
Behavioral Change Point Analysis in R:

The bcpa package

Eliezer Gurarie,
Department of Statistics

School of Environmental and Forest Sciences
University of Washington, Seattle

eliezg@u.washington.edu

October 2013
Version 1.1 updated: October 2014

Contents

1 Background 2

2 Summary of method 2

3 Detailed implementation 3

3.1 Estimating auto-correlation / characteristic time-scale for irregular data 3

3.2 Speeds and turning angles . 5

3.3 Obtaining a changepoint . 9

3.4 Applying the window sweep . 13

4 Conclusions 17

5 Acknowledgments 18

6 References 18

1

eliezg@u.washington.edu

1 Background

The bcpa package is designed to streamline the implementation of the “behavioral change point analysis”
(BCPA, Gurarie et al. 2009) for any time-stamped movement data, i.e. in which there are X, Y and T
coordinates representing spatial locations and time of observation.

The BCPA was developed in order to identify changes in animal behaviors that were obscured by visual
inspection or standard techniques. Specific difficulties associated with movement data include the multi-
dimensionality, auto- and cross-correlation, considerable internal structure (reflecting behavioral complexity),
and data collection that can be error-ridden or be irregularly sampled. The irregular sampling is a particulaly
vexing problem for marine organism data, for which locations are usually transmitted only when the animal
is at the surface, while most standard approaches to modeling movement (e.g. the Correlated Random Walk)
are only meaningful for regularly sampled data.

The paper had attracted considerable interest from biologists and ecologists that collect animal movement
data and are eager to identify structure in the behaviors. Unfortunately, the code that was originally posted
as supplementary material was incomplete and poorly documented, making the method somewhat inaccesible
to practitioners without strong statistical or programming backgrounds. After responding to (about) the
hundredth email to share the code and offer some suggestions, and in light of a bevy of improvements to
the code itelf (e.g. greater speed by dropping some routines into C++, greater flexibility in visualizing and
presenting the results, more usable “tuning knobs” and flexible syntax) it became clear that bundling the
implementation in an R package would be the most efficient and tidy way to make it more accessible.

2 Summary of method

The BCPA uses a likelihood-based method for identifying significant changes in movement parameter values
across long, complex datasets by sweeping an analysis window over the timeseries and identifying the most
likely changepoints, while simultaneously testing which, if any, of the parameters might have changed at
that changepoint.

Implementing the BCPA involves the following steps:

1. Pick a response time-series variable X. One fairly robust variable is the persistence velocity Vp =
V cos(θ) where V is speed = displacement/time interval and θ is turning angle. Another alternative is
simply V .

2. Assume that the observations X(t) are a observations from a stationary continuous-time Gaussian
process with mean µi, standard deviation σi and time-scale of autocorrelation τi, where i ∈ (1, 2, ...N)
represents an a priori unknown number of behavioral states. Note: the use of a continuous time scale
τ > 0 is a change from the original model, which estimates a discrete autocorrelation 0 < ρ < 1. The
time-scale is more biologically meaningful, as it is estimated in units of time: the longer the time-scale
the longer the “memory” of the movement.

3. Obtain a likelihood for µi, σi and ρi within a given stationary state i (See Gurarie et al. 2009 for
details).

4. Find the location within a window of observations which splits a subset of the data into two sets of
the three parameters.

2

5. Within this window, use a version of BIC to determine which combination (if any) of the three pa-
rameters most parsimoniously describes the separation in the data. Often, the null model is returned.
I say ”modified” because the BIC is usually defined as: BIC = −2 log(L) + k log(n), where L is the
likelihood, k is the number of parameters, and n is the number of data points; however, the 2 is replace
with a constant K > 0. The smaller this value, the more conservative the analysis, i.e. the more likely
it is to select a simpler or null model. This is one of several “tuning knobs” in the BCPA.

6. Sweep a window of fixed size across the time series and collect all the changepoints, the associated
models, and the values of the estimated parameters according to the selected model on either side of
the changepoint within the window. Note, the window size is another ”knob” - larger windows are more
robust but more coarse, smaller windows are more sensitive but more likely to give slightly spurious
results, compensated by adjusting the K.

These steps summarize the actual analysis. The output of the analysis can be summarized and presented in
two ways:

1. Smooth BCPA: A “smooth” output is the one described in the original paper: is the average over all
the estimated parameters, and the location of all the change points on the other. This gives interesting
output - with, in particular, the opportunity to have parameters change both suddenly and gradually,
and to visualize a phase plot of the behavioral shifts - both sudden and gradual.

2. Flat BCPA: A ”flat” output takes the result of the window sweep and finds the most frequently chosen
change points, clustering those unique changepoints which are close to each other (within some interval
dTc). The three parameters µ, σ and τ are then estimated within each section, and the location of
these “flat” changepoints is recorded. This output is directly comparable to the BPMM segmentation.

3 Detailed implementation

The complete analysis can now be performed in, essentially, two or three lines of code (see final sections of
this vignette). Before leaping into them, I review the assumptions and fundamental pieces of the method,
using the functions within bcpa to facilitate implementation.

3.1 Estimating auto-correlation / characteristic time-scale for irregular data

The BCPA (as currently implemented) analyzes a one-dimensional, arbitrarily sampled autocorrelated Gaus-
sian time-series X(t), specified by three parameters, a mean µ, a standard deviation σ and a characteristic
time-scale τ (or autocorrelation coefficient ρ), such that:

EX(t) = µ

VarX(t) = σ2

CorX(t)X(t−∆t) = exp(−∆t/τ) = ρ∆t,

The characteristic time-scale is an innovation over the original implementation, which estimated ρ. The
interpretation of ρ, which ranges from 0 to 1, depends on the units of the time measurement - and can
flirt with being uninformatively close to 0 or 1, whereas the time scale is a measurement of the temporal

3

range of correlation in the movement, with somewhat more intuitive biological interpretation (Gurarie and
Ovaskainen 2011).

These relationships are used to obtain a likelihood for observations Xi observed at times Ti, and the likelihood
is maximized to estimate the characteristic time scale. In the bcpa package, this is done with the GetRho

function, which is driven by the GetL function (encoded in C++). Examples are given below:

Loading the package

library(bcpa)

Simulating a gappy, Gaussian, time series

rho <- 0.8

x.full <- arima.sim(1000, model=list(ar = rho))

t.full <- 1:1000

keep <- sort(sample(1:1000, 200))

x <- x.full[keep]

t <- t.full[keep]

plot(t,x, type="l")

0 200 400 600 800 1000

−
4

0
2

4

t

x

Obtaining the likelihood function for different values of ρ.

rhos <- seq(0,.99,.01)

L <- rep(NA, length(rhos))

for(i in 1:length(rhos))

L[i] <- GetL(x,t,rhos[i])

plot likelihood profile

plot(rhos, L, type="l")

abline(v = rho, lty=2, lwd=2); abline(v = rhos[L == max(L)], lty=3, lwd=2)

legend("bottomleft", legend=c("true value","MLE"), lty=2:3, lwd=2)

4

0.0 0.2 0.4 0.6 0.8 1.0

−
16

00
−

80
0

rhos

L

true value
MLE

Using the GetRho function to estimate ρ or τ :

GetRho(x, t, tau=FALSE)

rho.hat LL

0.7764189 -350.2888257

GetRho(x, t, tau=TRUE)

rho.hat LL

3.951054 -350.288825

Future work: It is straightforward to obtain approximate confidence intervals around this
estimate using the Hessian of the log-likelihood.

3.2 Speeds and turning angles

To apply the method to movement data of the form Zi, Ti, where Zi represents the location vector at time
Ti, it is necessary to extract a one-dimensional time series that conforms to the assumption. Examples which
generally conforms to the assumptions are the “persistence” velocity velocity Vp(t) and turning velocity Vt(t):

Vp(Ti) = V (Ti) cos(Θ(Ti)) (1)

Vt(Ti) = V (Ti) sin(Θ(Ti)) (2)

where V (Ti) = ||Zi − Zi−1||/(Ti − Ti−1) is the scalar speed at time Ti. Vp captures the tendency and

5

magnitude of a movement to persist in a given direction while Vt captures the tendency of movement to head
in a perpendicular direction in a given time interval. Thus, the primary descriptive features of movement,
namely speed, directional persistence, and variability are captured in these variables. Alternatively, the log
of step lengths can have a roughly Gaussian distribution.

For demonstration purposes, we include a simulated movement data set called Simp:

data(Simp)

head(Simp)

Time X Y

1 0.18 23.74779 -9.063781

2 0.22 26.74591 -11.325314

3 0.74 13.25269 2.945536

4 0.88 28.46158 26.634281

5 1.40 96.77801 121.783294

6 1.41 97.85599 123.347554

plot(Simp)

−2000 −1000 0 1000

−
25

00
−

15
00

−
50

0
0

50
0

x

y

6

The Simp objects is of class “track”, which is simply a data frame with columns X, Y and T , and the bcpa

package contains a plotting method for a track of this form with a green circle illustrating the start and a
red rhombus indicating the end of the track. The MakeTrack function was added to facilitate the creation
of a “track” class object, e.g.:

X <- cumsum(arima.sim(n=100, model=list(ar=0.8)))

Y <- cumsum(arima.sim(n=100, model=list(ar=0.8)))

Time <- 1:100

mytrack <- MakeTrack(X,Y,Time)

plot(mytrack)

−80 −60 −40 −20 0

−
40

−
20

0
20

x

y

7

To obtain the step length and turning angles, use the GetVT function, which decomposes the data into single
step and all the relevant statistics:

Simp.VT <- GetVT(Simp)

head(Simp.VT)

Z.start Z.end S Phi Theta

2 26.74591- 11.32531i 13.25269+ 2.94554i 19.639857 2.3281931 2.97445205

3 13.25269+ 2.94554i 28.46158+ 26.63428i 28.150790 1.0000442 -1.32814890

4 28.46158+ 26.63428i 96.77801+121.78329i 117.134403 0.9480956 -0.05194857

5 96.77801+121.78329i 97.85599+123.34755i 1.899727 0.9673998 0.01930417

6 97.85599+123.34755i 101.46842+135.40370i 12.585716 1.2796754 0.31227561

7 101.46842+135.40370i 117.73868+193.35110i 60.188228 1.2970678 0.01739243

T.start T.end T.mid dT V T.POSIX

2 0.22 0.74 0.480 0.52 37.76896 0.480

3 0.74 0.88 0.810 0.14 201.07707 0.810

4 0.88 1.40 1.140 0.52 225.25847 1.140

5 1.40 1.41 1.405 0.01 189.97268 1.405

6 1.41 1.48 1.445 0.07 179.79594 1.445

7 1.48 2.00 1.740 0.52 115.74659 1.740

The overall persistence of the movement and distribution of step lengths:

par(mfrow=c(1,2))

hist(Simp.VT$V, breaks=20, col="grey")

hist(Simp.VT$Theta, breaks=20, col="grey")

Histogram of Simp.VT$V

Simp.VT$V

F
re

qu
en

cy

0 200 400 600

0
10

20
30

40

Histogram of Simp.VT$Theta

Simp.VT$Theta

F
re

qu
en

cy

−3 −1 0 1 2 3

0
10

30
50

70

8

3.3 Obtaining a changepoint

A single changepoint in a time-series where the parameters change at some unknown timepoints t∗ is done
by sweeping all possible breaks and finding the most likely changepoint according to the likelihood. This is
illustrated below:

par(bty="l")

mu1 <- 5; mu2 <- 3

sigma1 <- 2; sigma2 <- 1

rho1 <- 0.5; rho2 <- 0.5

SimTS <- function(n, mu, rho, sigma){
X.standard <- arima.sim(n, model=list(ar = rho))

X.standard/sd(X.standard)*sigma + mu

}

create time series with break at 500

t.full <- 1:1000

t.break <- 500

x.full <- c(SimTS(t.break, mu1, rho1, sigma1),

SimTS(max(t.full)-t.break+1, mu2, rho2, sigma2))

subsample 100 observations and estimate

keep <- sort(sample(1:length(x.full), 100))

x <- x.full[keep]

t <- t.full[keep]

(BB <- GetBestBreak(x,t, tau=FALSE))

bb.index bb.time mu1 s1 rho.hat LL

42.0000000 450.0000000 5.7929429 2.0770893 0.7414713 -86.0806849

mu2 s2 rho.hat LL ll.total.LL

3.0699498 1.1395844 0.7687888 -82.4455930 -168.5262779

The estimates should be fairly good (note that we are choosing to estimate ρ rather than τ).

plot(t,x, type="l")

abline(v = 500, col=2, lwd=2, lty=2); abline(v = BB[2], col=2, lwd=2, lty=3)

legend("topright", legend=c("true break", "estimated break"), col=2, lwd=2, lty=2:3)

9

200 400 600 800 1000

2
4

6
8

10

t

x

true break
estimated break

The likelihood is used to obtain a BIC value for all of the possible models. The possible models are numbered
M0 to M7, corresponding to no significant changes (M0), only µ, σ or ρ changing (M1, M2, M3, respectively),
both of µ and σ, µ and ρ and σ and ρ changing (M4, M5, M6), and all three parameters changing (M7).
The model are compared with the GetModels function:

GetModels(x,t,BB[1], tau=FALSE)

Model LL bic mu1 s1 rho1 mu2 s2

[1,] 0 -192.7610 399.3375 4.177607 2.079177 0.8898607 4.177607 2.079177

[2,] 1 -178.8822 380.7902 5.792943 1.553832 0.7153161 3.007881 1.553832

[3,] 2 -195.8923 414.8104 4.177607 2.077089 0.8963446 4.177607 1.044103

[4,] 3 -197.4125 417.8509 4.177607 2.079177 0.7414713 4.177607 2.079177

[5,] 4 -166.9409 361.5128 5.792943 2.077089 0.7294510 3.007881 1.044103

[6,] 5 -179.1183 385.8676 5.792943 1.553832 0.7414713 3.007881 1.553832

[7,] 6 -198.5710 424.7730 4.177607 2.077089 0.7414713 4.177607 1.044103

[8,] 7 -166.9345 366.1052 5.792943 2.077089 0.7414713 3.007881 1.044103

rho2

[1,] 0.8898607

[2,] 0.7153161

[3,] 0.8963446

[4,] 0.7239186

[5,] 0.7294510

[6,] 0.7239186

[7,] 0.7239186

[8,] 0.7239186

The model selection should select model 4 (µ and σ change) as having the lowest BIC.

This is with the default sensitivity parameter K = 2, which comes from the definition of the BIC =
−Kn log(L) + k log(n) (see summary in section 2). If we lower this value, a simpler model is more likely to

10

be selected:

GetModels(x,t,BB[1], tau=FALSE, K=0.5)

Model LL bic mu1 s1 rho1 mu2 s2

[1,] 0 -192.7610 110.1960 4.177607 2.079177 0.8898607 4.177607 2.079177

[2,] 1 -178.8822 112.4669 5.792943 1.553832 0.7153161 3.007881 1.553832

[3,] 2 -195.8923 120.9720 4.177607 2.077089 0.8963446 4.177607 1.044103

[4,] 3 -197.4125 121.7321 4.177607 2.079177 0.7414713 4.177607 2.079177

[5,] 4 -166.9409 111.1015 5.792943 2.077089 0.7294510 3.007881 1.044103

[6,] 5 -179.1183 117.1902 5.792943 1.553832 0.7414713 3.007881 1.553832

[7,] 6 -198.5710 126.9165 4.177607 2.077089 0.7414713 4.177607 1.044103

[8,] 7 -166.9345 115.7035 5.792943 2.077089 0.7414713 3.007881 1.044103

rho2

[1,] 0.8898607

[2,] 0.7153161

[3,] 0.8963446

[4,] 0.7239186

[5,] 0.7294510

[6,] 0.7239186

[7,] 0.7239186

[8,] 0.7239186

And if we increase it, more complex models are likely to be selected

GetModels(x,t,BB[1], tau=FALSE, K=5)

Model LL bic mu1 s1 rho1 mu2 s2

[1,] 0 -192.7610 977.6205 4.177607 2.079177 0.8898607 4.177607 2.079177

[2,] 1 -178.8822 917.4367 5.792943 1.553832 0.7153161 3.007881 1.553832

[3,] 2 -195.8923 1002.4871 4.177607 2.077089 0.8963446 4.177607 1.044103

[4,] 3 -197.4125 1010.0885 4.177607 2.079177 0.7414713 4.177607 2.079177

[5,] 4 -166.9409 862.3355 5.792943 2.077089 0.7294510 3.007881 1.044103

[6,] 5 -179.1183 923.2225 5.792943 1.553832 0.7414713 3.007881 1.553832

[7,] 6 -198.5710 1020.4860 4.177607 2.077089 0.7414713 4.177607 1.044103

[8,] 7 -166.9345 866.9088 5.792943 2.077089 0.7414713 3.007881 1.044103

rho2

[1,] 0.8898607

[2,] 0.7153161

[3,] 0.8963446

[4,] 0.7239186

[5,] 0.7294510

[6,] 0.7239186

[7,] 0.7239186

[8,] 0.7239186

Below, we change only the autocorrelation parameter, which is quite a bit more difficult to detect by eye:

11

mu1 <- 0; mu2 <- 0

sigma1 <- 1; sigma2 <- 1

rho1 <- 0.9; rho2 <- 0.2

0 200 400 600 800 1000

−
2

−
1

0
1

2

t

x

true break
estimated break

The model selection should select model 4 (only ρ changes):

GetModels(x,t,BB[1], tau=FALSE)

Model LL bic mu1 s1 rho1 mu2

[1,] 0 -140.6990 295.2135 0.03553484 1.0237827 0.5835633 0.03553484

[2,] 1 -138.3282 299.6823 0.11595449 1.0214698 0.5799637 -0.02270007

[3,] 2 -138.1012 299.2283 0.03553484 0.9951849 0.6168638 0.03553484

[4,] 3 -130.7690 284.5638 0.03553484 1.0237827 0.8967592 0.03553484

[5,] 4 -138.0851 303.8012 0.11595449 0.9951849 0.6142914 -0.02270007

[6,] 5 -130.7364 289.1039 0.11595449 1.0214698 0.8967592 -0.02270007

[7,] 6 -130.7627 289.1564 0.03553484 0.9951849 0.8967592 0.03553484

[8,] 7 -130.7333 293.7027 0.11595449 0.9951849 0.8967592 -0.02270007

s2 rho2

[1,] 1.023783 0.5835633

[2,] 1.021470 0.5799637

[3,] 1.048730 0.6168638

[4,] 1.023783 0.3068741

[5,] 1.048730 0.6142914

[6,] 1.021470 0.3068741

[7,] 1.048730 0.3068741

[8,] 1.048730 0.3068741

12

3.4 Applying the window sweep

The main wrapper function for the complete analysis is WindowSweep. We select a windowsize and sensitivity
parameter K and sweep analysis windows across the entire time series:

Simp.ws <- WindowSweep(Simp.VT, "V*cos(Theta)", windowsize=50, progress=FALSE, K=2)

Note that the second argument of the function is a character string within which any function of the columns
of the VT table can be analyzed as a response.

The key portion of the output of this function is the “windowsweep” data frame, which contains the proposed
break (last column), the parameters to the left and right of the break, and the selected model:

head(Simp.ws$ws)

Model LL bic mu1 s1 rho1 mu2 s2

1 1 -288.5915 596.8421 110.5384 142.6230 0.6908193 348.3828 142.6230

2 1 -288.2855 596.2301 112.2943 145.3151 0.7267682 329.0768 145.3151

3 1 -287.9583 595.5757 114.5005 146.0369 0.7486855 323.4264 146.0369

4 1 -289.7589 599.1769 111.6543 142.8630 0.5500623 331.5079 142.8630

5 1 -285.2421 590.1433 117.9271 111.5537 0.3900876 427.4309 111.5537

6 1 -285.2849 590.2289 116.4078 111.3103 0.3851086 426.5288 111.3103

rho2 Break.bb.time

1 0.6908193 7.625

2 0.7267682 7.405

3 0.7486855 7.405

4 0.5500623 7.565

5 0.3900876 10.130

6 0.3851086 10.130

Note that in this example, the first 4 windows detect no changes in the parameter values (Model 0) so the
values are the same to the left and to the right of each changepoint. (A minor note: the rho1 and rho2

columns correspond to τ1 and τ2 - i.e. the time-scales.)

The following functions plot the output of the “smooth” summary, i.e. the summary in which all the windows
are averaged to obtain the “smooth” model. In these plots, the vertical lines represent the significant change
points, the width of the lines is proportional to the number of time that change point was selected, the black
and red lines represent the mean and standard deviation estimate, and the colors reflect the autocorrelation
time-scale (bluer colors have smaller autocorrelation time scales).

plot(Simp.ws, type="smooth")

plot(Simp.ws, type="smooth", threshold = 7)

13

0 10 20 30 40 50 60

0
20

0
40

0
60

0

time

x

ρ̂
0

0.24
0.49

0.73
0.98

0 10 20 30 40 50 60

0
20

0
40

0
60

0

time

x

ρ̂
0

0.24
0.49

0.73
0.98

The threshold parameter indicates how many of the windows that were swept over the data must have
selected that changepoint for it to be considered significant. The changepoints selected (at that threshold)
are almost exactly the ones that were encoded in the original simulation.

The “flat” analysis first selects changepoints that it deeps significant by clustering neighboring changepoints,
and then estimates a homogeneous behavior between those changepoints. Note that by increasing the
clusterwisth to 3, many of the more minor changepoints are filtered away and the resulting profile is fairly
uniform.

plot(Simp.ws, type="flat")

plot(Simp.ws, type="flat", clusterwidth=3)

14

0 10 20 30 40 50 60

0
20

0
40

0
60

0

time

x

ρ̂
0

0.22
0.44

0.66
0.89

0 10 20 30 40 50 60

0
20

0
40

0
60

0

time

x

ρ̂
0

0.31
0.62

0.94
1.2

A summary of the flat changepoints can be obtained as follows:

ChangePointSummary(Simp.ws, clusterwidth=3)

$breaks

X1 middle size modelmode middle.POSIX

1 1 12.36111 27 1 12.2900

2 2 19.45261 23 1 19.4050

3 3 30.79111 27 4 30.5700

4 4 47.64242 33 1 47.8275

##

$phases

t.cut mu.hat s.hat rho.hat t0 t1 interval

1 (-0.52,12.4] 194.48350 183.08137 1.2498942 -0.52000 12.36111 12.881111

2 (12.4,19.5] 218.06592 145.53408 0.6250432 12.36111 19.45261 7.091498

3 (19.5,30.8] 361.06136 143.07515 0.6676718 19.45261 30.79111 11.338502

4 (30.8,47.6] 55.50484 58.81393 0.3713984 30.79111 47.64242 16.851313

5 (47.6,59.4] 132.98216 109.99431 0.3827311 47.64242 59.41000 11.767576

This summmary suggests five phases, with phases 2 and 3 consisting of a much higher velocity and longer
time-scale movement than in the other phases.

The results of the BCPA can also be visualized with a so-called “path plot”:

15

PathPlot(Simp, Simp.ws, type="flat", clusterwidth = 3, main="Flat BCPA")

PathPlot(Simp, Simp.ws, type="smooth", main="Smooth BCPA")

−2000 0 1000 2000

−
25

00
−

10
00

0
10

00

Flat BCPA

Re(z)

Im
(z

)

−2000 0 1000 2000
−

25
00

−
10

00
0

10
00

Smooth BCPA

Re(z)

Im
(z

)

The width of the line is proportional to the mean speed, while the colors correspond to the time-scales in
the plots above. Both of thse plots clearly separate the period of faster, more directed movement

An additional, potentially interesting visualization of the analysis is the “phase plot”, which illustrates how
the three parameters change with respect to each other:

PhasePlot(Simp.ws, type="smooth", clusterwidth = 3)

16

50 100 150 200 250 300 350

60
80

12
0

16
0

µ̂

σ̂ τ̂
0.2
0.46
0.72
0.98

Finally, it is important to assess the assumptions of the BCPA using diagnostic plots. In particular, to assess
whether the standardized residuals of the final model are indeed distributed roughly as N (0, 1) random
variables

DiagPlot(Simp.ws)

−3 −2 −1 0 1 2 3

−
2

−
1

0
1

2

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

Histogram of x.standardized

x.standardized

D
en

si
ty

−2 −1 0 1 2

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0 5 10 15 20

−
0.

2
0.

2
0.

4
0.

6
0.

8
1.

0

Lag

A
C

F

Series x.standardized

This plot illustrates the qq-norm plot, the histogram and the auto-correlation function of the standardized
data (Zi = Xi − µ̂(Ti)/σ̂(Ti)). Overall the results seem to satisfy the assumptions of normality.

4 Conclusions

We hope this package will facilitate analysis of complex behavioral movement data. However, it should
be stressed that this is perhaps first and foremost an exploratory tool. Its strength is that it can distill

17

complex information into some tabulated and visual summaries that outline underlying structures. It is also
relatively fast - a long data set with tens of thousands of locations takes well under a minute to analyze on
most machines.

That said, this tool merely describes and does not explain complex behavioral profiles. The BCPA can be used
to propose some appropriate movement models or behavioral hypotheses for further testing. Alternatively,
an explanatory or predictive analysis of behaviors with respect to covariates can be performed by extracting
some biologically meaningful summary from the BCPA, and performing a post-hoc analysis to model the
observed patterns with respect to covariates.

5 Acknowledgments

Gratitude is extended to F. Cagnacci, M. Panzacchi, B. van Moorter and colleagues at the Norwegian
Institute of Nature Institute, who organized an animal movement analysis workshop and spearheaded a
special issue of J. Animal Ecology (in progress), lighting the fuse to finally follow through on this package.
C. Bracis and G. Passolt helped with the technical aspects of finalizing this package. Thanks, finally, to the
many diverse colleagues and animal movement ecologists that tested earlier versions on actual data.

6 References

Gurarie, E., R. Andrews and K. Laidre. 2009. A novel method for identifying behavioural changes in
animal movement data. Ecology Letters. 12: 395-408.

Gurarie, E., O. Ovaskainen. 2011. Characteristic spatial and temporal scales unify models of animal
movement. American Naturalist. 178: 113-123.

18

	Background
	Summary of method
	Detailed implementation
	Estimating auto-correlation / characteristic time-scale for irregular data
	Speeds and turning angles
	Obtaining a changepoint
	Applying the window sweep

	Conclusions
	Acknowledgments
	References

