Package 'capitalR'

October 12, 2022

Type Package

Title Capital Budgeting Analysis, Annuity Loan Calculations and Amortization SchedulesVersion 1.3.0

Author John T. Buynak

Maintainer John T. Buynak <jbuynak94@gmail.com>

Description

Provides Capital Budgeting Analysis functionality and the essential Annuity loan functions. Also computes Loan Amortization Schedules including schedules with irregular payments.

License GPL-3

Encoding UTF-8

LazyData true

RoxygenNote 6.1.1

Suggests knitr, rmarkdown

VignetteBuilder knitr

NeedsCompilation no

Repository CRAN

Date/Publication 2019-11-23 05:30:02 UTC

R topics documented:

annuity	2
ear	2
fv	3
geometric	4
ipmt	4
irregular	5
ppmt	6
pv	6
r.calc	7
schedule	7
	9

Index

Description

annuity

Calculates the payment, present value, future value, rate, or the number of periods

Usage

```
annuity(type = c("pv", "fv", "pmt", "nper", "rate"), pv, fv = 0, pmt,
    n, r, end = TRUE)
```

Arguments

type	Loan parameter to return. ("pv", "fv", "pmt", "nper", "rate")
pv	Present Value
fv	Future Value
pmt	Periodic Payment
n	Number of Periods
r	Rate
end	Logical, set to TRUE. If FALSE, payments are made at the beginning the period.

Value

Returns the selected Annuity Loan Parameter

Examples

annuity(type = "pmt", pv = -2000, fv = 0, n = 4 * 12, r = 0.06/12, end = TRUE)

Effective Annual Rate

Description

Effective Annual Rate

Usage

ear(apr, n, p = 5)

Arguments

apr	Annual Rate (Nominal Interest Rate)
n	Number of compounds in a year
р	Calculates the EAR to the (1/10 ^p) decimal place

Value

Effective Annual Rate

Examples

ear(apr= 0.05, n = 12)

fv

Future Value

Description

Calculates the Future Value given a Present Value

Usage

fv(pv, r, n)

Arguments

pv	Present Value
r	Discount Rate
n	Number of Compounding Periods

Value

Returns the Future Value

Examples

fv(5000, 0.08/12, 5*12)

geometric

Description

Geometric Mean Return

Usage

geometric(c)

Arguments

С

Periodic returns in decimal form

Value

Returns the Geometric Mean Return

Examples

geometric(c(0.05, 0.02, -0.03, 0.09, -0.02))

ipmt Interest Payment

Description

Calculates the interest portion of the payment in period "x" $% \left[{{{\mathbf{x}}_{i}}} \right]$

Usage

ipmt(pv, fv = 0, n, r, x, end = TRUE)

Arguments

pv	Present Value
fv	Future Value
n	Number of Periods
r	Rate
х	Period in which to calculate the interest portion of the payment
end	If FALSE, payments are made at the beginning of the period

irregular

Value

Returns the Interest Portion of the Payment in Period "x"

Examples

```
ipmt(pv = 20000, fv = 0, n = 5 * 12, r = 0.05/12, x = 12, end = TRUE)
```

irregular

Amortization Schedule With Irregular Payments

Description

Creates an amortization schedule of a loan with irregular payments and withdrawals

Usage

irregular(payments, dates, apr, pv, info = TRUE)

Arguments

payments	Vector of payments, the first payment must be 0
dates	Vector of dates, the first date is the date of origination
apr	Annual rate
pv	Present Value
info	Logical, if set to 'TRUE' information about the dataframe arrangement will be printed

Value

Returns the irregular Amortization Schedule in a Dataframe

Examples

```
irregular(payments = c(0, 200, -100), dates = c("2019-01-01", "2019-02-08", "2019-03-20"),
apr = 0.05, pv = 2000, info = FALSE)
```

ppmt

Description

Calculates the principal of the payment in period "x"

Usage

ppmt(pv, fv = 0, n, r, x, end = TRUE)

Arguments

pv	Present Value
fv	Future Value
n	Number of Periods
r	Rate
x	Period in which to calculate the principal portion of the payment
end	If FALSE, payments are made at the beginning of the period

Value

Returns the Principal Portion of the Payment in Period "x"

Examples

ppmt(pv = 5000, fv = 0, n = 4 * 12, r = 0.06/12, x = 12, end = TRUE)

pv

Present Value

Description

Calculates the present value of a given future value

Usage

pv(fv, r, n)

Arguments

fv	Future Value
r	Discount Rate
n	Number of Compounding Periods

r.calc

Value

Returns the Present Value

Examples

```
pv(5000, 0.08/12, 5*12)
```

r.calc

Return Calculation

Description

Return Calculation

Usage

r.calc(vector)

Arguments

vector Vector from which to calculate the periodic return

Value

Returns the Periodic Percent Return

Examples

r.calc(c(100, 75, 50, 80, 125))

schedule

Amortization Schedule

Description

Creates an amortization schedule of a loan

Usage

schedule(r, n, pv, fv = 0, end = TRUE)

schedule

Arguments

r	Rate
n	Number of Periods
pv	Present Value
fv	Future Value, set = 0
end	If FALSE, payments are made at the beginning of the period

Value

Returns the Amortization Schedule in a dataframe

Examples

schedule(r = 0.06/12, n = 10×12 , pv = -5000, fv = 0, end = TRUE)

Index

annuity, 2
ear, 2
fv, 3
geometric, 4
ipmt, 4
irregular, 5
ppmt, 6
pv, 6
r.calc, 7
schedule, 7