Package 'bioinactivation'

April 6, 2025

Type Package

Title Mathematical Modelling of (Dynamic) Microbial Inactivation

Version 1.3.0

Description Functions for modelling microbial inactivation under

isothermal or dynamic conditions. The calculations are based on several mathematical models broadly used by the scientific community and industry. Functions enable to make predictions for cases where the kinetic parameters are known. It also implements functions for parameter estimation for isothermal and dynamic conditions. The model fitting capabilities include an Adaptive Monte Carlo method for a Bayesian approach to parameter estimation.

License GPL-3

LazyData TRUE

Imports dplyr (>= 1.0.2), deSolve (>= 1.11), FME (>= 1.3.2), lazyeval (>= 0.1.10), ggplot2 (>= 3.3.2), MASS (>= 7.3-39), graphics (>= 3.1.3), stats (>= 3.1.3), rlang(>= 0.1.2), purrr (>= 0.3.4)

Suggests knitr (>= 1.30), testthat (>= 0.9.1), rmarkdown (>= 2.5), tidyr (>= 1.3.0)

VignetteBuilder knitr

RoxygenNote 7.2.3

Depends R (>= 2.10)

NeedsCompilation no

Author Alberto Garre [aut, cre], Pablo S. Fernandez [aut], Jose A. Egea [aut]

Maintainer Alberto Garre <garre.alberto@gmail.com>

Repository CRAN

Date/Publication 2025-04-06 10:40:02 UTC

Contents

Arrhenius_iso	3
Bigelow_iso	3
build_temperature_interpolator	4
check_model_params	4
dArrhenius_model	5
dBigelow_model	6
dGeeraerd_model	7
dMafart_model	8
dMetselaar_model	10
dPeleg_model	11
dynamic_inactivation	12
fit_dynamic_inactivation	13
fit_inactivation_MCMC	14
fit_isothermal_inactivation	16
Geeraerd_iso	18
get_isothermal_model_data	18
get_model_data	19
get_prediction_cost	20
goodness_dyna	21
goodness_iso	
goodness_MCMC	
goodness_of_fit	
is.FitInactivation	22
is.FitInactivationMCMC	23
is.IsoFitInactivation	23
is.PredInactivationMCMC	
is.SimulInactivation	24
isothermal_inactivation	25
laterosporus_dyna	25
laterosporus_iso	26
Metselaar_iso	26
plot.FitInactivation	27
plot.FitInactivationMCMC	
plot.IsoFitInactivation	29
plot.PredInactivationMCMC	
*	
predict_inactivation	31
predict_inactivation_MCMC	33
sample_dynaFit	34
sample_toFit	35
sample MCMCfit	36
summary.FitInactivation	36
summary.FitInactivationMCMC	37
summary.IsoFitInactivation	37
time_to_logreduction	38
WeibullMafart iso	38
weiounnanat_150	50

Arrhenius_iso

WeibullPeleg_iso	 	 	 	 	 39
					40

3

Arrhenius_iso Isothermal Arrhenius model

Description

Returns the predicted logarithmic reduction in microbial count according to Arrhenius model for the time, temperature and model parameters given.

Usage

Index

Arrhenius_iso(time, temp, k_ref, temp_ref, Ea)

Arguments

time	numeric indicating the time at which the prediction is taken.
temp	numeric indicating the temperature of the treatment.
k_ref	numeric indicating the inactivation rate at the reference temperature.
temp_ref	numeric indicating the reference temperature.
Ea	numeric indicating the activation energy.

Value

A numeric with the predicted logarithmic reduction (log10(N/N0)).

Bigelow_iso	Isothermal Bigelow's Model	
-------------	----------------------------	--

Description

Returns the predicted logarithmic reduction in microbial count according to Bigelow's model for the time, temperature and model parameters given.

Usage

```
Bigelow_iso(time, temp, z, D_R, temp_ref)
```

Arguments

time	numeric indicating the time at which the prediction is taken.
temp	numeric indicating the temperature of the treatment.
Z	numeric defining the z-value.
D_R	numeric defining the D-value at the reference temperature.
temp_ref	numeric defining the reference temperature.

Value

A numeric with the predicted logarithmic reduction (log 10(N/N0)).

build_temperature_interpolator

Continuum Interpolation of Discrete Temperatures Values

Description

Builds an interpolator of the temperature at each time and its first derivative. First derivatives are approximated using forward finite differences (approxfun). It is assumed that temperature is 0 and constant outside the time interval provided.

Usage

build_temperature_interpolator(temperature_data)

Arguments

temperature_data

data frame with the values of the temperatures at each value of time. It need to have 2 columns, named time and temperature.

Value

a list with with two elements:

- temp, the interpolator of the temperature and
- dtemp, the interpolator of its first derivative

See Also

approxfun

check_model_params Correctness Check of Model Parameters

Description

Makes 3 checks of compatibility between the input parameters for the adjustment and the DOF of the inactivation model selected.

- Check of equal length of model DOF and input DOF. Raises a warning if failed.
- Check that every single one of the input DOF is a model DOF. Raises a warning if failed.
- Check that every single one of the model DOF are defined as an input DOF.

dArrhenius_model

Usage

```
check_model_params(
    simulation_model,
    known_params,
    starting_points,
    adjust_vars
)
```

Arguments

simulation_model		
	character with a valid model key.	
known_params	named vector or list with the dof of the model known.	
starting_points		
	named vector or list with the dof of the model to be adjusted.	
adjust_vars	logical specifying whether the model variables need to be included in the check (not used for isothermal fit)	

dArrhenius_model First derivative of the Arrhenius model

Description

Calculates the first derivative of the Arrhenius model with log-linear inactivation for dynamic problems at a given time for the model parameters provided and the environmental conditions given.

Usage

dArrhenius_model(t, x, parms, temp_profile)

Arguments

t	numeric vector indicating the time of the experiment.
х	list with the value of N at t.
parms	parameters for the secondary model. No explicit check of their validity is per- formed.
temp_profile	a function that provides the temperature at a given time.

Details

This function is compatible with the function predict_inactivation.

Value

The value of the first derivative of N at time t as a list.

Model Equation

$$\frac{dN}{dt} = -k * N$$

Model parameters

- temp_ref: Reference temperature for the calculation,
- k_ref: inactivation rate at the ref. temp.
- Ea: Activation energy.

See Also

predict_inactivation

dBigelow_model First Derivate of the Linear Bigelow Model

Description

Calculates the first derivative of the linearized version of Bigelow's model for dynamic problems at a given time for the model parameters provided and the environmental conditions given.

Usage

```
dBigelow_model(t, x, parms, temp_profile)
```

Arguments

t	numeric vector indicating the time of the experiment.
x	list with the value of N at t.
parms	parameters for the secondary model. No explicit check of their validity is per- formed.
temp_profile	a function that provides the temperature at a given time.

Details

The model is developed from the isothermal Bigelow's model assuming during the derivation process that D_T is time independenent.

This function is compatible with the function predict_inactivation.

Value

The value of the first derivative of N at time t as a list.

Model Equation

$$\frac{dN}{dt} = -N\frac{\ln(10)}{D_T(T)}$$

Model parameters

- temp_ref: Reference temperature for the calculation,
- D_R: D-value at the reference temperature,
- z: z value.

See Also

predict_inactivation

dGeeraerd_model First Derivate of Geeraerd's Model

Description

Calculates the first derivative of the Geeraerd's model at a given time for the model parameters provided and the environmental conditions given.

Usage

```
dGeeraerd_model(t, x, parms, temp_profile)
```

Arguments

t	numeric vector indicating the time of the experiment.
x	list with the values of the variables at time t .
parms	parameters for the secondary model. No explicit check of their validity is per- formed (see section Model Parameters).
<pre>temp_profile</pre>	a function that provides the temperature at a given time.

Details

This function is compatible with the function predict_inactivation.

Value

A list with the value of the first derivatives of N and C_c at time t.

Model Equation

 $\frac{dN}{dt} = -N \cdot k_{max} \cdot \alpha \cdot \gamma$ $\deqn{\frac{dC_c}{dt} = - C_c \ \deqn{\max}}{\max}{\max}{\max}{\max}}{\max}{\max}}{\max}}{\max}{\max}{\max}}{\max}{\max}{\max}{\max}}{\max}{\max}{\max}}{\max}}{\max}}{\max}}{\max}}{\max}{\max}}{\max}{\max}}{\max}{\max}}{\max}}{\max}}{\max}}{\max}}{\max}{\max}}{\max$

Model Parameters

- temp_ref: Reference temperature for the calculation,
- D_R: D-value at the reference temperature,
- z: z value,
- N_min: Minimum value of N (defines the tail).

Notes

To define the Geeraerd model without tail, assign $N_min = 0$. For the model without shoulder, assign $C_0 = 0$

See Also

predict_inactivation

dMafart_model First Derivate of the Weibull-Mafart Model

Description

Calculates the first derivative of Weibull-Mafart model at a given time for the model parameters provided and the environmental conditions given.

Usage

dMafart_model(t, x, parms, temp_profile)

dMafart_model

Arguments

t	numeric vector indicating the time of the experiment.
х	list with the value of N at t.
parms	parameters for the secondary model. No explicit check of their validity is per- formed (see section Model Parameters).
<pre>temp_profile</pre>	a function that provides the temperature at a given time.

Details

The model is developed from the isothermal Weibull-Mafart model without taking into account in the derivation the time dependence of δ_T for non-isothermal temperature profiles.

This function is compatible with the function predict_inactivation.

Value

The value of the first derivative of N at time t as a list.

Model Equation

Model Parameters

- temp_ref: Reference temperature for the calculation.
- delta_ref: Value of the scale factor at the reference temperature.
- z: z-value.
- p: shape factor of the Weibull distribution.

Note

For t=0, dN = 0 unless n=1. Hence, a small shift needs to be introduced to t.

See Also

predict_inactivation

dMetselaar_model

Description

Calculates the first derivative of Metselaar model at a given time for the model parameters provided and the environmental conditions given.

Usage

dMetselaar_model(t, x, parms, temp_profile)

Arguments

t	numeric vector indicating the time of the experiment.
x	list with the value of N at t.
parms	parameters for the secondary model. No explicit check of their validity is per- formed (see section Model Parameters).
temp_profile	a function that provides the temperature at a given time.

Details

The model is developed from the isothermal Metselaar model without taking into account in the derivation the time dependence of δ_T for non-isothermal temperature profiles.

This function is compatible with the function predict_inactivation.

Value

The value of the first derivative of N at time t as a list.

Model Equation

\deqn{D(T) = D_{ref} \cdot 10^{- (T-T_ref)/z} }{ D(T) = D_R * 10^(- (T-T_ref)/z)}

Model Parameters

- temp_ref: Reference temperature for the calculation.
- D_R: D-value at the reference temperature.
- z: z-value.
- p: shape factor of the Weibull distribution.
- Delta: Scaling parameter

dPeleg_model

Note

For t=0, dN = 0 unless n=1. Hence, a small shift needs to be introduced to t.

See Also

predict_inactivation

dPeleg_model

First Derivate of the Weibull-Peleg Model

Description

Calculates the first derivative of Weibull-Peleg model at a given time for the model parameters provided and the environmental conditions given.

Usage

dPeleg_model(t, x, parms, temp_profile)

Arguments

t	numeric vector indicating the time of the experiment.
x	list with the value of logS at t.
parms	parameters for the secondary model. No explicit check of their validity is per- formed (see section Model Parameters).
temp_profile	a function that provides the temperature at a given time.

Details

The model is developed from the isothermal Weibull model without taking into account in the derivation the time dependence of b for non-isothermal temperature profiles.

This function is compatible with the function predict_inactivation.

Value

The value of the first derivative of logS at time t as a list.

Model Equation

$$\frac{d(\log_{10}(S))}{dt} = -b(T) \cdot n \cdot (-log 10(S)/b(T))^{(n-1)/n}$$

Model Parameters

- temp_crit: Temperature below which there is inactivation.
- k_b: slope of the b ~ temp line for temperatures above the critical one.
- n: shape factor of the Weibull distribution.

Note

For $\log S=0$, $d\log S=0$ unless n=1. Hence, a small shift needs to be introduced to $\log S$.

See Also

predict_inactivation

dynamic_inactivation Example Dynamic Inactivation of a Microorganis

Description

Example of experimental data of the dynamic inactivation process of a microorganism.

Usage

```
data(dynamic_inactivation)
```

Format

A data frame with 19 rows and 2 variables.

Details

- time: Time in minutes of the measurement.
- N: Number of microorganism.
- temperature: Observed temperature.

fit_dynamic_inactivation

Fitting of Dynamic Inactivation Models

Description

Fits the parameters of an inactivation model to experimental data. The function FME::modFit is used for the fitting.

Usage

```
fit_dynamic_inactivation(
    experiment_data,
    simulation_model,
    temp_profile,
    starting_points,
    upper_bounds,
    lower_bounds,
    known_params,
    ...,
    minimize_log = TRUE,
    tol0 = 1e-05
)
```

Arguments

experiment_data

	data frame with the experimental data to be adjusted. It must have a column named "time" and another one named "N".	
simulation_mode	1	
	character identifying the model to be used.	
temp_profile	data frame with discrete values of the temperature for each time. It must have one column named time and another named temperature providing discrete values of the temperature at time points.	
starting_points		
	starting values of the parameters for the adjustment.	
upper_bounds	named numerical vector defining the upper bounds of the parameters for the adjustment.	
lower_bounds	named numerical vector defining the lower bounds of the parameters for the adjustment.	
known_params	named numerical vector with the fixed (i.e., not adjustable) model parameters.	
	further arguments passed to FME::modFit	
minimize_log	logical. If TRUE, the adjustment is based on the minimization of the error of the logarithmic count. TRUE by default.	
tol0	numeric. Observations at time 0 make Weibull-based models singular. The time for observatins taken at time 0 are changed for this value.	

Value

A list of class FitInactivation with the following items:

- fit_results: a list of class modFit with the info of the adjustment.
- best_prediction: a list of class SimulInactivation with prediction made by the adjusted model.
- data: a data frame with the data used for the fitting.

Examples

```
## EXAMPLE 1 -----
data(dynamic_inactivation) # The example data set is used.
get_model_data() # Retrieve the valid model keys.
simulation_model <- "Peleg" # Peleg's model will be used</pre>
model_data <- get_model_data(simulation_model)</pre>
model_data$parameters # Set the model parameters
dummy_temp <- data.frame(time = c(0, 1.25, 2.25, 4.6),</pre>
                          temperature = c(70, 105, 105, 70)) # Dummy temp. profile
## Set known parameters and initial points/bounds for unknown ones
known_params = c(temp_crit = 100)
starting_points <- c(n = 1, k_b = 0.25, N0 = 1e+05)</pre>
upper_bounds <- c(n = 2, k_b = 1, N0 = Inf)
lower_bounds <- c(n = 0, k_b = 0, N0 = 1e4)
dynamic_fit <- fit_dynamic_inactivation(dynamic_inactivation, simulation_model,</pre>
                                         dummy_temp, starting_points,
                                         upper_bounds, lower_bounds,
                                         known_params)
plot(dynamic_fit)
goodness_of_fit(dynamic_fit)
```

fit_inactivation_MCMC Fitting of dynamic inactivation with MCMC

Description

END EXAMPLE 1 -----

Fits the parameters of an inactivation model to experimental using the Markov Chain Monte Carlo fitting algorithm implemented in the function FME::modMCMC.

Usage

```
fit_inactivation_MCMC(
    experiment_data,
    simulation_model,
    temp_profile,
    starting_points,
    upper_bounds,
    lower_bounds,
    known_params,
    ...,
    minimize_log = TRUE,
    tol0 = 1e-05
)
```

Arguments

experiment_data		
	data frame with the experimental data to be adjusted. It must have a column named "time" and another one named "N".	
simulation_mode	1	
	character identifying the model to be used.	
temp_profile	data frame with discrete values of the temperature for each time. It must have one column named time and another named temperature providing discrete values of the temperature at time points.	
starting_points		
	starting values of the parameters for the adjustment.	
upper_bounds	named numerical vector defining the upper bounds of the parameters for the adjustment.	
lower_bounds	named numerical vector defining the lower bounds of the parameters for the adjustment.	
known_params	named numerical vector with the fixed (i.e., not adjustable) model parameters.	
	other arguments for FME::modMCMC.	
minimize_log	logical. If TRUE, the adjustment is based on the minimization of the error of the logarithmic count.	
tol0	numeric. Observations at time 0 make Weibull-based models singular. The time for observatins taken at time 0 are changed for this value.	

Value

A list of class FitInactivationMCMC with the following items:

- $\bullet\,$ modMCMC: a list of class modMCMC with the information of the adjustment process.
- best_prediction: a list of class SimulInactivation with the prediction generated by the best predictor.
- data: a data frame with the data used for the fitting.

Examples

```
## EXAMPLE 1 -----
data(dynamic_inactivation) # The example data set is used.
get_model_data() # Retrieve the valid model keys.
simulation_model <- "Peleg" # Peleg's model will be used</pre>
model_data <- get_model_data(simulation_model)</pre>
model_data$parameters # Set the model parameters
dummy_temp <- data.frame(time = c(0, 1.25, 2.25, 4.6),</pre>
                         temperature = c(70, 105, 105, 70) # Dummy temp. profile
## Set known parameters and initial points/bounds for unknown ones
known_params = c(temp_crit = 100)
starting_points <- c(n = 1, k_b = 0.25, N0 = 1e+05)</pre>
upper_bounds <- c(n = 2, k_b = 1, N0 = 1e6)
lower_bounds <- c(n = 0.5, k_b = 0.1, N0 = 1e4)
MCMC_fit <- fit_inactivation_MCMC(dynamic_inactivation, simulation_model,</pre>
                                      dummy_temp, starting_points,
                                      upper_bounds, lower_bounds,
                                      known_params,
                                      niter = 100)
                                      # It is recommended to increase niter
plot(MCMC_fit)
goodness_of_fit(MCMC_fit)
## END EXAMPLE 1 -----
```

Description

Fits the parameters of the model chosen to a set of isothermal experiments using nonlinear regression through the function nls.

Usage

```
fit_isothermal_inactivation(
   model_name,
   death_data,
```

16

```
starting_point,
known_params,
adjust_log = TRUE
)
```

Arguments

model_name	character specyfing the model to adjust.
death_data	data frame with the experiment data where each row is one observation. It must have the following columns:
	• log_diff: Number of logarithmic reductions at each data point.
	• temp: Temperature of the data point.
	• time: Time of the data point.
<pre>starting_point</pre>	List with the initial values of the parameters for the adjustment.
known_params	List of the parameters of the model known.
adjust_log	logical. If TRUE, the adjustment is based on the minimization of the error of the logarithmic microbial count. If FALSE, it is based on the minimization of the error of the microbial count. TRUE by default.

Value

An instance of class IsoFitInactivation with the results. This list has four entries:

- nls: The object of class nls with the results of the adjustment.
- parameters: a list with the values of the model parameters, both fixed and adjusted.
- model: a string with the key identifying the model used.
- data: the inactivation data used for the fit.

See Also

nls

Examples

```
## EXAMPLE 1 ------
data("isothermal_inactivation") # data set used for the example.
get_isothermal_model_data() # retrieve valid model keys.
model_name <- "Bigelow" # Bigelow's model will be used for the adjustment.
model_data <- get_isothermal_model_data(model_name)
model_data$params # Get the parameters of the model
## Define the input arguments
known_params = list(temp_ref = 100)
starting_point <- c(z = 10, D_R = 1)</pre>
```

Geeraerd_iso Isothermal Geeraerd Model

Description

Returns the predicted logarithmic reduction in microbial cont according to Geeraerd's model. The isothermal prediction is calculated by analytical integration of the ode for constant temperature

Usage

Geeraerd_iso(time, temp, logC0, a, z)

Arguments

time	numeric vector with the treatment time
temp	numeric vector with the treatment temperature
logC0	model parameter describing the shoulder length
а	model parameter describing the intercept of the relation
z	z-value

get_isothermal_model_data

Isothermal Model Data

Description

Provides information of the models implemented for fitting of isothermal data. This models are valid only for isothermal adjustment with the function fit_isothermal_inactivation. To make predictions with the function predict_inactivation or adjust dynamic experiments with fit_dynamic_inactivation, use get_model_data.

18

get_model_data

Usage

```
get_isothermal_model_data(model_name = "valids")
```

Arguments

model_name Optional string with the key of the model to use.

Value

If model_name is missing, a list of the valid model keys. If model_name is not a valid key, NULL is returned. Otherwise, a list with the parameters of the model selected and its formula for the nonlinear adjustment.

get_model_data Mapping of Simulation Model Functions

Description

Provides information about the function for dynamic predictions associated to a valid simulation_model key. If simulation_model is missing or NULL, a character vector of valid model keys is provided. This function is designed as an assistant for using the functions predict_inactivation and fit_dynamic_inactivation. For the adjustment of isothermal experiments with the function fit_isothermal_inactivation, use the function get_isothermal_model_data.

Usage

```
get_model_data(simulation_model = NULL)
```

Arguments

simulation_model

(optional) character with a valid model key or NULL.

Value

If simulation_model is NULL or missing, a character vector of possible names. Otherwise, a list including information of the relevant function:

- ode: Pointer to the function defining the model ode.
- cost: Pointer to the function calculating the error of the approximation.
- dtemp: logical defining whether the function requires the definition of the first derivative of temperature.
- variables: a character vector defining which entry variables are needed by the model.
- variables_priv: for internal use only.
- parameters: character vector with the parameters needed by the model.

predict_inactivation, fit_dynamic_inactivation

get_prediction_cost Error of the Prediction of Microbial Inactivation

Description

Calculates the error of the prediction of microbial inactivation for the chosen inactivation model and the given parameters with respect to the experimental data provided. This function is compatible with the function fit_dynamic_inactivation.

Usage

```
get_prediction_cost(
   data_for_fit,
   temp_profile,
   simulation_model,
   P,
   known_params
)
```

Arguments

data_for_fit	A data frame with the experimental data to fit. It must contain a column named "time" and another one named "N".
temp_profile	data.frame defining the temperature profile. It must have a column named "time" and another named "temperature".
simulation_mode	el
	character key defining the inactivation model.
Р	list with the unknown parameters of the model to be adjusted.
known_params	list with the parameters of the model fixed (i.e., not adjusted)

Value

An instance of FME::modCost with the error of the prediction.

goodness_dyna

Description

Goodness of fit for Dynamic fits

Usage

goodness_dyna(object)

Arguments

object An instance of FitInactivation

goodness_iso

Goodness of fit for Isothermal fits

Description

Goodness of fit for Isothermal fits

Usage

goodness_iso(object)

Arguments

object An object of class IsoFitInactivation.

goodness_MCMC Goodness of fit for MCMC fits

Description

Goodness of fit for MCMC fits

Usage

```
goodness_MCMC(object)
```

Arguments

object An instance of FitInactivationMCMC

goodness_of_fit

Description

Generates a table with several statistical indexes describing the quality of the model fit:

- ME: Mean Error.
- RMSE: Root Mean Squared Error.
- loglik: log-likelihood.
- AIC: Akaike Information Criterion.
- AICc: Akaike Information Criterion with correction for finite sample size.
- BIC: Bayesian Infromation Criterion.
- Af: Accuracy factor.
- Bf: Bias factor.

Usage

goodness_of_fit(object)

Arguments

object A model fit generated by bioinactivation

is.FitInactivation Test of FitInactivation object

Description

Tests if an object is of class FitInactivation.

Usage

```
is.FitInactivation(x)
```

Arguments

x object to be checked.

Value

A logic specifying whether x is of class FitInactivation

is.FitInactivationMCMC

Test of FitInactivationMCMC object

Description

Tests if an object is of class FitInactivationMCMC.

Usage

is.FitInactivationMCMC(x)

Arguments

x object to be checked.

Value

A logic specifying whether x is of class FitInactivationMCMC

is.IsoFitInactivation Test of IsoFitInactivation object

Description

Tests if an object is of class IsoFitInactivation.

Usage

```
is.IsoFitInactivation(x)
```

Arguments

x object to be checked.

Value

A logic specifying whether x is of class IsoFitInactivation

is.PredInactivationMCMC

Test of PredInactivationMCMC object

Description

Tests if an object is of class PredInactivationMCMC.

Usage

is.PredInactivationMCMC(x)

Arguments

x object to be checked.

Value

A logic specifying whether x is of class PredInactivationMCMC

is.SimulInactivation Test of SimulInactivation object

Description

Tests if an object is of class SimulInactivation.

Usage

```
is.SimulInactivation(x)
```

Arguments

x object to be checked.

Value

A logic specifying whether x is of class SimulInactivation

isothermal_inactivation

Example Isothermal Inactivation of a Microorganis

Description

Example of experimental data for an isothermal process of a microorganism.

Usage

data(isothermal_inactivation)

Format

A data frame with 36 rows and 3 variables.

Details

- time: Time in minutes of the measurement.
- temp: Temperature at which the experiment was made.
- log_diff: Logarithmic difference.

laterosporus_dyna Example Dynamic Inactivation of a Laterosporus

Description

Example of experimental data of the dynamic inactivation process of Laterosporus

Usage

```
data(laterosporus_dyna)
```

Format

A data frame with 20 rows and 3 variables.

Details

- time: Time in minutes of the measurement.
- temp: observed temperature.
- logN: recorded number of microorganism.

laterosporus_iso Example Isothermal Inactivation of a Laterosporus

Description

Example of experimental data for an isothermal process of Laterosporus.

Usage

```
data(laterosporus_iso)
```

Format

A data frame with 52 rows and 3 variables.

Details

- time: Time in minutes of the measurement.
- temp: Temperature at which the experiment was made.
- log_diff: Logarithmic difference.

Metselaar_iso Isothermal Metselaar model

Description

Returns the predicted logarithmic reduction in microbial count according to Metselaars's model for the time, temperature and model parameters given.

Usage

Metselaar_iso(time, temp, D_R, z, p, Delta, temp_ref)

Arguments

time	numeric indicating the time at which the prediction is taken.
temp	numeric indicating the temperature of the treatment.
D_R	numeric defining the delta-value at the reference temperature.
z	numeric defining the z-value.
р	numeric defining shape factor of the Weibull distribution.
Delta	numeric reparametrization factor
temp_ref	numeric indicating the reference temperature.

Value

A numeric with the predicted logarithmic reduction (log10(N/N0)).

Description

Plots a comparison between the experimental data provided and the prediction produced by the model parameters adjusted for an instance of FitInactivation.

Usage

```
## S3 method for class 'FitInactivation'
plot(
    x,
    y = NULL,
    ...,
    make_gg = TRUE,
    plot_temp = FALSE,
    label_y1 = "logN",
    label_y2 = "Temperature",
    ylims = NULL
)
```

Arguments

x	the object of class FitInactivation to plot.
У	ignored
	additional arguments passed to plot.
make_gg	logical. If TRUE, the plot is created using ggplot2. Otherwise, the plot is crated with base R. TRUE by default.
plot_temp	logical. Whether the temperature profile will be added to the plot. FALSE by default.
label_y1	Label of the principal y-axis.
label_y2	Label of the secondary y-axis.
ylims	Numeric vector of length 2 with the Limits of the y-axis. NULL by default (0, max_count).

Value

If make_gg = FALSE, the plot is created. Otherwise, an an instance of ggplot is generated, printed and returned.

```
plot.FitInactivationMCMC
```

Plot of FitInactivationMCMC Object

Description

Plots a comparison between the experimental data provided and the prediction produced by the model parameters adjusted for an instance of FitInactivationMCMC.

Usage

```
## S3 method for class 'FitInactivationMCMC'
plot(
    x,
    y = NULL,
    ...,
    make_gg = TRUE,
    plot_temp = FALSE,
    label_y1 = "logN",
    label_y2 = "Temperature",
    ylims = NULL
)
```

Arguments

x	the object of class FitInactivation to plot.
У	ignored
	additional arguments passed to plot.
make_gg	logical. If TRUE, the plot is created using ggplot2. Otherwise, the plot is crated with base R. TRUE by default.
plot_temp	logical. Whether the temperature profile will be added to the plot. FALSE by default.
label_y1	Label of the principal y-axis.
label_y2	Label of the secondary y-axis.
ylims	Numeric vector of length 2 with the Limits of the y-axis. NULL by default (0, max_count).

Value

If make_gg = FALSE, the plot is created. Otherwise, an an instance of ggplot is generated, printed and returned.

plot.IsoFitInactivation

Plot of IsoFitInactivation Object

Description

For each one of the temperatures studied, plots a comparison between the predicted result and the experimental one for an instance of IsoFitInactivation.

Usage

S3 method for class 'IsoFitInactivation'
plot(x, y = NULL, ..., make_gg = FALSE)

Arguments

х	the object of class IsoFitInactivation to plot.
У	ignored
	additional arguments passed to plot.
make_gg	logical. If TRUE, the plot is created using ggplot2. Otherwise, the plot is crated with base R. FALSE by default.

```
plot.PredInactivationMCMC
```

Plot of PredInactivationMCMC Object

Description

Plots the prediction interval generated by predict_inactivation_MCMC.

Usage

S3 method for class 'PredInactivationMCMC'
plot(x, y = NULL, ..., make_gg = TRUE)

Arguments

х	the object of class PredInactivationMCMC to plot.
у	ignored
	additional arguments passed to plot.
make_gg	logical. If TRUE, the plot is created using ggplot2. Otherwise, the plot is crated with base R. TRUE by default.

Details

The plot generated in ggplot (default) generates a dashed line with the mean of the MC simulations. Moreover, a ribbon with the 2 first quantiles (i.e. columns 3 and 4) is generated.

The plot generated with base R (make_gg = FALSE) generates a solid line with the mean of the MC simulations. Each one of the other quantiles included in the data frame are added with different

Value

If make_gg = FALSE, the plot is created. Otherwise, an an instance of ggplot is generated, printed and returned.

plot.SimulInactivation

Plot of SimulInactivation Object

Description

Plots the predicted evolution of the logarithmic count with time for an instance of SimulInactivation.

Usage

```
## S3 method for class 'SimulInactivation'
plot(
    x,
    y = NULL,
    ...,
    make_gg = TRUE,
    plot_temp = FALSE,
    label_y1 = "logN",
    label_y2 = "Temperature",
    ylims = NULL
)
```

Arguments

x	The object of class SimulInactivation to plot.
У	ignored
	additional arguments passed to plot.
make_gg	logical. If TRUE, the plot is created using ggplot2. Otherwise, the plot is crated with base R. TRUE by default.
plot_temp	logical. Whether the temperature profile will be added to the plot. FALSE by default.
label_y1	Label of the principal y-axis.
label_y2	Label of the secondary y-axis.
ylims	Numeric vector of length 2 with the Limits of the y-axis. NULL by default (0, max_count).

30

Value

If make_gg = FALSE, the plot is created. Otherwise, an an instance of ggplot is generated, printed and returned.

predict_inactivation Prediction of Dynamic Inactivation

Description

Predicts the inactivation of a microorganism under isothermal or non-isothermal temperature conditions. The thermal resistence of the microorganism are defined with the input arguments.

Usage

```
predict_inactivation(
    simulation_model,
    times,
    parms,
    temp_profile,
    ...,
    tol0 = 1e-05
)
```

Arguments

simulation_model

	character identifying the model to be used.
times	numeric vector of output times.
parms	list of parameters defining the parameters of the model.
temp_profile	data frame with discrete values of the temperature for each time. It must have one column named time and another named temperature providing discrete values of the temperature at time points.
	Additional arguments passed to deSolve::ode.
tol0	numeric. Observations at time 0 make Weibull-based models singular. The time for observatins taken at time 0 are changed for this value. By default $(tol0 = 1e-5)$

Details

The value of the temperature is calculated at each value of time by linear interpolation of the values provided by the input argument temp_profile. The function deSolve::ode is used for the resolution of the differential equation.

A list of class SimulInactivation with the results. It has the following entries:

- model: character defining the model use for the prediction.
- model_parameters: named numeric vector with the values of the model parameters used.
- temp_approximations: function used for the interpolation of the temperature. For a numeric value of time given, returns the value of the temperature and its first derivative.
- simulation: A data frame with the results calculated. Its first column contains the times at which the solution has been calculated. The following columns the values of the variables of the model. The three last columns provide the values of logN, S and logS.

Examples

```
## EXAMPLE 1 -----
## Retrieve the model keys available for dynamic models.
get_model_data()
## Set the input arguments
example model <- "Geeraerd" # Geeraerd's model will be used
times <- seq(0, 5, length=100) # values of time for output
model_data <- get_model_data(example_model) # Retrive the data of the model used</pre>
print(model_data$parameters)
print(model_data$variables)
model_parms <- c(D_R = 1,
                 z = 10,
                 N_{min} = 100,
                 temp_ref = 100,
                 N0 = 100000,
                 C_{c0} = 1000
                 )
## Define the temperature profile for the prediction
temperature_profile <- data.frame(time = c(0, 1.25, 2.25, 4.6),</pre>
                                  temperature = c(70, 105, 105, 70))
## Call the prediction function
prediction_results <- predict_inactivation(example_model, times,</pre>
                                            model_parms, temperature_profile)
## Show the results
head(prediction_results$simulation)
plot(prediction_results)
time_to_logreduction(1.5, prediction_results)
## END EXAMPLE 1 ------
```

predict_inactivation_MCMC

Dynamic Prediction Intervals from a Monte Carlo Adjustment

Description

Given a model adjustment of a dynamic microbial inactivation process performed using any of the functions in bioinactivation calculates probability intervals at each time point using a Monte Carlo method.

Usage

```
predict_inactivation_MCMC(
   fit_object,
   temp_profile,
   n_simulations = 100,
   times = NULL,
   quantiles = c(2.5, 97.5),
   additional_pars = NULL
)
```

Arguments

fit_object	$An \ object \ of \ classes \ {\tt FitInactivation} {\tt MCMC}, {\tt IsoFitInactivation} \ or \ {\tt FitInactivation}.$	
temp_profile	data frame with discrete values of the temperature for each time. It must have one column named time and another named temperature providing discrete values of the temperature at time points.	
n_simulations	a numeric indicating how many Monte Carlo simulations to perform. 100 by default.	
times	numeric vector specifying the time points when results are desired. If NULL, the times in MCMC_fit\$best_prediction are used. NULL by default.	
quantiles	numeric vector indicating the quantiles to calculate in percentage. By default, it is set to c(2.5, 97.5) which generates a prediction interval with confidence 0.95. If NULL, the quantiles are not calculated and all the simulations are returned.	
additional_pars		
	Additional parameters not included in the adjustment (e.g. the initial number of microorganism in an isothermal fit).	

Value

A data frame of class PredInactivationMCMC. On its first column, time at which the calculation has been made is indicated. If quantiles = NULL, the following columns contain the results of each simulation. Otherwise, the second and third columns provide the mean and median of the simulations at the given time point. Following columns contain the quantiles of the results.

sample_dynaFit

Description

Function to be called by predict_inactivation_MCMC. Produces a random sample of the parameters adjusted from dynamic experiments with non linear regression.

Usage

sample_dynaFit(dynamic_fit, times, n_simulations)

Arguments

dynamic_fit	An object of class FitInactivationMCMC as generated by fit_inactivation_MCMC.
times	numeric vector specifying the time points when results are desired. If NULL, the times in MCMC_fit\$best_prediction are used.
n_simulations	a numeric indicating how many Monte Carlo simulations to perform.

Details

It is assumed that the parameters follow a Multivariate Normal distribution with the mean the parameters estimated by FME::modFit. The unscaled covariance matrix returned by FME::modFit is used.

The function produces a random sample.

Value

Returns a list with 4 components.

- par_sample: data frame with the parameter sample.
- simulation_model: model key for the simulation
- known_pars: parameters of the model known
- times: points where the calculation is made.

sample_IsoFit

Description

Function to be called by predict_inactivation_MCMC. Produces a random sample of the parameters adjusted from isothermal experiments.

Usage

sample_IsoFit(iso_fit, times, n_simulations)

Arguments

iso_fit	An object of class FitInactivationMCMC as generated by fit_inactivation_MCMC.
times	numeric vector specifying the time points when results are desired. If NULL, an equispaced interval between 0 and the maximum time of the observations with length 50 is used.
n_simulations	a numeric indicating how many Monte Carlo simulations to perform.

Details

It is assumed that the parameters follow a Multivariate Normal distribution with the mean and covariance matrix estimated by the adjustment. The function produces a random sample using the function MASS::mvrnorm.

Value

Returns a list with 4 components.

- par_sample: data frame with the parameter sample.
- simulation_model: model key for the simulation
- known_pars: parameters of the model known
- times: points where the calculation is made.

sample_MCMCfit

Description

Function to be called by predict_inactivation_MCMC. Produces a random sample of the parameters calculated on the iterations of the Monte Carlo simulation.

Usage

```
sample_MCMCfit(MCMC_fit, times, n_simulations)
```

Arguments

MCMC_fit	An object of class FitInactivationMCMC as generated by fit_inactivation_MCMC.
times	numeric vector specifying the time points when results are desired. If NULL, the times in MCMC_fit\$best_prediction are used.
n_simulations	a numeric indicating how many Monte Carlo simulations to perform.

Value

Returns a list with 4 components.

- par_sample: data frame with the parameter sample.
- simulation_model: model key for the simulation
- known_pars: parameters of the model known
- times: points where the calculation is made.

summary.FitInactivation

Summary of a FitInactivation object

Description

Summary of a FitInactivation object

Usage

S3 method for class 'FitInactivation'
summary(object, ...)

Arguments

object	Instance of Fit Inactivation
	ignored

summary.FitInactivationMCMC

Summary of a FitInactivationMCMC object

Description

Summary of a FitInactivationMCMC object

Usage

```
## S3 method for class 'FitInactivationMCMC'
summary(object, ...)
```

Arguments

object	Instance of FitInactivationMCMC
	ignored

summary.IsoFitInactivation

Summary of a IsoFitInactivation object

Description

Summary of a IsoFitInactivation object

Usage

```
## S3 method for class 'IsoFitInactivation'
summary(object, ...)
```

Arguments

object	Instance of IsoFitInactivation
	ignored

time_to_logreduction Time to reach X log reductions

Description

Calculates the treatment time required to reach a given number of log reductions.

Usage

```
time_to_logreduction(n_logs, my_prediction)
```

Arguments

n_logs	Numeric of length one indicating the number of log recutions
<pre>my_prediction</pre>	An object of class SimulInactivation

Details

The treatement time is calculated by linear interpolation betweent the two points of the simulation whose logS is closer to n_logs

WeibullMafart_iso	Isothermal Weibull-Mafart Model

Description

Returns the predicted logarithmic reduction in microbial count according to Weibull-Mafarts's model for the time, temperature and model parameters given.

Usage

WeibullMafart_iso(time, temp, delta_ref, z, p, temp_ref)

Arguments

time	numeric indicating the time at which the prediction is taken.
temp	numeric indicating the temperature of the treatment.
delta_ref	numeric defining the delta-value at the reference temperature.
z	numeric defining the z-value.
р	numeric defining shape factor of the Weibull distribution.
temp_ref	numeric indicating the reference temperature.

Value

A numeric with the predicted logarithmic reduction (log10(N/N0)).

WeibullPeleg_iso Isothermal Weibull-Peleg Model

Description

Returns the predicted logarithmic reduction in microbial count according to Weibull-Peleg's model for the time, temperature and model parameters given.

Usage

WeibullPeleg_iso(time, temp, n, k_b, temp_crit)

Arguments

time	numeric indicating the time at which the prediction is taken.
temp	numeric indicating the temperature of the treatment.
n	numeric defining shape factor of the Weibull distribution.
k_b	numeric indicating the slope of the b~temp line.
temp_crit	numeric with the value of the critical temperature.

Value

A numeric with the predicted logarithmic reduction (log10(N/N0)).

Index

* datasets dynamic_inactivation, 12 isothermal_inactivation, 25 laterosporus_dyna, 25 laterosporus_iso, 26 approxfun, 4 Arrhenius_iso, 3 Bigelow_iso, 3 build_temperature_interpolator,4 check_model_params, 4 dArrhenius_model, 5 dBigelow_model, 6 deSolve::ode, 31 dGeeraerd_model, 7 dMafart model. 8 dMetselaar_model, 10 dPeleg_model, 11 dynamic_inactivation, 12 fit_dynamic_inactivation, 13, 18-20 fit_inactivation_MCMC, 14, 34-36 fit_isothermal_inactivation, 16, 18, 19 FME::modCost. 20 FME::modFit. 13. 34 FME::modMCMC, 14, 15 Geeraerd_iso, 18 get_isothermal_model_data, 18, 19 get_model_data, 18, 19 get_prediction_cost, 20 goodness_dyna, 21 goodness_iso, 21 goodness_MCMC, 21 goodness_of_fit, 22

is.FitInactivation, 22
is.FitInactivationMCMC, 23

is.IsoFitInactivation, 23
is.PredInactivationMCMC, 24
is.SimulInactivation, 24
isothermal_inactivation, 25

laterosporus_dyna, 25
laterosporus_iso, 26

MASS::mvrnorm, 35 Metselaar_iso, 26

nls, *16*, *17*

```
plot.FitInactivation, 27
plot.FitInactivationMCMC, 28
plot.IsoFitInactivation, 29
plot.PredInactivationMCMC, 29
plot.SimulInactivation, 30
predict_inactivation, 5–12, 18–20, 31
predict_inactivation_MCMC, 29, 33, 34–36
```

sample_dynaFit, 34
sample_IsoFit, 35
sample_MCMCfit, 36
summary.FitInactivation, 36
summary.FitInactivationMCMC, 37
summary.IsoFitInactivation, 37

time_to_logreduction, 38

WeibullMafart_iso, 38 WeibullPeleg_iso, 39