Package 'biglm'

June 12, 2024

3 tille 12, 2021
Type Package
Title Bounded Memory Linear and Generalized Linear Models
Version 0.9-3
Author Thomas Lumley
Maintainer Thomas Lumley <t.lumley@auckland.ac.nz></t.lumley@auckland.ac.nz>
Description Regression for data too large to fit in memory.
License GPL
Suggests RSQLite, RODBC
Depends DBI, methods
Enhances leaps
NeedsCompilation yes
Repository CRAN
Date/Publication 2024-06-12 08:10:01 UTC
Contents
bigglm
Index
bigglm Bounded memory linear regression

Description

bigglm creates a generalized linear model object that uses only p^2 memory for p variables.

2 bigglm

Usage

```
bigglm(formula, data, family=gaussian(),...)
## S3 method for class 'data.frame'
bigglm(formula, data,...,chunksize=5000)
## S3 method for class 'function'
bigglm(formula, data, family=gaussian(),
     weights=NULL, sandwich=FALSE, maxit=8, tolerance=1e-7,
     start=NULL,quiet=FALSE,...)
## S3 method for class 'RODBC'
bigglm(formula, data, family=gaussian(),
      tablename, ..., chunksize=5000)
## S4 method for signature 'ANY,DBIConnection'
bigglm(formula, data, family=gaussian(),
tablename, ..., chunksize=5000)
## S3 method for class 'bigglm'
vcov(object,dispersion=NULL, ...)
## S3 method for class 'bigglm'
deviance(object,...)
## S3 method for class 'bigglm'
family(object,...)
## S3 method for class 'bigglm'
AIC(object,...,k=2)
```

Arguments

formula	A model formula
data	See Details below. Method dispatch is on this argument
family	A glm family object
chunksize	Size of chunks for processing the data frame
weights	A one-sided, single term formula specifying weights
sandwich	TRUE to compute the Huber/White sandwich covariance matrix (uses p^4 memory rather than p^2)
maxit	Maximum number of Fisher scoring iterations
tolerance	Tolerance for change in coefficient (as multiple of standard error)
start	Optional starting values for coefficients. If NULL, maxit should be at least 2 as some quantities will not be computed on the first iteration
object	A bigglm object
dispersion	Dispersion parameter, or NULL to estimate
tablename	For the SQLiteConnection method, the name of a SQL table, or a string specifying a join or nested select $$
k	penalty per parameter for AIC
quiet	When FALSE, warn if the fit did not converge
	Additional arguments

bigglm 3

Details

The data argument may be a function, a data frame, or a SQLiteConnection or RODBC connection object.

When it is a function the function must take a single argument reset. When this argument is FALSE it returns a data frame with the next chunk of data or NULL if no more data are available. Whenreset=TRUE it indicates that the data should be reread from the beginning by subsequent calls. The chunks need not be the same size or in the same order when the data are reread, but the same data must be provided in total. The bigglm.data.frame method gives an example of how such a function might be written, another is in the Examples below.

The model formula must not contain any data-dependent terms, as these will not be consistent when updated. Factors are permitted, but the levels of the factor must be the same across all data chunks (empty factor levels are ok). Offsets are allowed (since version 0.8).

The SQLiteConnection and RODBC methods loads only the variables needed for the model, not the whole table. The code in the SQLiteConnection method should work for other DBI connections, but I do not have any of these to check it with.

Value

An object of class bigglm

References

Algorithm AS274 Applied Statistics (1992) Vol.41, No. 2

See Also

```
biglm, glm
```

Examples

```
ff<-log(Volume)~log(Girth)+log(Height)
a <- bigglm(ff,data=trees, chunksize=10, sandwich=TRUE)
summary(a)
gg<-log(Volume)~log(Girth)+log(Height)+offset(2*log(Girth)+log(Height))
b <- bigglm(gg,data=trees, chunksize=10, sandwich=TRUE)</pre>
summary(b)
## Not run:
## requires internet access
make.data<-function(urlname, chunksize,...){</pre>
      conn<-NULL
     function(reset=FALSE){
     if(reset){
       if(!is.null(conn)) close(conn)
       conn<<-url(urlname,open="r")</pre>
     } else{
       rval<-read.table(conn, nrows=chunksize,...)</pre>
```

4 biglm

```
if (nrow(rval)==0) {
            close(conn)
            conn<<-NULL
            rval<-NULL
       }
       return(rval)
     }
 }
}
airpoll<-make.data("http://faculty.washington.edu/tlumley/NO2.dat",</pre>
        chunksize=150,
        col.names=c("logno2","logcars","temp","windsp",
                     "tempgrad", "winddir", "hour", "day"))
b<-bigglm(exp(logno2)~logcars+temp+windsp,
         data=airpoll, family=Gamma(log),
         start=c(2,0,0,0), maxit=10)
summary(b)
## End(Not run)
```

biglm

Bounded memory linear regression

Description

biglm creates a linear model object that uses only p^2 memory for p variables. It can be updated with more data using update. This allows linear regression on data sets larger than memory.

Usage

```
biglm(formula, data, weights=NULL, sandwich=FALSE)
## S3 method for class 'biglm'
update(object, moredata,...)
## S3 method for class 'biglm'
vcov(object,...)
## S3 method for class 'biglm'
coef(object,...)
## S3 method for class 'biglm'
summary(object,...)
## S3 method for class 'biglm'
AIC(object,...,k=2)
## S3 method for class 'biglm'
deviance(object,...)
```

biglm 5

Arguments

formula	A model formula
weights	A one-sided, single term formula specifying weights
sandwich	TRUE to compute the Huber/White sandwich covariance matrix (uses p^4 memory rather than p^2)
object	A biglm object
data	Data frame that must contain all variables in formula and weights
moredata	Additional data to add to the model
	Additional arguments for future expansion
k	penalty per parameter for AIC

Details

The model formula must not contain any data-dependent terms, as these will not be consistent when updated. Factors are permitted, but the levels of the factor must be the same across all data chunks (empty factor levels are ok). Offsets are allowed (since version 0.8).

Value

An object of class biglm

References

Algorithm AS274 Applied Statistics (1992) Vol.41, No. 2

See Also

lm

Examples

```
data(trees)
ff<-log(Volume)~log(Girth)+log(Height)

chunk1<-trees[1:10,]
    chunk2<-trees[11:20,]
    chunk3<-trees[21:31,]

a <- biglm(ff,chunk1)
    a <- update(a,chunk2)
    a <- update(a,chunk3)

summary(a)
deviance(a)
AIC(a)</pre>
```

6 predict.bigglm

predict.bigglm

Predictions from a biglm/bigglm

Description

Computes fitted means and standard errors at new data values after fitting a model with biglm or bigglm.

Usage

```
## S3 method for class 'bigglm'
predict(object, newdata, type = c("link", "response"),
se.fit = FALSE, make.function = FALSE, ...)
## S3 method for class 'biglm'
predict(object, newdata=NULL, se.fit = FALSE, make.function = FALSE, ...)
```

Arguments

object fitted model

newdata data frame with variables for new values

type link is on the linear predictor scale, response is the response

se.fit Compute standard errors?

make.function If TRUE return a prediction function, see Details below

.. not used

Details

When make.function is TRUE, the return value is either a single function that computes the fitted values or a list of two functions that compute the fitted values and standard errors. The input to these functions is the design matrix, without the intercept column. This allows the relatively time-consuming calls to model.frame() and model.matrix() to be avoided.

Value

Either a vector of predicted values or a data frame with predicted values and standard errors.

Author(s)

based on code by Christophe Dutang

References

~put references to the literature/web site here ~

See Also

```
predict.glm,biglm,bigglm
```

predict.bigglm 7

Examples

```
example(biglm)
predict(a,newdata=trees)
f<-predict(a,make.function=TRUE)
X<- with(trees, cbind(log(Girth),log(Height)))
f(X)</pre>
```

Index

```
* regression
    bigglm, 1
    biglm, 4
    predict.bigglm, 6
AIC.bigglm(bigglm), 1
AIC.biglm(biglm), 4
bigglm, 1, 6
bigglm, ANY, DBIConnection-method
        (bigglm), 1
bigglm.data.frame(bigglm), 1
bigglm.function(bigglm), 1
bigglm.RODBC (bigglm), 1
bigglm.SQLiteConnection(bigglm), 1
biglm, 3, 4, 6
coef.biglm(biglm), 4
deviance.bigglm(bigglm), 1
deviance.biglm(biglm), 4
family.bigglm(bigglm), 1
predict.bigglm, 6
predict.biglm(predict.bigglm), 6
predict.glm, 6
print.biglm(biglm), 4
print.summary.biglm(biglm), 4
summary.biglm(biglm), 4
update.biglm(biglm), 4
vcov.bigglm(bigglm), 1
vcov.biglm(biglm), 4
```