calls measure_fn(current_selected_model,
candidate_model). Defaults to the p-value from the summary of the coeffi-
cients.
measure_one_at_time
Boolean indicating to apply measure_fn to each variable individually during
forward and backward steps. Set this option to TRUE if measure_fn returns an
atomic value, for example if measure_fn is AIC.



18 select_covariates

minimize_only Logical indicating that during backward model update it should minimize the
measure_fn instead of maximize it.

max_steps The maximum number of steps for the variable selection process. Defaults to
1000.

return_step_results
Logical. If TRUE, the function returns a list containing the final fitted model
and a log of the selection steps. Defaults to FALSE.

do_not_remove A character vector specifying variables that should not be removed during back-
ward selection. Defaults to "(Intercept)".

Extra arguments to stats: :update().

Value

A fitted model with selected covariates based on the variable selection process. If return_step_results
is TRUE, a list containing the final fitted model and a log of the selection steps is returned.

Examples

model <- Im(mpg ~ ., data = mtcars)
select_covariates(model)

## measure_fn with two parameters

1rt <- function(modell, model2) {
Irt_stat <- 2 * (logLik(model1)[1L] - logLik(model2)[1L])
return(1 - pchisq(lrt_stat, 1))

3

select_covariates(model, measure_fn = 1lrt)
## AICc selection

AICc <- function(model) {
loglike <- logLik(model)
df <- attr(loglike, "df")
nobs <- attr(loglike, "nobs")
aic <- -2 x as.numeric(loglike) + 2 x df

aicc <- aic + (2 * (df*2) + 2 x df) / (nobs - df - 1)

return(aicc)

}

selection <- select_covariates(model,
measure_fn = AICc,
threshold = AICc,
measure_one_at_time = TRUE,
minimize_only = TRUE,
direction = "both",
data = mtcars



simulate_wald_pvalues 19

simulate_wald_pvalues Generate Wald test P-Values with Monte Carlo Simulations

Description

This function performs Monte Carlo simulations to generate p-values for model coefficients by
refitting the model with new simulated responses and computing the Wald test statistics for each
simulation. It’s standard behavior verify if the type I error from Wald tests are under control, con-
sidering the provided model as "true", i.e., the model assumptions are valid. It supports univariate
and joint Wald tests, using chi-squared distributions to calculate p-values.

Usage
simulate_wald_pvalues(
model,
nsim = 1000,

responses = NULL,
test_coefficients = NULL,
refit_fn = NULL,

coef_fn = get_fixef,
vcov_fn = get_vcov,
show_progress = TRUE,
plot.it = TRUE,

)
Arguments
model A fitted model object that will be used to simulate responses.
nsim The number of simulations to perform.
responses An optional list of values to be used as response variables to refit the model.

test_coefficients
Numeric vector. A vector with values to be used to compute the test statistic.
It should be the coefficients that was used to compute the fitted values of the
response. If NULL defaults to coef_fn(model).

refit_fn Function to refit the model with new responses. If NULL, defaults to get_refit(model,
Y, ...).

coef_fn Function that retrieves the coefficients of the model.

vcov_fn Function that computes the variance-covariance matrix for the models adjusted

in the simulations.
show_progress Display a progress bar for the simulation iteration.
plot.it Logical. Generate ecdf plot for joint Wald test.

Additional arguments to be passed to refit_fn.



20 simulate_wald_pvalues

Details

If responses is provided, the function refits the model with these new response vectors. Otherwise,
it generates new responses with stats::simulate().

For each new response calls get_refit() to generate a new model with the new response. It gets
the fixed effects and the variance and covariance matrix with get_fixef () and get_vcov().

Each simulated model is refitted using the specified refit_fn (or the default refit function) and the
fixed effects coefficients and variance-covariance matrix are extracted using coef_fn and vcov_fn,
respectively. The univariate Wald test is computed from the Wald statistic for each coefficient, while
the joint Wald test uses the inverse variance-covariance matrix to compute a Wald statistic for the
test_coefficients. P-values are calculated from a chi-squared distribution with appropriate degrees
of freedom.

Value
An object of class AD_pvalues, which contains the following components:

test_coefficients Vector of coefficients being tested.

pvalues_matrix Matrix of p-values where each column corresponds to a simulation and each row
corresponds to a coefficient.

pvalues_joint Vector containing the joint p-values obtained from each simulation.
simulation_fixef List of fixed effect coefficient estimates from each simulation.
simulation_vcov List of covariance matrices estimated from each simulation.
simulation_warning Vector of boolean indicating if a simulation threw a warning.
converged Logical vector indicating whether model refitting converged for each simulation.

responses Simulated responses used for refitting the model.

See Also

plot.AD_pvalues() for plotting.

Examples

# from help(”"glm")

counts <- c(18, 17, 15, 20, 10, 20, 25, 13, 12)

outcome <- gl(3, 1, 9)

treatment <- gl(3, 3)

model <- glm(counts ~ outcome + treatment, family = poisson())

new_responses <- replicate(100, MASS: :rnegbin(fitted.values(model), theta = 4.5), simplify = FALSE)
simulate_wald_pvalues(model, responses = new_responses, nsim = 100)

## Using custom refit_fn
if (require(”survival”)) {
fit <- survreg(Surv(futime, fustat) ~ ecog.ps + rx, ovarian,
dist = "exponential”
)
fitted_rate <- 1 / fitted(fit)
new_responses <- replicate(100, rexp(length(fitted_rate), fitted_rate), simplify = FALSE)



simulate_wald_pvalues

refit_surv_ovarian <- function(.y) {
survreg(Surv(.y, fustat) ~ ecog.ps + rx, ovarian, dist

3

"exponential”)

21

simulate_wald_pvalues(fit, responses = new_responses, refit_fn = refit_surv_ovarian)

}



Index

concat_pvalues, 2
cooks.distance, 14
cooks.distance(), 14

envelope, 3

envelope(), 11
envelope_residual, 5
envelope_residual(), 3, 11

fitted(), 15, 16

get_converged, 6
get_fixef, 6
get_fixef (), 20
get_model_response, 7
get_refit, 4,8
get_refit(), 3,4, 20
get_vcov, 8
get_vcov(), 20
glm(), 16
graphics::plot, 11, 13,15
graphics::plot(), 14

Ime4::refit(), 8
model.frame(), 7

parametric_bootstrap, 9
parametric_bootstrap(), 4
plot, 14, 15

plot(), 15
plot.AD_envelope, 4, 11
plot.AD_pvalues, 12
plot.AD_pvalues(), 20
plot_cook, 13
plot_ecdf_pvalue, 14

plot_res_vs_linear_predictor, 15

predict(), 15, 16

refit_model, 16
rstudent, 4

rstudent(), 5

select_covariates, 17
simulate, 4
simulate_wald_pvalues, 19
simulate_wald_pvalues(), 12
stats::coef(), 7,17
stats::ks.test(), I3
stats::model.frame(), 16
stats::residuals(), 5
stats::simulate(), 4, 20
stats: :update(), 8, 16-18
stats::vcov(), 9



	concat_pvalues
	envelope
	envelope_residual
	get_converged
	get_fixef
	get_model_response
	get_refit
	get_vcov
	parametric_bootstrap
	plot.AD_envelope
	plot.AD_pvalues
	plot_cook
	plot_ecdf_pvalue
	plot_res_vs_linear_predictor
	refit_model
	select_covariates
	simulate_wald_pvalues
	Index

