Package 'bonsaiforest'

June 17, 2024

```
Type Package
Title Shrinkage Based Forest Plots
Version 0.1.0
Date 2024-06-12
Description Subgroup analyses are routinely performed in clinical trial
      analyses. From a methodological perspective, two key issues of
      subgroup analyses are multiplicity (even if only predefined subgroups
      are investigated) and the low sample sizes of subgroups which lead to
      highly variable estimates, see e.g. Yusuf et al (1991)
      <doi:10.1001/jama.1991.03470010097038>.
      This package implements subgroup estimates
      based on Bayesian shrinkage priors, see Carvalho et al (2019)
      <a href="https://proceedings.mlr.press/v5/carvalho09a.html">https://proceedings.mlr.press/v5/carvalho09a.html</a>. In addition, estimates
      based on penalized likelihood inference are available, based on Simon et al (2011)
      <doi:10.18637/jss.v039.i05>. The corresponding shrinkage based forest plots
      address the aforementioned issues and can complement standard forest plots
      in practical clinical trial analyses.
License Apache License 2.0
URL https://github.com/insightsengineering/bonsaiforest/
BugReports https://github.com/insightsengineering/bonsaiforest/issues
Depends R (>= 4.1)
Imports brms, broom, checkmate, dplyr, forcats, gbm, ggplot2, glmnet,
      MASS, Rcpp, splines2, stats, survival, tibble, tidyr,
      tidyselect, vdiffr
Suggests knitr, rmarkdown, testthat (>= 3.0.0)
LinkingTo Rcpp, RcppArmadillo
VignetteBuilder knitr
Config/testthat/edition 3
Encoding UTF-8
Language en-US
```

2 Contents

LazyData true
LazyDataCompression xz
RoxygenNote 7.3.1
NeedsCompilation yes
Author Mar Vazquez Rabunal [aut], Daniel Sabanés Bové [aut], Marcel Wolbers [aut], Isaac Gravestock [cre], F. Hoffmann-La Roche AG [cph, fnd]
Maintainer Isaac Gravestock <isaac.gravestock@roche.com< th=""></isaac.gravestock@roche.com<>
Repository CRAN
Date/Publication 2024-06-17 16:00:02 UTC

Contents

ahr_estimation	 . 3
ahr_from_km	 . 4
compare	 . 5
design_dummy1	 . 5
design_matrix1	 . 6
elastic_net	 . 6
elastic_net_fit_bin	 . 7
elastic_net_fit_surv	 . 8
elastic_net_surv	 . 8
example_data	 . 10
•	
horseshoe	 . 11
lor_estimation	 . 13
naivepop fit bin	 . 16
. . – –	
naive_fit_bin	 . 17
naive_fit_surv	 . 17
plot.summary.elastic_net	 . 18
•	
· ·	
1 1	
• –	
- * * *	

ahr_estimation 3

Index		33
	trt_horseshoe	32
	survival_curves	31
	summary.naivepop	30
	summary.naive	30
	summary.horseshoe	29
	summary.elastic_net	28
	subgroups	27
	simul_pfs	26
	simul_data	
	simul_covariates	24

ahr_estimation

Average Hazard Ratio Estimation

Description

Function to obtain the average hazard ratio.

Usage

```
ahr_estimation(x_subg, dummy_subg, est_coef, h0, gamma = 1)
```

Arguments

x_subg (matrix)

the matrix with the subgroup covariates.

dummy_subg (matrix)

the dummy matrix with the subgroup covariates.

est_coef (matrix)

the estimated coefficients from the fitted model.

h0 (numeric)

the vector with the cumulative baseline hazard.

gamma (scalar)

numeric value defining the weights to obtain the average hazard ratio. Default is 1 (in this case the average hazard ratio obtained can be interpreted as the odds

of concordance).

Value

Average hazard ratio

```
ahr_estimation(
  elastic_net_surv$design1, elastic_net_surv$dummy1,
  elastic_net_surv$est_coef, elastic_net_surv$h0
)
```

4 ahr_from_km

ahr	from	km
aiii _	_ 1 1 0111_	_17111

Average Hazard Estimation based on Kaplan-Meier Estimates

Description

Average Hazard Estimation based on Kaplan-Meier Estimates

Usage

```
ahr_from_km(resp, trt, data, status, t_quantile = 0.99)
```

Arguments

resp	(string)
1 656	(301 1116)

the response variable name.

trt (string

the treatment variable name. The treatment variable must be a factor with 2

levels where the first level is the control and the second one the treatment.

data (data frame)

the data frame with the variables.

status (string)

the status variable name in survival data.

t_quantile (number)

definition of the quantile.

Details

Estimates can be unstable due to the variability of the Kaplan-Meier estimates in the tails. The t_quantile argument can address this, e.g. by setting it to 0.95, the 5% highest times will be discarded. By default, the 1% highest times are discarded.

Value

The estimated average hazard ratio of the treatment (second level of trt) versus the control (first level of trt).

```
ahr_from_km("tt_pfs", "arm", example_data, "ev_pfs")
ahr_from_km("tt_pfs", "arm", example_data, "ev_pfs", t_quantile = 0.95)
```

compare 5

compare

Compare Treatment Estimate Methods

Description

Function to create a data set with the results for all the methods in order to compare them.

Usage

```
compare(...)
```

Arguments

... Objects of class bonsaiforest. We write them separated by a comma.

Value

List with a data.frame of the estimated subgroup treatment effects, with the overall treatment effect and with the response type of our data.

Examples

```
compare(naivepop_fit_surv, naive_fit_surv, elastic_net_fit_surv)
```

 $design_dummy1$

Design Dummy Subgroup x_1a

Description

The dummy design matrix from example_data considering just observations from subgroup x_1a.

Usage

```
design_dummy1
```

Format

A matrix with 0 and 1 indicating the subgroups of each of the observations.

Source

This is an artificial example.

6 elastic_net

design_matrix1

Design Matrix Subgroup x_1a

Description

The design matrix from example_data considering just observations from subgroup x_1a .

Usage

```
design_matrix1
```

Format

A matrix with 0 and 1 indicating the subgroups of each of the observations and their interactions with the treatment variable.

Source

This is an artificial example.

elastic_net

Elastic Net Penalization Model Estimation

Description

Function to fit the elastic net penalization model to the data. This model penalizes the interaction between the covariates and the treatment but leaves unpenalized the main effects.

```
elastic_net(
  resp,
  trt,
  subgr,
  covars,
  data,
  resptype = c("survival", "binary"),
  alpha,
  status = NULL
)
```

elastic_net_fit_bin 7

Arguments

resp (string)

the response variable name.

trt (string)

the treatment variable name. The treatment variable must be a factor with 2

levels where the first level is the control and the second one the treatment.

subgr (character)

vector with the name of the subgroup variables from which we want to obtain the

subgroup treatment effect. They have to be factor variables with the subgroups

as levels.

covars (character)

vector with the name of the variables that we want to include in the model. They have to be factor variables with the subgroups as levels. The subgr variables

have to be included here.

data (data frame)

the data frame with the variables.

resptype (string)

the type of data used. Can be "survival" or "binary".

alpha (scalar)

the elastic net mixing parameter with values between 0 and 1. The special case

of alpha=1 corresponds to a lasso penalty and the case of alpha=0 to a ridge

penalty.

status (string)

only for "survival" resptype, the status variable name in survival data.

Value

List with fit, model, resptype, data, alpha, design_matrix, design_dummy, y, subgr_names.

Examples

```
elastic_net(
  "tt_pfs", "arm", c("x_1", "x_2"), c("x_1", "x_2", "x_3"),
  example_data, "survival", 1, "ev_pfs"
)
```

elastic_net_fit_bin Elastic Net Fit Binary

Description

A fitted model with the elastic_net function and binary data.

```
elastic_net_fit_bin
```

8 elastic_net_surv

Format

A elastic_net object fitted with example_data, considering as subgroup variables all the covariates $x_1, ..., x_{10}$ and binary response type.

Source

This is an artificial example.

Description

A fitted model with the elastic_net function and survival data.

Usage

```
elastic_net_fit_surv
```

Format

A elastic_net object fitted with example_data, considering as subgroup variables all the covariates $x_1, ..., x_{10}$ and survival response type.

Source

This is an artificial example.

elastic_net_surv

H0, Coefficients Elastic Net Survival Model and Matrices

Description

List with the cumulative baseline hazard, with the estimated coefficients of the model fitted with an elastic net and survival data, with the general design matrix and with the design and dummy matrices for subgroup x_1a.

```
elastic_net_surv
```

est_coef_bin1 9

Format

A list with three elements:

- h0: the cumulative baseline hazard.
- est_coef: the estimated coefficients of the fitted model.
- x: the design matrix of the model.
- dummy1: the dummy matrix of the model for subgroup x_1a.
- design1: the design matrix of the model for subgroup x_1a.

Source

This is an artificial example.

est_coef_bin1

Estimated coefficients elastic net Binary

Description

The coefficients of the model elastic_net_fit_bin when lambda takes the value that leads to minimal cross validation error.

Usage

est_coef_bin1

Format

A matrix with the coefficients of the elastic net model.

Source

This is an artificial example.

example_data

Example data

Description

A simulated data set for a realistic scenario of a clinical trial.

Usage

```
example_data
```

Format

A data.frame with 1000 rows and 14 columns:

- id: Integer variable with the id of the patient.
- arm: Factor variable with 2 levels: control and treatment.
- x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_10: Factor variables that represent covariates of the patients (e.g. sex, region, race, etc.).
- tt_pfs: Continuous variable with the progression free survival time of each patient.
- ev_pfs: Binary variable with the progression free survival status of each patient. 0 indicates that the event of interest did not happen and 1 indicates that it did.

Source

This is an artificial dataset.

generate_stacked_data Generation of Stacked Data by Subgroups

Description

Function to generate stacked data by the subgroups considered in the model.

```
generate_stacked_data(
  base_model,
  subgroup_model,
  data,
  resptype = c("survival", "binary")
)
```

horseshoe 11

Arguments

base_model (formula)

the formula of the basic model that is going to be fitted. Depending on resptype it will be the formula corresponding to a coxph model or to a glm model. In the case of "survival" a formula like Surv(time, status) ~ trt would be expected and

in the "binary" case a formula like y ~ trt.

subgroup_model (formula)

the formula with all the subgroup variables.

data (data frame)

the data frame with the variables.

resptype (string)

the type of data used. Can be "survival" or "binary".

Value

Data frame of the stacked data.

Examples

```
generate\_stacked\_data(Surv(tt\_pfs, ev\_pfs) ~ arm, ~ x\_1 + x\_2, example\_data, "survival")
```

horseshoe

Bayesian Shrinkage Model Estimation

Description

Function to fit a bayesian shrinkage model with a regularized horseshoe prior on the interaction coefficients between the subgrouping covariates and the treatment.

```
horseshoe(
  resp,
  trt,
  subgr,
  covars,
  data,
  resptype = c("survival", "binary"),
  status = NULL,
  ...
)
```

horseshoe_fit_bin

Arguments

resp	(string) the response variable name.
trt	(string) the treatment variable name. The treatment variable must be a factor with 2 levels where the first level is the control and the second one the treatment.
subgr	(character) vector with the name of the subgroup variables from which we want to obtain the subgroup treatment effect. They have to be factor variables with the subgroups as levels.
covars	(character) vector with the name of the variables that we want to include in the model. They have to be factor variables with the subgroups as levels. The subgr variables have to be included here.

data (data frame)

the data frame with the variables.

resptype (string)

the type of data used. Can be "survival" or "binary".

status (string)

only for "survival" resptype, the status variable name in survival data.

. . . Additional arguments from the brm function.

Value

List with fit, model, resptype, data, alpha, design_matrix, design_dummy, y, subgr_names.

Examples

```
horseshoe("ev_pfs", "arm", c("x_1", "x_2"), c("x_1", "x_2", "x_3"),
  example_data, "binary",
  chains = 1, seed = 0, control = list(adapt_delta = 0.95),
  iter = 50 # In practice, you need to omit this or set it much higher!
)
```

horseshoe_fit_bin

Horseshoe Fit Binary

Description

A fitted model with the horseshoe function and binary data.

Usage

horseshoe_fit_bin

horseshoe_fit_surv 13

Format

A horseshoe object fitted with example_data, considering as subgroup variables just the covariates x_1 and x_2 and binary response type.

Source

This is an artificial example.

Description

A fitted model with the horseshoe function and survival data.

Usage

horseshoe_fit_surv

Format

A horseshoe object fitted with example_data, considering as subgroup variables just the covariates x_1 and x_2 and survival response type.

Source

This is an artificial example.

Description

Function to estimate the subgroup log-odds ratio for binary data.

Usage

```
lor_estimation(x_subg, dummy_subg, est_coef)
```

Arguments

x_subg (matrix)

the matrix with the subgroup covariates.

dummy_subg (matrix)

the dummy matrix with the subgroup covariates.

est_coef (matrix)

the estimated coefficients from the fitted model.

14 naive

Value

Log-odds ratio of the studied subgroup.

Examples

```
lor_estimation(design_matrix1, design_dummy1, est_coef_bin1)
```

naive

Naive Model Estimation

Description

Function to fit the naive models to the data of each one of the subgroups.

Usage

```
naive(
  resp,
  trt,
  subgr,
  data,
  resptype = c("survival", "binary"),
  status = NULL
)
```

Arguments

resp	(string) the response variable name.
trt	(string) the treatment variable name. The treatment variable must be a factor with 2 levels where the first level is the control and the second one the treatment.
subgr	(character) vector with the name of the subgrouping variables. These variables have to be factor variables with the subgroups as levels.
data	(data frame) the data frame with the variables.
resptype	(string) the type of data used. Can be "survival" or "binary".
status	(string)

only for "survival" resptype, the status variable name in survival data.

Value

List with fit, estimates, model, resptype, data.

naivepop 15

Examples

```
naive("tt_pfs", "arm", c("x_1", "x_2"), example_data, "survival", "ev_pfs")
```

naivepop

Naive Overall Population Model Estimation

Description

Function to fit the naive overall population model to the data. This model is going to estimate the subgroup treatment effects with the overall population treatment effect.

Usage

```
naivepop(resp, trt, data, resptype = c("survival", "binary"), status = NULL)
```

Arguments

resp	(string)

the response variable name.

trt (string)

the treatment variable name. The treatment variable must be a factor with 2

levels where the first level is the control and the second one the treatment.

data (data frame)

the data frame with the variables.

resptype (string)

the type of data used. Can be "survival" or "binary".

status (string)

only for "survival" resptype, the status variable name in survival data.

Value

List with fit, model, resptype, data.

```
naivepop("tt_pfs", "arm", example_data, "survival", "ev_pfs")
```

naivepop_fit_surv

naivepop_fit_bin

Naivepop Fit Binary

Description

A fitted model with the naivepop function and binary data.

Usage

```
naivepop_fit_bin
```

Format

A naivepop object fitted with example_data, considering as subgroup variables all the covariates $x_1, ..., x_10$ and binary response type.

Source

This is an artificial example.

naivepop_fit_surv

Naivepop Fit Survival

Description

A fitted model with the naivepop function and survival data.

Usage

```
naivepop_fit_surv
```

Format

A naivepop object fitted with example_data, considering as subgroup variables all the covariates $x_1, ..., x_10$ and survival response type.

Source

This is an artificial example.

naive_fit_bin 17

naive_fit_bin

Naive Fit Binary

Description

A fitted model with the naive function and binary data.

Usage

```
naive_fit_bin
```

Format

A naive object fitted with example_data, considering as subgroup variables all the covariates x_1 , ..., x_10 and binary response type.

Source

This is an artificial example.

naive_fit_surv

Naive Fit Survival

Description

A fitted model with the naive function and survival data.

Usage

```
naive_fit_surv
```

Format

A naive object fitted with example_data, considering as subgroup variables all the covariates x_1 , ..., x_10 and survival response type.

Source

This is an artificial example.

plot.compare.data

Compare Forest Plots

Description

Function to obtain a forest plot with all the different fitted models in order to compare their performance.

Usage

```
## S3 method for class 'compare.data' plot(x, ...)
```

Arguments

x (compare.data)

object with the data of treatment effects estimated with the different methods.

. . . Additional arguments to plot.

Value

Forest plot with all the methods that are compared.

Examples

```
plot(compare(naivepop_fit_surv, naive_fit_surv, elastic_net_fit_surv))
```

```
plot.summary.elastic_net
```

Forest plot Summary Elastic Net

Description

Plot the forest plot of the summary of a elastic_net object.

Usage

```
## S3 method for class 'summary.elastic_net'
plot(x, ...)
```

Arguments

```
x (summary.elastic_net)
```

summary of a elastic_net object.

... Additional arguments to plot.

plot.summary.horseshoe

Value

Forest plot

Examples

```
plot(summary(elastic_net_fit_surv))
```

```
plot.summary.horseshoe
```

Forest plot Summary Horseshoe

Description

Plot the forest plot of the summary of a horseshoe object.

Usage

```
## S3 method for class 'summary.horseshoe' plot(x, \ldots)
```

Arguments

x (summary.horseshoe) summary of a horseshoe object.

... Additional arguments to plot.

Value

Forest plot

```
plot(summary(horseshoe_fit_bin))
```

20 preprocess

plot.summary.naive

Forest plot Summary Naive

Description

Plot the forest plot of the summary of a naive object.

Usage

```
## S3 method for class 'summary.naive' plot(x, ...)
```

Arguments

```
x (summary naive)
summary of a naive object.
... Additional arguments to plot.
```

Value

Forest plot

Examples

```
plot(summary(naive_fit_surv))
```

preprocess

Data Preprocessing

Description

Function to preprocess the data and obtain the design matrices corresponding to a model with just interaction of the covariates with the treatment, to a model with just the main effects and to a model just with the covariates and one-hot encoding.

```
preprocess(trt, subgr, covars, data)
```

Arguments

trt (string)

the treatment variable name. The treatment variable must be a factor with 2

levels where the first level is the control and the second one the treatment.

subgr (character)

vector with the name of the subgroup variables from which we want to obtain

the subgroup treatment effect.

covars (character)

vector with the name of the variables that we want to include in the model. The

subgr variables have to be included here.

data (data frame)

the data frame with the variables.

Value

List with design_ia, design_main, design_dummy, subgr_names.

Examples

```
{\tt preprocess("arm", \ c("x\_1", \ "x\_2"), \ c("x\_1", \ "x\_2", \ "x\_3"), \ example\_data)}
```

```
print.summary.elastic_net
```

Print Function for Elastic Net Summary

Description

Function that prints the summary of a elastic_net object

Usage

```
## S3 method for class 'summary.elastic_net'
print(x, ...)
```

Arguments

x (summary.elastic_net)

Summary of a elastic_net object.

... Other arguments of print.

Value

The summary of the object.

```
print(summary(elastic_net_fit_bin))
```

22 print.summary.naive

```
print.summary.horseshoe
```

Print Function for Horseshoe Summary

Description

Function that prints the summary of a horseshoe object

Usage

```
## S3 method for class 'summary.horseshoe' print(x, ...)
```

Arguments

```
x (summary.horseshoe)
```

Summary of a horseshoe object.

... Other arguments of print.

Value

The summary of the object.

Examples

```
print(summary(horseshoe_fit_bin))
```

print.summary.naive

Print Function for Naive Summary

Description

Function that prints the summary of a naive object

Usage

```
## S3 method for class 'summary.naive' print(x, ...)
```

Arguments

```
x (summary.naive)
```

Summary of a naive object.

... Other arguments of print.

print.summary.naivepop 23

Value

The summary of the object.

Examples

```
print(summary(naive_fit_bin))
```

```
print.summary.naivepop
```

Print Function for Naivepop Summary

Description

Function that prints the summary of a naivepop object

Usage

```
## S3 method for class 'summary.naivepop' print(x, ...)
```

Arguments

```
x (summary.naivepop)
Summary of a naivepop object.
```

... Other arguments of print.

Value

The summary of the object.

```
print(summary(naivepop_fit_bin))
```

24 simul_covariates

simul_covariates Generation of a Design Matrix for Simulations

Description

This function uses a block diagonal covariance matrix for the underlying multivariate normal data to create the design matrix in blocks of 10, see the details.

Usage

```
simul_covariates(n, p_catvar = 10, add_contvars = FALSE, arm_factor = FALSE)
```

Arguments

n (count)
number of rows (observations).

p_catvar (count)
number of covariates (excluding treatment arm).

add_contvars (flag)
whether to add continuous covariates.

arm_factor (flag)

Details

The following pattern is repeated for the covariate blocks:

- The first 5 covariates are uncorrelated with everything.
- The covariates 6 to 8 have "moderate" correlation (0.25) between each other.

whether to make the arm variable a factor.

• The covariates 9 and 10 have "high" correlation (0.5).

By default, only the resulting categorical covariates obtained by thresholding are included. Optionally also the original continuous covariates are included in the returned design matrix.

Value

The design matrix.

```
simul_covariates(n = 10, p_catvar = 3, add_contvars = FALSE)
simul_covariates(n = 10, p_catvar = 3, add_contvars = TRUE)
simul_covariates(n = 10, p_catvar = 3, add_contvars = TRUE, arm_factor = TRUE)
```

simul_data 25

simul_data

Simulate Covariates and Progression Free Survival Data

Description

This combines the covariates simulation via simul_covariates() with 10 categorical covariates, and the PFS simulation via simul_pfs().

Usage

```
simul_data(n, add_interaction = FALSE, coefs, ...)
```

Arguments

```
n (count)
number of patients.

add_interaction

(flag)
whether to add interaction terms between covariates 1 and 2.

coefs
(numeric)
named vector of coefficients to set.

... additional parameters apart from the linear predictor values needed for simul_pfs().
```

Details

Regression coefficients are for an AFT with over-parametrized dummy coding for arm-subgroup interactions.

Value

A combined data. frame with the id column, the design matrix and the PFS outcomes.

```
set.seed(321)
simul_data(
    n = 100,
    coefs = c(arm1 = 1),
    sigma_aft = 1,
    recr_duration = 0.2,
    rate_cens = 2,
    n_events = 20
)
```

26 simul_pfs

simul_pfs

Simulation of Progression Free Survival Times

Description

Simulation of Progression Free Survival Times

Usage

```
simul_pfs(
    lp_aft,
    sigma_aft,
    recr_duration,
    rate_cens,
    n_events,
    add_uncensored_pfs = FALSE
)
```

Arguments

```
lp_aft (numeric)
linear predictor values for the accelerate failure time model (AFT).

sigma_aft (number)
standard deviation for the AFT model.

recr_duration (number)
duration of recruitment.

rate_cens (number)
rate for the exponentially distributed censoring process.

n_events (count)
number of events to reach for the study end.

add_uncensored_pfs
(flag)
whether to add the uncensored PFS as well to the resulting data.frame.
```

Value

A data.frame with columns tt_pfs (PFS time) and ev_pfs (corresponding event indicator with 1 for an event and 0 for censored), and optionally tt_pfs_uncens.

```
set.seed(123)
simul_pfs(
    lp_aft = rnorm(100),
    sigma_aft = 1,
    recr_duration = 0.2,
```

subgroups 27

```
rate_cens = 2,
n_events = 20
)
```

subgroups

Subgroup Treatment Effect

Description

Function to obtain the estimated treatment effect in each one of the considered subgroups.

Usage

```
subgroups(object, est_coef, h0 = NULL, gamma = 1)
```

Arguments

object (bonsaiforest)

the fitted bonsaiforest object.

est_coef (matrix)

the estimated coefficients from the fitted model.

h0 (numeric)

the vector with the cumulative baseline hazard. Present just for resptype sur-

vival.

gamma (scalar)

numeric value defining the weights to obtain the average hazard ratio. Default is 1 (in this case the average hazard ratio obtained can be interpreted as the odds

of concordance).

Value

data. frame with the subgroup names and with the estimated subgroup treatment effects.

```
subgroups(
  elastic_net_fit_surv, elastic_net_surv$est_coef,
  elastic_net_surv$h0
)
```

28 summary.elastic_net

summary.elastic_net Summary Elastic Net Function

Description

Function to obtain the naive subgroup treatment effects of an object fitted with the elastic_net function.

Usage

```
## S3 method for class 'elastic_net'
summary(object, gamma = 1, 1 = NULL, lambda = NULL, ...)
```

Arguments

object (elastic_net)

the elastic_net object.

gamma (scalar)

numeric value defining the weights to obtain the average hazard ratio. Default is 1 (in this case the average hazard ratio obtained can be interpreted as the odds

15 1 (III tills case the average hazard ratio obtained can be interpre

of concordance). Just needed when using survival data.

1 (scalar)

the maximum value of time that wants to be studied to obtain the average hazard ratio. Default is the maximum value of time when there was an event. Just

needed when using survival data.

lambda (scalar)

the penalization constant in the elastic net. Default is the value that leads to

minimal cross validation error.

... Arguments of summary

Value

Object of class summary.elastic_net which is a list with the estimated subgroup treatment effects, the resptype, the confidence level and the value of alpha.

```
summary(elastic_net_fit_surv)
```

29 summary.horseshoe

summary.h	orseshoe
-----------	----------

Summary Horseshoe Function

Description

Function to obtain the estimated subgroup treatment effects from a horseshoe model and a credible interval for them.

Usage

```
## S3 method for class 'horseshoe'
summary(object, conf = 0.95, gamma = 1, 1 = NULL, m = 50, ...)
```

Arguments

(horseshoe)

the horseshoe object.

conf (scalar)

the level of the credible intervals. Default is 0.95.

(scalar) gamma

> numeric value defining the weights to obtain the average hazard ratio. Default is 1 (in this case the average hazard ratio obtained can be interpreted as the odds

of concordance). Just needed when using survival data.

1

the maximum value of time that wants to be studied to obtain the average hazard ratio. Default is the maximum value of time when there was an event. Just

needed when using survival data.

(scalar) m

the value that defines the equally spaced time points where the survival curves

are going to be studied. Default is 50. Just needed when using survival data.

Arguments of summary.

Value

Object of class summary. horseshoe which is a list with the approximated posterior distribution of the treatment effects, a data.frame with the estimated subgroup treatment effect (with the median) and the bounds of the credible intervals, the resptype and the confidence level.

```
summary(horseshoe_fit_bin)
```

30 summary.naivepop

summary.naive Summary Naive

Description

Function to obtain the naive subgroup treatment effects of an object fitted with the naive function.

Usage

```
## S3 method for class 'naive'
summary(object, conf = 0.95, ...)
```

Arguments

object (naive)

the naive object.

conf (scalar)

the confidence level of the intervals. Default is 0.95.

... Arguments of summary.

Value

Object of class summary.elastic_net which is a list with a data.frame with 4 columns (the subgroup variables, the estimated treatment effect and the low and high bounds of the confidence interval of the treatment effect), the resptype and the confidence level.

Examples

```
\verb|summary| (\verb|naive_fit_surv|) \\
```

summary.naivepop

Summary Naivepop Function

Description

Function to obtain the overall subgroup treatment effect of a naivepop object.

Usage

```
## S3 method for class 'naivepop'
summary(object, ...)
```

Arguments

object (naivepop)

the naivepop object.

... Arguments of summary.

survival_curves 31

Value

Object of class summary.naivepop which is a list with the estimated subgroup treatment effects and the resptype.

Examples

```
summary(naivepop_fit_surv)
```

survival_curves

Average Survival Curves

Description

Function to obtain the average survival curve from all individual survival curves.

Usage

```
survival_curves(x, h0, est_coef)
```

Arguments

x (matrix)

the matrix with the subgroup covariates.

h0 (numeric)

the vector with the cumulative baseline hazard.

est_coef (matrix)

the estimated coefficients from the fitted model.

Value

The survival probabilities at the sorted event times.

```
survival_curves(
  elastic_net_surv$x, elastic_net_surv$h0,
  elastic_net_surv$est_coef
)
```

32 trt_horseshoe

trt_horseshoe Subgroup Treatment Effect Horseshoe

Description

Function to obtain the estimated posterior distribution of the subgroup treatment effects considering a horseshoe fitted model.

Usage

```
trt_horseshoe(object, gamma = 1, 1 = NULL, m = 50)
```

Arguments

object (horseshoe)

the horseshoe object.

gamma (scalar)

numeric value defining the weights to obtain the average hazard ratio. Default is 1 (in this case the average hazard ratio obtained can be interpreted as the odds

of concordance). Just needed when using survival data.

l (scalar)

the maximum value of time that wants to be studied to obtain the average hazard ratio. Default is the maximum value of time when there was an event. Just

needed when using survival data.

m (scalar)

the value that defines the equally spaced time points where the survival curves

are going to be studied. Default is 50. Just needed when using survival data.

Value

Approximated posterior distribution of the subgroup treatment effects.

```
trt_horseshoe(horseshoe_fit_surv, m = 1)
```

Index

* datasets	naivepop, 15
design_dummy1,5	<pre>naivepop_fit_bin, 16</pre>
design_matrix1,6	<pre>naivepop_fit_surv, 16</pre>
elastic_net_fit_bin,7	
<pre>elastic_net_fit_surv, 8</pre>	plot.compare.data,18
elastic_net_surv, 8	<pre>plot.summary.elastic_net, 18</pre>
est_coef_bin1,9	plot.summary.horseshoe, 19
example_data, 10	plot.summary.naive, 20
horseshoe_fit_bin, 12	preprocess, 20
horseshoe_fit_surv, 13	<pre>print.summary.elastic_net, 21</pre>
naive_fit_bin, 17	print.summary.horseshoe, 22
<pre>naive_fit_surv, 17</pre>	print.summary.naive, 22
<pre>naivepop_fit_bin, 16</pre>	print.summary.naivepop, 23
naivepop_fit_surv, 16	
, , – – ,	simul_covariates, 24
ahr_estimation,3	simul_covariates(), 25
ahr_from_km,4	simul_data, 25
	simul_pfs, 26
compare, 5	$simul_pfs(), 25$
	subgroups, 27
design_dummy1,5	summary.elastic_net,28
design_matrix1,6	summary.horseshoe, 29
	summary.naive, 30
elastic_net, 6	summary.naivepop, 30
elastic_net_fit_bin,7	survival_curves, 31
elastic_net_fit_surv,8	
elastic_net_surv,8	trt_horseshoe, 32
est_coef_bin1,9	
example_data, 10	
generate_stacked_data, 10	
horseshoe, 11	
horseshoe_fit_bin, 12	
horseshoe_fit_surv,13	
lor_estimation, 13	
naive, 14	
naive_fit_bin, <mark>17</mark>	
naive fit surv.17	