Package ‘blockTools’

January 22, 2025
Type Package

Title Block, Assign, and Diagnose Potential Interference in Randomized
Experiments

Version 0.6.6
Date 2025-01-21

Description Blocks units into experimental blocks, with one unit per treatment condition, by creat-
ing a measure of multivariate distance between all possible pairs of units. Maximum, mini-
mum, or an allowable range of differences between units on one variable can be set. Ran-
domly assign units to treatment conditions. Diagnose potential interference between units as-
signed to different treatment conditions. Write outputs to .tex and .csv files. For more informa-
tion on the methods implemented, see Moore (2012) <doi:10.1093/pan/mps025>.

License GPL (>=2) | file LICENSE

Encoding UTF-8

Imports dplyr, MASS, tibble

Suggests nbpMatching, RItools, testthat (>= 3.0.0), xtable
Depends R (>=3.5.0)

Config/testthat/edition 3

URL https://www.ryantmoore.org/html/software.blockTools.html
RoxygenNote 7.3.2
NeedsCompilation yes

Author Ryan T. Moore [aut, cre] (<https://orcid.org/0000-0002-3916-8113>),
Keith Schnakenberg [aut]

Maintainer Ryan T. Moore <rtm@american.edu>
Repository CRAN
Date/Publication 2025-01-22 08:10:05 UTC

Contents

blockTools-package L
assg2xBalance oL

https://doi.org/10.1093/pan/mps025
https://www.ryantmoore.org/html/software.blockTools.html
https://orcid.org/0000-0002-3916-8113

2 blockTools-package

ASSIGNMENT o e e e e e e e e e e e e 5
block e e e 6
block2segblock L 10
createBlockIDs 14
diagnose L e e 15
extract_conditions Lo e 16
invertRIconflnt 17
owtCSV . L e e 20
outTeX . . . o e 21
segblocko e 23
X100 . . . e 28
Index 29
blockTools-package Block, Randomly Assign, and Diagnose Potential Interference in Ran-

domized Experiments

Description

Block units into experimental blocks, with one unit per treatment condition, by creating a measure
of multivariate distance between all possible pairs of units. Maximum, minimum, or an allowable
range of differences between units on one variable can be set. Randomly assign units to treatment
conditions. Diagnose potential interference problems between units assigned to different treatment
conditions. Write outputs to .tex and .csv files.

Details

Given raw data, block creates experimental blocks, assignment assigns units to treatment con-
ditions, diagnose detects possible interference problems, and outTeX and outCSV write block or
assignment output objects to a set of .tex and .csv files, respectively. In sequential experiments,
segblock assigns units to treatment conditions.

Author(s)

Ryan T. Moore [aut, cre] (<rtm@american.edu>), Keith Schnakenberg [aut] (<keith.schnakenberg@gmail.com>)

References

https://www.ryantmoore.org/html/software.blockTools.html

Moore, Ryan T. Multivariate Continuous Blocking to Improve Political Science Experiments. Po-
litical Analysis, 20(4):460-479, 2012.

Moore, Ryan T. and Sally A. Moore. Blocking for Sequential Political Experiments. Political
Analysis, 21(4):507-523, 2013.

https://www.ryantmoore.org/html/software.blockTools.html

assg2xBalance 3

See Also
Useful links:

e https://www.ryantmoore.org/html/software.blockTools.html

Examples

data(x100)

block

out <- block(x100, groups = "g", n.tr = 2, id.vars = c("id"),
block.vars = c("b1", "b2"), algorithm = "optGreedy",
distance = "mahalanobis”, level.two = FALSE, valid.var = "b1",
valid.range = c(0,500), verbose = TRUE)

assign
assg <- assignment(out, seed = 123)

diagnose
diag <- diagnose(object = assg, data = x100, id.vars = "id",
suspect.var = "b2", suspect.range = c(0,50))

create .tex files of assigned blocks
outTeX(assg)

create .csv files of unassigned blocks
outCSV(out)

create block IDs
createBlockIDs(out, x100, id.var = "id")

block ID integers are unique, even with several groups
axb <- assg2xBalance(assg, x100, id.var = "id", bal.vars = c("b1", "b2"))

assg2xBalance Calculate balance statistics from an assignment object

Description

Calculate several balance statistics for experimental units assigned to treatment conditions. Natu-
rally accepts output from the assignment function, and passes it to xBalance from library(RItools).
Provides balance summaries for the entire experiment and by group.

Usage

assg2xBalance(assg.obj, data, id.var, bal.vars, to.report = "all")

https://www.ryantmoore.org/html/software.blockTools.html

4 assg2xBalance

Arguments
assg.obj an output object from assignment.
data the data frame that was input into block for blocking.
id.var a string specifying the column of data containing identifying information.
bal.vars a string or vector of strings specifying which column(s) of data contain the
variables on which balance is to be checked.
to.report a string or vector of strings passed to xBalance listing the measures to report
for each group. See Details for more information.
Details

n o n

As of RItools version0.1-11, to.report mustbe a subset of c("std.diffs","z.scores"”,"adj.means”,

n o n n on

"adj.mean.diffs"”,"adj.mean.diffs.null.sd"”, "chisquare.test”,"p.values”, "all"). The
default, all, returns all measures.

Value

A list of output objects from xBalance. For each group defined in the assignment object, one list
element is assigned the name of that group and summarizes the balance in that group according to
to.report. The last element of the list is named "Overall” and summarizes balance across all
groups. The elements of this list are themselves objects of class c("xbal"”, "list").

If assg.obj has only one group, the first element of the output list is named "Group1”, and the
second is named "Output”. In this case, these two elements will be identical.

Author(s)

Ryan T. Moore

References

Hansen, Ben B. and Jake Bowers. 2008. "Covariate balance in simple, stratified and clustered
comparative studies". Statistical Science 23(2):219-236.

Bowers, Jake and Mark Fredrickson and Ben Hansen. 2010. "RItools:Randomization Inference
Tools". R package version 0.1-11.

Moore, Ryan T. 2012. "Multivariate Continuous Blocking to Improve Political Science Experi-
ments". Political Analysis, 20(4):460-479, Autumn.

See Also

assignment

Examples

data(x100)

b <- block(x100, groups = "g", id.vars = "id", block.vars = c("b1", "b2"))
a <- assignment(b)

axb <- assg2xBalance(a, x100, id.var = "id", bal.vars = c("b1", "b2"))

assignment 5

axb
axb is a list with 4 elements (one for each of 3 groups, plus one for 'Overall')

assignment Randomly assign blocked units to treatment conditions

Description
Using an output object from block, assign elements of each row to treatment condition columns.
Each element is equally likely to be assigned to each column.

Usage
assignment(block.obj, seed = NULL, namesCol = NULL)

Arguments
block.obj an output object from block, or a user-specified block object.
seed a user-specified random seed.
namesCol an optional vector of column names for the output table.
Details

block.obj can be specified directly by the user. It can be a single dataframe or matrix with blocks as
rows and treatment conditions as columns. assignment is designed to take a list with two elements.
The first element should be named $blocks, and should be a list of dataframes. Each dataframe
should have blocks as rows and treatment conditions as columns. The second element should be a
logical named $level. two. A third element, such as $call in a block output object, is currently
ignored.

Specifying the random seed yields constant assignment, and thus allows for easy replication of
experimental protocols.

If namesCol = NULL, then “Treatment 17, “Treatment 2”, ...are used. If namesCol is supplied by
the user and is of length n.tr (or 2*n. tr, where level.two = TRUE), then either "Distance"” or
"Max Distance” is appended to it as appropriate (consistent with namesCol usage in block). If
namesCol is supplied and is of length n.tr + 1 (or 2 * n.tr + 1, where level.two = TRUE), then
the last user-supplied name is used for the last column of each dataframe.

Value
A list with elements

 assg: a list of dataframes, each containing a group’s blocked units assigned to treatment con-
ditions. If there are two treatment conditions, then the last column of each dataframe displays
the multivariate distance between the two units. If there are more than two treatment condi-
tions, then the last column of each dataframe displays the largest of the multivariate distances
between all possible pairs in the block.

e call: the original call to assignment.

6 block

Author(s)

Ryan T. Moore

See Also

block, diagnose

Examples

data(x100)

First, block

out <- block(x100, groups = "g", n.tr = 2, id.vars = c("id"), block.vars
= c("b1", "b2"), algorithm = "optGreedy”, distance = "mahalanobis"”,
level.two = FALSE, valid.var = "b1", valid.range = c(0,500),
verbose = TRUE)

Second, assign
assigned <- assignment(out, seed = 123)

assigned$assg contains 3 data frames

block Block units into homogeneous experimental blocks

Description

Block units into experimental blocks, with one unit per treatment condition. Blocking begins by cre-
ating a measure of multivariate distance between all possible pairs of units. Maximum, minimum,
or an allowable range of differences between units on one variable can be set.

Usage

block(
data,
vcov.data = NULL,
groups = NULL,
n.tr = 2,
id.vars,
block.vars = NULL,
algorithm = "optGreedy”,
distance = "mahalanobis”,
weight = NULL,
optfactor = 10%7,
row.sort = NULL,
level.two = FALSE,
valid.var = NULL,

block 7

valid.range = NULL,
seed.dist,

namesCol = NULL,
verbose = FALSE,

valid.range

)
Arguments

data a dataframe or matrix, with units in rows and variables in columns.

vcov.data an optional matrix of data used to estimate the variance-covariance matrix for
calculating multivariate distance.

groups an optional column name from data, specifying subgroups within which block-
ing occurs.

n.tr the number of treatment conditions per block.

id.vars a required string or vector of two strings specifying which column(s) of data
contain identifying information.

block.vars an optional string or vector of strings specifying which column(s) of data con-
tain the numeric blocking variables.

algorithm a string specifying the blocking algorithm. "optGreedy”, "optimal”, "naiveGreedy"”,
"randGreedy”, and "sortGreedy” algorithms are currently available. See De-
tails for more information.

distance either a) a string defining how the multivariate distance used for blocking is
calculated (options include "mahalanobis”, "mcd”, "mve"”, and "euclidean”),
or b) a user-defined k-by-k matrix of distances, where k is the number of
rows in data.

weight either a vector of length equal to the number of blocking variables or a square
matrix with dimensions equal to the number of blocking variables used to ex-
plicitly weight blocking variables.

optfactor a number by which distances are multiplied then divided when algorithm =
"optimal”.

row.sort an optional vector of integers from 1 to nrow(data) used to sort the rows of
data when algorithm = "sortGreedy".

level. two a logical defining the level of blocking.

valid.var an optional string defining a variable on which units in the same block must fall

within the range defined by valid.range.

an optional vector defining the range of valid.var within which units in the
same block must fall.

seed.dist an optional integer value for the random seed set in cov. rob, used to calculate
measures of the variance-covariance matrix robust to outliers.

namesCol an optional vector of column names for the output table.

verbose a logical specifying whether groups names and block numbers are printed as

blocks are created.

additional arguments passed to cov.rob.

8 block

Details

If vcov.data = NULL, then block calculates the variance-covariance matrix using the block.vars
from data.

If groups is not user-specified, block temporarily creates a variable in data called groups, which
takes the value 1 for every unit.

Where possible, one unit is assigned to each condition in each block. If there are fewer available
units than treatment conditions, available units are used.

If n. tr $> 23, then the optGreedy algorithm finds the best possible pair match, then the best match
to either member of the pair, then the best match to any member of the triple, etc. After finding the
best pair match to a given unit, the other greedy algorithms proceed by finding the third, fourth, etc.
best match to that given unit.

An example of id.varsis id.vars = c("id", "id2"). If two-level blocking is selected, id.vars
should be ordered (unit id, subunit id). See details for 1level . two below for more information.

If block.vars = NULL, then all variables in data except the id.vars are taken as blocking vari-
ables. E.g., block.vars =c("b1", "b2").

The algorithm optGreedy calls an optimal-greedy algorithm, repeatedly finding the best remaining
match in the entire dataset; optimal finds the set of blocks that minimizes the sum of the distances
in all blocks; naiveGreedy finds the best match proceeding down the dataset from the first unit to
the last; randGreedy randomly selects a unit, finds its best match, and repeats; sortGreedy resorts
the dataset according to row. sort, then implements the naiveGreedy algorithm.

The optGreedy algorithm breaks ties by randomly selecting one of the minimum-distance pairs.
The naiveGreedy, sortGreedy, and randGreedy algorithms break ties by randomly selecting one
of the minimum-distance matches to the particular unit in question.

As of version 0.5-1, blocking is done in C for all algorithms except optimal (see following para-
graphs for more details on the optimal algorithm implementation).

The optimal algorithm uses two functions from the nbpMatching package: distancematrix
prepares a distance matrix for optimal blocking, and nonbimatch performs the optimal blocking by
minimizing the sum of distances in blocks. nonbimatch, and thus the block algorithm optimal,
requires thatn.tr = 2.

Because distancematrix takes the integer floor of the distances, and one may want much finer
precision, the multivariate distances calculated within block are multiplied by optfactor prior to
optimal blocking. Then distancematrix prepares the resulting distance matrix, and nonbimatch
is called on the output. The distances are then untransformed by dividing by optfactor before
being returned by block.

The choice of optfactor can determine whether the Fortran code can allocate enough memory
to solve the optimization problem. For example, blocking the first 14 units of x100 by executing
block(x100[1:14, 1, id.vars ="id", block.vars=c("b1", "b2"), algorithm= "optimal”
optfactor = 10*8) fails for Fortran memory reasons, while the same code with optfactor =105
runs successfully. Smaller values of optfactor imply easier computation, but less precision.

Most of the algorithms in block make prohibited blockings by using a distance of Inf. However, the
optimal algorithm calls Fortran code from nbpMatching and requires integers. Thus, a distance
of 99999 * max(dist.mat) is used to effectively prohibit blockings. This follows the procedure
demonstrated in the example of help(nonbimatch).

block 9

In order to enable comparisons of block-quality across groups, when distance is a string, $Sigma$
is calculated using units from all groups.

The distance = "mcd” and distance = "mve” options call cov. rob to calculate measures of multi-
variate spread robust to outliers. The distance = "mcd” option calculates the Minimum Covariance
Determinant estimate (Rousseeuw 1985); the distance = "mve” option calculates the Minimum
Volume Ellipsoid estimate (Rousseeuw and van Zomeren 1990). When distance = "mcd”, the
interquartile range on blocking variables should not be zero.

A user-specified distance matrix must have diagonals equal to 0, indicating zero distance between
a unit and itself. Only the lower triangle of the matrix is used.

If weight is a vector, then it is used as the diagonal of a square weighting matrix with non-diagonal
elements equal to zero. The weighting is done by using as the Mahalanobis distance scaling matrix
$((((chol(Sigma))) {-1})’W((chol(Sigma))")*{-1})*{-1}$, where $chol(Sigma)$ is the Cholesky
decomposition of the usual variance-covariance matrix and W is the weighting matrix. Differ-
ences should be smaller on covariates given higher weights.

If 1evel. two = TRUE, then the best subunit block-matches in different units are found. E.g., provinces
could be matched based on the most similar cities within them. All subunits in the data should have
unique names. Thus, if subunits are numbered 1 to (number of subunits in unit) within each unit,
then they should be renumbered, e.g., 1 to (total number of subunits in all units). level. two block-
ing is not currently implemented for algorithm = "optimal”. Units with no blocked subunit are
put into their own blocks. However, unblocked subunits within a unit that does have a blocked
subunit are not put into their own blocks.

An example of a variable restriction is valid.var = "b2", valid.range = c(10,50), which re-
quires that units in the same block be at least 10 units apart, but no more than 50 units apart, on
variable "b2". As of version 0.5-3, variable restrictions are implemented in all algorithms except
optimal. Note that employing a variable restriction may result in fewer than the maximum pos-
sible number of blocks. See https://www.ryantmoore.org/html/software.blockTools.html
for details.

If namesCol = NULL, then “Unit 17, “Unit 2, ...are used. If level.two = FALSE, then namesCol
should be of length n. tr; if level. two = TRUE, then namesCol should be of length 2*n. tr, and in
the order shown in the example below.

Value

A list with elements

* blocks: alist of dataframes, each containing a group’s blocked units. If there are two treatment
conditions, then the last column of each dataframe displays the multivariate distance between
the two units. If there are more than two treatment conditions, then the last column of each
dataframe displays the largest of the multivariate distances between all possible pairs in the
block.

¢ level.two: a logical indicating whether level. two = TRUE.

* call: the original call to block.

Author(s)

Ryan T. Moore <rtm@american.edu>and Keith Schnakenberg <keith.schnakenberg@gmail.com>

https://www.ryantmoore.org/html/software.blockTools.html

10 block2segblock

References

King, Gary, Emmanuela Gakidou, Nirmala Ravishankar, Ryan T. Moore, Jason Lakin, Manett Var-
gas, Martha Mar\’ia T\’ellez-Rojo and Juan Eugenio Hern\’andez \’ Avila and Mauricio Hern\’andez
\’Avila and H\’ector Hern\’andez Llamas. 2007. "A ’Politically Robust’ Experimental Design for
Public Policy Evaluation, with Application to the Mexican Universal Health Insurance Program".
Journal of Policy Analysis and Management 26(3): 479-5009.

Moore, Ryan T. 2012. "Multivariate Continuous Blocking to Improve Political Science Experi-
ments." Political Analysis 20(4):460-479.

Rousseeuw, Peter J. 1985. "Multivariate Estimation with High Breakdown Point". Mathematical
Statistics and Applications 8:283-297.

Rousseeuw, Peter J. and Bert C. van Zomeren. 1990. "Unmasking Multivariate Outliers and Lever-
age Points". Journal of the American Statistical Association 85(411):633-639.

See Also

assignment, diagnose

Examples

data(x100)

out <- block(x10@, groups = "g", n.tr = 2, id.vars = c("id"),
block.vars = c("b1", "b2"), algorithm = "optGreedy”,
distance = "mahalanobis”, level.two = FALSE, valid.var = "b1",
valid.range = c(@, 500), verbose = TRUE)

out$blocks contains 3 data frames
To illustrate two-level blocking, with multiple level two units per level one unit:

for(i in (1:nrow(x100))){if((i %% 2) == 0){x100$id[i] <- x100%$id[i-1]13}}
out2 <- block(x100, groups = "g", n.tr = 2, id.vars = c("id", "id2"),
block.vars = c("b1", "b2"), algorithm = "optGreedy",
distance = "mahalanobis"”, level.two = TRUE, valid.var = "b1",
valid.range = c(0,500), namesCol = c("State 1", "City 1",
"State 2", "City 2"), verbose = TRUE)

block2segblock Prepare prior nonsequential assignments for subsequent sequential
assignments

Description

Converts output objects from the block and assignment functions into an object in the format of
one output by the segblock function. This allows the user to block and assign multiple units at the
beginning of an experiment (using block and assignment) and then sequentially block and assign
more units to the experiment over time (using seqblock).

block2segblock 11
Usage
block2segblock(
block.obj,
assg.obj,
data,
exact.restr = NULL,
covar.restr = NULL,
covar.order = NULL,
trn = NULL,
apstat = "mean”,
mtrim = 0.1,
apmeth = "ktimes"”,
kfac = 2,
assgpr = c(0.5, 0.5),
distance = NULL,
datetime = NULL,
orig,
seed = NULL,
file.name = "sbout.RData"”,
verbose = FALSE
)
Arguments
block.obj an output object from block, or a user-specified block object
assg.obj an output object from assignment, or a user-specified assignment object
data a matrix or dataframe containing the original data used to block the units in the

exact.restr

covar.restr

covar.order

trn

apstat

mtrim

study

a list object containing the restricted values that the exact blocking variables can
take on. Thus the first element of exact.restr is a vector containing all of
the possible values that the first exact blocking variable can take on; the second
element is a vector containing all of the possible values for the second exact
blocking variable; and so on

a list object containing the restricted values that the non-exact blocking variables
can take on. Thus the first element of covar.restr is a vector containing all
of the possible values that the first non-exact blocking variable can take on; the
second element is a vector containing all of the possible values for the second
non-exact blocking variable; and so on

a string or vector of strings containing the name of the non-exact blocking vari-
ables ordered so that the highest priority covariate comes first, followed by the
second highest priority covariate, then the third, etc.

a string or vector of strings containing the names of the different treatment
groups

a string specifying the assignment probability summary statistic that was used

a numeric value specifying the proportion of observations to be dropped when
the assignment probability statistic takes on the value "trimmean".

12 block2segblock

apmeth a string specifying the assignment probability algorithm that was used.

kfac the assignment probability kfactor; see assg.prob.kfac in the Arguments section
above

assgpr a vector of assignment probabilities to each treatment group

distance a string specifying how the multivariate distance used for blocking is calculated

datetime the date and time that the units were assigned to the treatment group; by default

this is set to be a vector of NA; however the user could also specify a specific
datetime and all of the units from the block object will be given the same date-
time stamp

orig a dataframe containing the names and values for the different id and blocking
variables, as well as each unit’s initial treatment assignment

seed an optional integer value for the random seed set which is used when assigning
units to treatment groups

file.name a string containing the name of the file that one would like the output to be
written to. Ideally this file name should have the extension .RData

verbose a logical stating whether the function should print the name of the output file,
the current working directory, and the dataframe x returned by the function as
part of the bdata list

Details

The function converts data from a blocked experiment into a form allowing subsequent sequential
blocking. Minimally, the user sets only the arguments block.obj, assg.obj and data. Then,
block2segblock uses the call to block, the assignment object, and the original data to create an
object that is ready to be input into seqblock.

If the user explicitly specifies groups, id.vars and block.vars in the initial block function that
is used to create the block.obj, block2segblock will order the variables in the output it produces
according to the order specified in the initial block function call. If the user does not explicitly
specify the blocking variables in the block function call, block2segblock will order the variables
according to the order in the initial matrix or dataframe that was used to run the original block
function.

As part of the function, variables that are of class factor in the original matrix or dataframe speci-
fied in data, will be converted into class character.

The trn argument uses the n. tr argument from block to extract the names of the treatment vari-
ables. Most other arguments are set to default values that mirror those in the seqblock function.
One exception is the datetime argument, which defaults to a vector of NA’s instead of the current
datetime.

Value

A list (called bdata) with elements

* x: a dataframe containing the names and values for the different ID and blocking variables, as
well as each unit’s initial treatment assignment.

* nid: a string or vector of strings containing the name(s) of the ID variable(s).

block2segblock 13

* nex: a string or vector of strings containing the name(s) of the exact blocking variable(s).

* ncv: a string or vector of strings containing the name(s) of the non-exact blocking variable(s).
* rex: a list of the restricted values of the exact blocking variables.

* rcv: alist of the restricted values of the non-exact blocking variables.

* ocv: a vector of the order of the non-exact blocking variables.

* trn: a string or vector of strings containing the name(s) of the different treatment groups.
 apstat: a string specifying the assignment probability summary statistic that was used.

* mtrim: a numeric value specifying the proportion of observations to be dropped when the
assignment probability statistic takes on the value "trimmean”.

* apmeth: a string specifying the assignment probability algorithm that was used.

 kfac: the assignment probability kfactor; see assg.prob.kfac in the Arguments section above.
 assgpr: a vector of assignment probabilities to each treatment group.

* distance: a string specifying how the multivariate distance used for blocking is calculated

 trd: a list with the length equal to the number of previously assigned treatment conditions;
each object in the list contains a vector of the distance between each unit in one treatment
group and the new unit. Set to NULL when there are no non-exact blocking variables.

* tr.sort: a string vector of treatment conditions, sorted from the largest to the smallest

* p: a vector of assignment probabilities to each treatment group used in assigning a treatment
condition to the new unit.

* trcount: a table containing the counts for each experimental/treatment conditions.
* datetime: the date and time that the user was assigned a treatment group.

* orig: a dataframe containing the names and values for the different id and blocking variables,
as well as each unit’s initial treatment assignment.

Author(s)

Tommy Carroll <tcarroll22@wustl.edu>, Jonathan Homola <homola@wustl.edu>, and Ryan T.
Moore <rtm@american.edu>

See Also

block, assignment, segblock

Examples

data(x100)

out <- block(x100, n.tr = 2, id.vars = c("id"), block.vars = c("b1", "b2"),

algorithm = "optGreedy”, distance = "mahalanobis”,

valid.var = "b1", valid.range = c(0,500))

assg.out <- assignment(out, seed = 123)

b2sb <- block2segblock(block.obj = out, assg.obj = assg.out, data = x100)

sb <- segblock("sbout.RData”, id.vals = 1101, covar.vals = c(100, 200), file.name = "sb101.RData")

14 createBlockIDs

createBlockIDs Create vector of integers containing block identifiers

Description
Creates a vector of integers which represent unique blocks in an object output from block or
assignment.

Usage

createBlockIDs(obj, data, id.var)

Arguments

obj An output object from block or assignment.

data The data frame that was input into block for blocking.

id.var A string specifying which column of data contains identifying information.
Details

Under the current implementation, level. two in block should be set to FALSE.

If blocking was performed specifying a groups argument, createBlockIDs will assign block ID
values that are unique across groups. In other words, createBlockIDs does not restart numbering
when it encounters a new group of blocks.

Value
A numeric vector of integers with nrow(data) elements with lowest value equal to 1, corresponding
to the block each unit is in. For units in data that are not in obj, the value of NA is assigned.

Author(s)

Ryan T. Moore

See Also

block, assignment

Examples

data(x100)
out <- block(x10@, groups = "g", n.tr = 2, id.vars = c("id"),
block.vars = c("b1", "b2"))

"s

createBlockIDs(out, x100, id.var = "id")

(Block ID integers are unique, even with several groups.)

diagnose 15

diagnose Diagnose whether units assigned to different treatment conditions may
be subject to interference or pairwise imbalance

Description

List all pairs of units assigned to different treatment conditions whose difference on a specified
variable falls within a specified range.

Usage

diagnose(object, data, id.vars, suspect.var, suspect.range = NULL)

Arguments
object a dataframe or list of dataframes of assigned units, such as output from assignment.
data a dataframe with auxiliary information on assigned units, including the specified
variable suspect.var.
id.vars a required string or vector of two strings specifying which column(s) of data
contain identifying information.
suspect.var a string specifying which column of data contains the variable suspected of

interference or imbalance.

suspect.range avector defining the range of suspect.var within which units in different treat-
ment conditions must fall to be considered suspect.

Details

object requires rows to correspond to blocks and columns to correspond to treatment conditions,
such as output from assignment.

data should include identifying variables and variable suspected of interference or imbalance. Typ-
ically, data may be the same dataframe input into block.

An example of specified identifying variables is id.vars = c("id", "id2"). Unlike block, diagnose
requires that the length of id. vars correspond to the level of the original blocking. See block doc-
umentation for details.

An example of specified suspect range is suspect.var = "b2", suspect.range = c(9,50) iden-
tifies all units assigned to different treatment conditions no more than 50 units apart on variable
”b2 H'

Value

A list of dataframes, each containing a group’s pairs of units assigned to different treatments falling
within suspect.range on the variable suspect.var. The last column of each dataframe displays
the observed difference between the two units.

16 extract_conditions

Author(s)

Ryan T. Moore

See Also

assignment, block

Examples

data(x100)

First, block

out <- block(x100, groups = "g", n.tr = 2, id.vars = c("id"),
block.vars = c("b1", "b2"), algorithm = "optGreedy”,
distance = "mahalanobis”, level.two = FALSE, valid.var = "b1",
valid.range = c(0,500), verbose = TRUE)

Second, assign
assg <- assignment(out, seed = 123)

Third, diagnose

diag <- diagnose(object = assg, data = x100, id.vars = "id",
suspect.var = "b2", suspect.range = c(0,50))
extract_conditions Create vector of integers containing treatment condition identifiers
Description

Creates a vector of integers which represent unique treatment conditions in an object output from
assignment.

Usage

extract_conditions(assg.obj, data, id.var)

Arguments

assg.obj An output object from assignment.

data The data frame that was input into block for blocking.

id.var A string specifying which column of data contains identifying information.
Details

Under the current implementation, level. two in block should be set to FALSE.

invertRIconfInt 17

Value

A numeric vector of integers with nrow(data) elements with lowest value equal to 1, corresponding
to the treatment condition column from the assignment object each unit is in. For example, if the
columns of the assignment object are Treatment and Control (in that order), then Treatment will
be represented by a 1 and Control will be represented by a 2.

For units in data that are not in assg.obj, the value of NA is assigned.

Author(s)
Ryan T. Moore

See Also

assignment

Examples
data(x100)
out <- block(x10@, groups = "g", n.tr = 2, id.vars = c("id"),
block.vars = c("b1", "b2"))
assg <- assignment(out)

extract_conditions(assg, x10@, id.var = "id")

(Treatment conditions are represented by integers.)

invertRIconfInt Calculate treatment effect confidence intervals by inverting the ran-
domization test

Description

Using an output object from segblock or any other matrix or dataframe that includes a treatment
and an outcome variable for multiple units, as well as blocking and non-blocking variables for the
respective unit(s), invertRIconfInt calculates treatment effect confidence intervals by inverting
the randomization inference test.

Usage

invertRIconfInt(
dat,
outcome.var,
tr.var,
tau.abs.min = -1,
tau.abs.max = 1,
tau.length = 10,

18

n.sb.p = 100,

id.vars,
id.vals,
exact.vars
exact.vals

= NULL,
= NULL,

exact.restr = NULL,
exact.alg = "single”,

covar.vars
covar.vals

covar.restr

covars.ord
n.tr = 2,
tr.names =

assg.prob =

= NULL,
= NULL,
= NULL,
= NULL,

NULL,
NULL,

seed = NULL,

seed.dist,

assg.prob.stat = NULL,
trim = NULL,
assg.prob.method = NULL,
assg.prob.kfac = NULL,

distance =

"mahalanobis”,

file.name = "sbout.RData”,
query = FALSE,
verbose = TRUE

Arguments

dat

outcome.var
tr.var

tau.abs.min
tau. abs.max

tau.length

n.sb.p
id.vars
id.vals
exact.vars
exact.vals
exact.restr

exact.alg

invertRIconfInt

a matrix or dataframe containing the names and values of the different blocking
and non-blocking variables, as well as each unit’s treatment assignment and

outcome

a string specifying the name of the outcome variable

a string specifying the name of the treatment variable

lower bound of the range across which the confidence intervals will be computed

upper bound of the range across which the confidence intervals will be computed

the number of (evenly spaced) possible treatment effects across the range speci-
fied by tau.abs.min and tau.abs.max for which location inside or outside the

confidence intervals will be computed

the number of times that sequential blocking will be performed on the dataset

see the segblock documentation
see the segqblock documentation
see the segblock documentation
see the segblock documentation
see the segqblock documentation

see the segblock documentation

invertRIconfInt

covar.vars
covar.vals
covar.restr
covars.ord
n.tr

tr.names
assg.prob

seed

seed.dist
assg.prob.stat

trim

see the segblock documentation
see the segblock documentation
see the segblock documentation
see the segblock documentation
see the seqblock documentation
see the segblock documentation
see the segblock documentation
see the segblock documentation
see the segblock documentation
see the segqblock documentation

see the segblock documentation

assg.prob.method

assg.prob.kfac
distance
file.name

query

verbose

Details

see the segblock documentation
see the segblock documentation
see the segblock documentation
see the segblock documentation
see the segblock documentation

see the segblock documentation

19

invertRIconfInt takes a data matrix (or data frame) containing names and values of different
blocking and non-blocking variables, as well as each unit’s treatment assignment and outcome as

input and returns a list of treatment effect confidence intervals.

Apart from specifying the treatment and outcome variable, the user can set all other arguments
to segblock when running invertRIconfInt. The function will then calculate the confidence
intervals by employing a method described in Ho and Imai (2006), which inverts Fisher’s exact test.
The resulting confidence intervals are distribution-free, nonparametric and have accurate coverage

probabilities.

Value

A list with elements

* ¢i95: vector of treatment effects within the 95% confidence interval
¢ ¢i90: vector of treatment effects within the 90% confidence interval

* ¢i80: vector of treatment effects within the 80% confidence interval

Author(s)

Ryan T. Moore <rtm@american.edu> and Jonathan Homola <homola@wustl.edu>

20 outCSV

References

Moore, Ryan T. and Sally A. Moore. 2013. "Blocking for Sequential Political Experiments."
Political Analysis 21(4): 507-523.

Ho, Daniel E., and Kosuke Imai. 2006. "Randomization inference with natural experiments: An
analysis of ballot effects in the 2003 California recall election." Journal of the American Statistical
Association 101(475): 888-900.

See Also
seqgblock
Examples
Create an example data matrix with 50 observations that contains an ID variable,
a dummy variable indicating gender, an age variable (between 18 and 55), a
treatment variable and an outcome variable (between 15 and 20).
id <- seq(1, 50, 1)
gender <- sample(c(1, 2), 50, replace = TRUE)
age <- sample(seq(18, 55, 1), 50, replace = TRUE)
treat <- sample(c(1, 2), 50, replace = TRUE)
out <- treat + sample(seq(15, 20, 1), 50, replace = TRUE)
df <- cbind(id, gender, age, out, treat)
Check summary statistics for the created data
aggregate(out ~ treat, df, mean)
Run invertRIconfInt()
invertRIconfInt(data, outcome.var="out", tr.var="treat”, tau.abs.min = -3,
tau.abs.max = 3, id.vars = "id", id.vals = "id",
exact.vars = c("gender”, "age"), exact.vals = c("gender"”, "age"))
outCsv Export blocked or assigned data to .csv format files
Description

Exports output from block or assignment to a set of .csv files using write.csv.

Usage
outCSV(block.obj, namesCol = NULL, file.names = NULL, digits = 2, ...)
Arguments
block.obj A list of dataframes, such as output from block or assignment.
namesCol An optional character vector of column names to be used in output files.

file.names An optional character vector of file names specifying the output file names.

outTeX 21

digits An integer representing the number of decimal places to which to round multi-
variate distances in output files, passed to round().

Additional arguments passed to write.csv.

Details

Under the default (file.names = NULL), each file is named “GroupXXX.csv”, where “XXX” is the
group name taken from the input object.

Value

A set of .csv files, one for each element of the input list of blocked or assigned units, written by
write.csv().

Author(s)

Ryan T. Moore

See Also

outTeX, write.csv, block, assignment

Examples

data(x100)

Block and assign:
out <- block(x10@, groups = "g", n.tr = 2, id.vars = "id", block.vars = c("b1", "b2"))
assg <- assignment(out, seed = 123)

create three .csv files of blocks

Not run: outCSV(out)

create three .csv files of assigned blocks

(note: overwrites blocked .csv files)

Not run: outCSV(assg)

create three .csv files with custom file names

Not run: outCSV(assg, file.names = c("filel”, "file2", "file3"))

outTeX Export blocked or assigned data to .tex format files

Description

Exports output from block or assignment to a set of .tex files using print(xtable).

22 outTeX

Usage

outTeX(
block.obj,
namesCol = NULL,
file.names = NULL,
captions = NULL,

digits = 2,
)
Arguments
block.obj A list of dataframes, such as output from block or assignment.
namesCol An optional character vector of column names to be used in output files.
file.names An optional character vector of file names specifying the output file names.
captions An optional character vector of file names specifying the table captions. See
Details below.
digits An integer representing the number of decimal places to which to round multi-
variate distances in output files, passed to round.
Additional arguments passed to xtable.
Details

Under the default (file.names = NULL), each file is named “GroupXXX.tex”, where “XXX" is the
group name taken from the input object. Under the default (captions = NULL), each caption is
“Group XXX.”, where “XXX” is the group name taken from the input object.

outTeX appends . tex to the user-specified file.names.

The table reference labels are created as t: XXX, where XXX is the file name (without . tex) for the
. tex file containing that table.

captions takes a list of strings of length equal to the number of groups in block.obj$blocks, if
block.obj is output from block, or the number of groups in block.obj$assg, if block.obj is
output from assignment.

The tables in the output .tex files can be integrated into an existing .tex document using LaTeX code
‘Ninclude{GroupXXX3}’.

Value

A set of .tex files, one for each element of the input list of blocked or assigned units, written by
print(xtable).

Author(s)

Ryan T. Moore

See Also

outCSV, xtable, block, assignment

segblock 23

Examples

data(x100)

Block and assign:
out <- block(x100, groups = "g", n.tr = 2, id.vars = "id", block.vars = c("b1", "b2"))
assg <- assignment(out, seed = 123)

create three .tex files of blocks

Not run: outTeX(out)

create three .tex files of assigned blocks

(note: overwrites blocked .tex files)

Not run: outTeX(assg)

create three .tex files with custom file names and captions

Not run: outTeX(assg, file.names = c("f1", "f2", "f3"), captions =c("C1.", "C2.", "C3."))
segblock Sequential assignment of unit(s) into experimental conditions using
covariates
Description

Sequentially assign units into experimental conditions. Blocking begins by creating a measure
of multivariate distance between a current unit and one or multiple prior, already-assigned unit(s).
Then, average distance between current unit and each treatment condition is calculated, and random
assignment is biased toward conditions more dissimilar to current unit. Argument values can be
specified either as argument to the function, or via a query. The query directly asks the user to
identify the blocking variables and to input, one-by-one, each unit’s variable values.

Usage

segblock(
object = NULL,
id.vars,
id.vals,
exact.vars = NULL,
exact.vals = NULL,
exact.restr = NULL,
exact.alg = "single",

covar.vars = NULL,
covar.vals = NULL,
covar.restr = NULL,
covars.ord = NULL,
n.tr = 2,

tr.names = NULL,
assg.prob = NULL,
seed = NULL,
seed.dist,

24

segblock

assg.prob.stat = NULL,

trim = NULL,

assg.prob.method = NULL,
assg.prob.kfac = NULL,

distance = NULL,
file.name = NULL,
query = FALSE,
verbose = TRUE,
)
Arguments
object a character string giving the file name of a .RData file containing a list output
from the segblock function which contains at least one previously assigned
unit.
id.vars a string or vector of strings specifying the name of the identifying variable(s); if
query = FALSE and the object argument is not given, then the id.vars argument
is required.
id.vals a vector of ID values for every unit being assigned to a treatment group; those
are corresponding to the id.vars.
exact.vars a string or vector of strings containing the names of each of the exact blocking
variables.
exact.vals a vector containing the unit’s values on each of the exact blocking variables.
exact.restr a list object containing the restricted values that the exact blocking variables can
take on. Thus the first element of exact.restr is a vector containing all of the
possible values that the first exact blocking variable (see exact.vars above)
can take on; the second element is a vector containing all of the possible values
for the second exact blocking variable; and so on.
exact.alg a string specifying the blocking algorithm. Currently the only acceptable value
is "single"”. This algorithm creates a variable with a unique level for every
possible combination of the values in all of the exact variables. See Details
section below.
covar.vars a string or vector of strings containing the names of each of the non-exact block-
ing variables.
covar.vals a vector containing the unit’s values on each of the non-exact blocking variables.
covar.restr a list object containing the restricted values that the non-exact blocking variables

covars.ord

n.tr

can take on. Thus the first element of covar.restr is a vector containing all of
the possible values that the first non-exact blocking variable (see covar.vars
above) can take on; the second element is a vector containing all of the possible
values for the second non-exact blocking variable; and so on.

a string or vector of strings containing the name of the non-exact blocking vari-
ables ordered so that the highest priority covariate comes first, followed by the
second highest priority covariate, then the third, etc.

the number of treatment groups. If not specified, this defaults ton.tr = 2.

segblock 25

tr.names a string or vector of strings containing the names of the different treatment
groups.
assg.prob a numeric vector containing the probabilities that a unit will be assigned to the

treatment groups; this vector should sum to 1.

seed an optional integer value for the random seed, which is used when assigning
units to treatment groups.

seed.dist an optional integer value for the random seed set in cov. rob, used to calculate
measures of the variance-covariance matrix robust to outliers.

assg.prob.stat a string specifying which assignment probability summary statistic to use; valid
values are mean, median, and trimmean. If not specified, this defaults to assg.prob.stat
= "mean”.

trim anumeric value specifying what proportion of the observations are to be dropped
from each tail when the assignment probability summary statistic (assg.prob.stat)
is set equal to trimmean. Blocks on each tail of the distribution are dropped be-
fore the mean is calculated. If not specified, this defaults to trim=0.1.

assg.prob.method
a string specifying which algorithm should be used when assigning treatment
probabilities. Acceptable values are ktimes, fixed, prop, prop2, and wprop. If
not specified, this defaults to assg.prob.method = "ktimes".

assg.prob.kfac anumeric value for k, the factor by which the most likely experimental condition
will be multiplied relative to the other conditions. If not specified, this defaults
to assg.prob.kfac = 2.

distance a string specifying how the multivariate distance used for blocking covariates
are calculated. If not specified, this defaults to distance = "mahalanobis”.

file.name a string containing the name of the file that one would like the output to be
written to. Ideally this file name should have the extension .RData.

query a logical stating whether the console should ask the user questions to input the
data and assign a treatment condition. If not specified, this defaults to query =
FALSE.

verbose a logical stating whether the function should print the name of the output file,

the current working directory, the treatment group that the most recent unit was
assigned to, and the dataframe x returned by the function as part of the bdata
list. If not specified, this defaults to verbose = TRUE.

additional arguments.

Details

The segblock function’s code is primarily divided into two parts: the first half deals with instances,
in which the unit being assigned is the first unit in a given study to receive an assignment; the second
half addresses subsequent units that are assigned after at least one first assignment has already been
made. If the object argument is left as NULL, the function will run the first half; if the object
argument is specified, the second part will be executed. When object = NULL, the researcher has
no past file from which to pull variable names and past data; this corresponds to the case when the
unit being assigned is the first one. If the researcher does specify object, it implies the user is
drawing data from a past file, which means this is not the first unit in the study to be assigned to a
treatment.

26

segblock

However, the function can be called for subsequent units even when object is not specified. By
setting query = TRUE, the console will ask the researcher whether this is the first unit to be assigned
in the study. Based on the researcher’s response, it will decide which part of the code to run.

If the object and file.name arguments are set to the same value, then segblock overwrites the
specified file with a new file, which now contains both the previously-assigned units and the newly-
assigned unit. To create a new file when a new unit is assigned, use a new file.name.

The single algorithm (see exact.alg in the Arguments section above) creates a variable that
has a unique level for every possible combination of the exact variables. As an example, say that
there were 3 exact blocking variables: party (Democrat, Republican); region (North, South); and
education (HS, NHS). The single algorithm creates one level for units with the following val-
ues: Democrat-North-HS. It would create another level for Democrat-North-NHS; a third level for
Republican-North-HS; and so forth, until every possible combination of these 3 variables has its
own level. Thus if there are k exact blocking variables and each exact blocking variable has g;
values it can take on, then there are a total of H’f q; levels created.

The distance = "mcd” and distance = "mve” options call cov. rob to calculate measures of multi-
variate spread robust to outliers. The distance = "mcd"” option calculates the Minimum Covariance
Determinant estimate (Rousseeuw 1985); the distance = "mve" option calculates the Minimum
Volume Ellipsoid estimate (Rousseeuw and van Zomeren 1990). When distance = "mcd”, the in-
terquartile range on blocking variables should not be zero. The distance = "euclidean” option
calculates the Euclidean distance between the new unit and the previously-assigned units. The
default distance = "mahalanobis” option calculates the Mahalanobis distance.

Value

A list (called bdata) with elements
* x: a dataframe containing the names and values for the different ID and blocking variables, as
well as each unit’s initial treatment assignment.
* nid: a string or vector of strings containing the name(s) of the ID variable(s).
* nex: a string or vector of strings containing the name(s) of the exact blocking variable(s).
* ncv: a string or vector of strings containing the name(s) of the non-exact blocking variable(s).
* rex: a list of the restricted values of the exact blocking variables.
* rcv: a list of the restricted values of the non-exact blocking variables.
* ocv: a vector of the order of the non-exact blocking variables.
e trn: a string or vector of strings containing the name(s) of the different treatment groups.
* apstat: a string specifying the assignment probability summary statistic that was used.

e mtrim: a numeric value specifying the proportion of observations to be dropped when the
assignment probability statistic takes on the value "trimmean”.

* apmeth: a string specifying the assignment probability algorithm that was used.

 kfac: the assignment probability kfactor; see assg.prob.kfac in the Arguments section above.
* assgpr: a vector of assignment probabilities to each treatment group.

* distance: a string specifying how the multivariate distance used for blocking was calculated.

* trd: a list with the length equal to the number of previously assigned treatment conditions;
each object in the list contains a vector of the distance between each unit in one treatment
group and the new unit. This will be NULL when there are no non-exact blocking variables.

segblock 27

* tr.sort: a string vector of treatment conditions, sorted from the largest to the smallest. Set to
NULL when there are no non-exact blocking variables.

* p: a vector of assignment probabilities to each treatment group used in assigning a treatment
condition to the new unit.

* distance: a string specifying how the multivariate distance used for blocking is calculated
* trcount: a table containing the counts for each experimental/treatment conditions.
* datetime: the date and time at which each unit was assigned their treatment group.

* orig: a dataframe containing the names and values for the different id and blocking variables,
as well as each unit’s treatment assignment.

Author(s)

Ryan T. Moore <rtm@american.edu>, Tommy Carroll <tcarroll22@wustl.edu>, Jonathan Ho-
mola <homola@wustl.edu> and Jeong Hyun Kim <jeonghyun.kim@wustl.edu>

References

Moore, Ryan T. and Sally A. Moore. 2013. "Blocking for Sequential Political Experiments."
Political Analysis 21(4):507-523.

Moore, Ryan T. 2012. "Multivariate Continuous Blocking to Improve Political Science Experi-
ments." Political Analysis 20(4):460-479.

Rousseeuw, Peter J. 1985. "Multivariate Estimation with High Breakdown Point". Mathematical
Statistics and Applications 8:283-297.

Rousseeuw, Peter J. and Bert C. van Zomeren. 1990. "Unmasking Multivariate Outliers and Lever-
age Points". Journal of the American Statistical Association 85(411):633-639.

See Also

assignment, block

Examples

Assign first unit (assume a 25 year old member of the Republican Party)

to a treatment group. Save the results in file "sdata.RData":

segblock(query = FALSE, id.vars = "ID"”, id.vals = 001, exact.vars = "party”,

exact.vals = "Republican”, covar.vars = "age", covar.vals = 25, file.name = "sdata.RData")

Assign next unit (age 30, Democratic Party):
segblock(query = FALSE, object = "sdata.RData”, id.vals = 002, exact.vals = "Democrat”,
covar.vars = "age"”, covar.vals = 30, file.name = "sdata.RData")

n

28 x100

x100 Simulated data for demonstrating blockTools functionality

Description

Simulated data for demonstrating blockTools functionality.

Usage
data(x100)

Format
A dataframe with 100 rows and 6 columns.
id Identifies units.
id2 Identifies subunits.
b1l Numeric blocking variable 1.
b2 Numeric blocking variable 2.
g Character variable to identify which of three groups each unit is in (“a”, “b”, or “c”).

ig Numeric variable that can be ignored.

Author(s)

Ryan T. Moore

Examples

data(x100)
head(x100)

Index

« 10 outCsy, 20, 22
outCsv, 20 outTeX, 21, 21
outTeX, 21

* datasets seqgblock, 13, 20, 23
x100, 28)

* design write.csv, 2/
asngxBalance,3 X100, 8. 28
assignment, 5 xtable, 22

block, 6
block2segblock, 10
blockTools-package, 2
createBlockIDs, 14
diagnose, 15
extract_conditions, 16
invertRIconfInt, 17
outCsyv, 20
outTeX, 21
segblock, 23

+ multivariate
assg2xBalance, 3
block, 6
segblock, 23

* package
blockTools-package, 2

assg2xBalance, 3
assignment, 4,5, 10, 13, 14, 16, 17,21, 22,27

block, 6, 6, 13, 14, 16, 21, 22,27
block2segblock, 10

blockTools (blockTools-package), 2
blockTools-package, 2
createBlockIDs, 14
diagnose, 6, 10, 15

extract_conditions, 16

invertRIconfInt, 17

29

	blockTools-package
	assg2xBalance
	assignment
	block
	block2seqblock
	createBlockIDs
	diagnose
	extract_conditions
	invertRIconfInt
	outCSV
	outTeX
	seqblock
	x100
	Index

