
Package ‘clugenr’
July 7, 2025

Title Multidimensional Cluster Generation Using Support Lines

Version 1.0.4

Description An implementation of the clugen algorithm for generating
multidimensional clusters with arbitrary distributions. Each cluster is
supported by a line segment, the position, orientation and length of which
guide where the respective points are placed. This package is described in
Fachada & de Andrade (2023) <doi:10.1016/j.knosys.2023.110836>.

Depends R (>= 3.6.0)

Imports mathjaxr

Suggests crul, devtools, ggplot2, knitr, lintr, patchwork, prettydoc,
rgl, rmarkdown, roxygen2, testthat (>= 3.0.0)

RdMacros mathjaxr

License MIT + file LICENSE

URL https://clugen.github.io/clugenr/,

https://github.com/clugen/clugenr

BugReports https://github.com/clugen/clugenr/issues

Encoding UTF-8

RoxygenNote 7.3.2

Config/testthat/edition 3

VignetteBuilder knitr

NeedsCompilation no

Author Nuno Fachada [aut, cre, cph] (ORCID:
<https://orcid.org/0000-0002-8487-5837>)

Maintainer Nuno Fachada <faken@fakenmc.com>

Repository CRAN

Date/Publication 2025-07-07 19:00:06 UTC

1

https://doi.org/10.1016/j.knosys.2023.110836
https://clugen.github.io/clugenr/
https://github.com/clugen/clugenr
https://github.com/clugen/clugenr/issues
https://orcid.org/0000-0002-8487-5837

2 angle_btw

Contents
angle_btw . 2
angle_deltas . 3
clucenters . 3
clugen . 4
clumerge . 7
clupoints_n . 8
clupoints_n_1 . 9
clupoints_n_1_template . 10
clusizes . 11
fix_empty . 12
fix_num_points . 12
llengths . 13
points_on_line . 14
rand_ortho_vector . 15
rand_unit_vector . 15
rand_vector_at_angle . 16

Index 17

angle_btw Angle between two n-dimensional vectors.

Description

Typically, the angle between two vectors v1 and v2 can be obtained with:

acos((v1 %*% v2) / (norm(v1, "2") * norm(v2, "2")))

However, this approach is numerically unstable. The version provided here is numerically stable and
based on the Angle Between Vectors Julia package by Jeffrey Sarnoff (MIT license), implementing
an algorithm provided by Prof. W. Kahan in these notes (see page 15).

Usage

angle_btw(v1, v2)

Arguments

v1 First vector.
v2 Second vector.

Value

Angle between v1 and v2 in radians.

Examples

angle_btw(c(1.0, 1.0, 1.0, 1.0), c(1.0, 0.0, 0.0, 0.0)) * 180 / pi

https://github.com/JeffreySarnoff/AngleBetweenVectors.jl
https://people.eecs.berkeley.edu/~wkahan/MathH110/Cross.pdf

angle_deltas 3

angle_deltas Get angles between average cluster direction and cluster-supporting
lines

Description

Determine the angles between the average cluster direction and the cluster-supporting lines. These
angles are obtained from a wrapped normal distribution (µ = 0, σ = angle_disp) with support in
the interval [−π/2, π/2]. Note this is different from the standard wrapped normal distribution, the
support of which is given by the interval [−π, π].

Usage

angle_deltas(num_clusters, angle_disp)

Arguments

num_clusters Number of clusters.

angle_disp Angle dispersion, in radians.

Value

Angles between the average cluster direction and the cluster-supporting lines, given in radians in
the interval [−π/2, π/2]

Note

This function is stochastic. For reproducibility set a PRNG seed with set.seed.

Examples

set.seed(123)
arad <- angle_deltas(4, pi / 8) # Angle dispersion of 22.5 degrees
arad # What angles deltas did we get?
arad * 180 / pi # Show angle deltas in degrees

clucenters Determine cluster centers using the uniform distribution

4 clugen

Description

Determine cluster centers using the uniform distribution, taking into account the number of clusters
(num_clusters) and the average cluster separation (clu_sep).

More specifically, let c =num_clusters, s =clu_sep, o =clu_offset, n =length(clu_sep)
(i.e., number of dimensions). Cluster centers are obtained according to the following equation:

C = cU · diag(s) + 1oT

where C is the c× n matrix of cluster centers, U is an c× n matrix of random values drawn from
the uniform distribution between -0.5 and 0.5, and 1 is an c× 1 vector with all entries equal to 1.

Usage

clucenters(num_clusters, clu_sep, clu_offset)

Arguments

num_clusters Number of clusters.

clu_sep Average cluster separation (n× 1 vector).

clu_offset Cluster offsets (n× 1 vector).

Value

A c× n matrix containing the cluster centers.

Note

This function is stochastic. For reproducibility set a PRNG seed with set.seed.

Examples

set.seed(321)
clucenters(3, c(30, 10), c(-50,50))

clugen Generate multidimensional clusters

Description

This is the main function of clugenr, and possibly the only function most users will need.

clugen 5

Usage

clugen(
num_dims,
num_clusters,
num_points,
direction,
angle_disp,
cluster_sep,
llength,
llength_disp,
lateral_disp,
allow_empty = FALSE,
cluster_offset = NA,
proj_dist_fn = "norm",
point_dist_fn = "n-1",
clusizes_fn = clusizes,
clucenters_fn = clucenters,
llengths_fn = llengths,
angle_deltas_fn = angle_deltas,
seed = NA

)

Arguments

num_dims Number of dimensions.

num_clusters Number of clusters to generate.

num_points Total number of points to generate.

direction Average direction of the cluster-supporting lines. Can be a vector of length
num_dims (same direction for all clusters) or a matrix of size num_clusters x
num_dims (one direction per cluster).

angle_disp Angle dispersion of cluster-supporting lines (radians).

cluster_sep Average cluster separation in each dimension (vector of length num_dims).

llength Average length of cluster-supporting lines.

llength_disp Length dispersion of cluster-supporting lines.

lateral_disp Cluster lateral dispersion, i.e., dispersion of points from their projection on the
cluster-supporting line.

allow_empty Allow empty clusters? FALSE by default.

cluster_offset Offset to add to all cluster centers (vector of length num_dims). By default there
will be no offset.

proj_dist_fn Distribution of point projections along cluster-supporting lines, with three pos-
sible values:

• "norm" (default): Distribute point projections along lines using a normal
distribution (µ = line_center, σ = llength/6).

• "unif": Distribute points uniformly along the line.

6 clugen

• User-defined function, which accepts two parameters, line length (double)
and number of points (integer), and returns a vector containing the dis-
tance of each point projection to the center of the line. For example, the
"norm" option roughly corresponds to function(l, n) stats::rnorm(n,
sd = l / 6).

point_dist_fn Controls how the final points are created from their projections on the cluster-
supporting lines, with three possible values:

• "n-1" (default): Final points are placed on a hyperplane orthogonal to the
cluster-supporting line, centered at each point’s projection, using the nor-
mal distribution (µ = 0, σ = lateral_disp). This is done by the clu-
points_n_1 function.

• "n": Final points are placed around their projection on the cluster-supporting
line using the normal distribution (µ = 0, σ = lateral_disp). This is
done by the clupoints_n function.

• User-defined function: The user can specify a custom point placement strat-
egy by passing a function with the same signature as clupoints_n_1 and
clupoints_n.

clusizes_fn Distribution of cluster sizes. By default, cluster sizes are determined by the clu-
sizes function, which uses the normal distribution (µ = num_points/num_clusters,
σ = µ/3), and assures that the final cluster sizes add up to num_points. This
parameter allows the user to specify a custom function for this purpose, which
must follow clusizes signature. Note that custom functions are not required to
strictly obey the num_points parameter. Alternatively, the user can specify a
vector of cluster sizes directly.

clucenters_fn Distribution of cluster centers. By default, cluster centers are determined by the
clucenters function, which uses the uniform distribution, and takes into account
the num_clusters and cluster_sep parameters for generating well-distributed
cluster centers. This parameter allows the user to specify a custom function for
this purpose, which must follow clucenters signature. Alternatively, the user
can specify a matrix of size num_clusters x num_dims with the exact cluster
centers.

llengths_fn Distribution of line lengths. By default, the lengths of cluster-supporting lines
are determined by the llengths function, which uses the folded normal distribu-
tion (µ = llength, σ = llength_disp). This parameter allows the user to
specify a custom function for this purpose, which must follow llengths signa-
ture. Alternatively, the user can specify a vector of line lengths directly.

angle_deltas_fn

Distribution of line angle differences with respect to direction. By default,
the angles between the main direction of each cluster and the final directions
of their cluster-supporting lines are determined by the angle_deltas function,
which uses the wrapped normal distribution (µ = 0, σ = angle_disp) with
support in the interval [−π/2, π/2]. This parameter allows the user to specify
a custom function for this purpose, which must follow angle_deltas signature.
Alternatively, the user can specify a vector of angle deltas directly.

seed An integer used to initialize the PRNG, allowing for reproducible results. If
specified, seed is simply passed to set.seed.

clumerge 7

Details

If a custom function was given in the clusizes_fn parameter, it is possible that num_points may
have a different value than what was specified in the num_points parameter.

The terms "average" and "dispersion" refer to measures of central tendency and statistical disper-
sion, respectively. Their exact meaning depends on the optional arguments.

Value

A named list with the following elements:

• points: A num_points x num_dims matrix with the generated points for all clusters.

• clusters: A num_points factor vector indicating which cluster each point in points belongs
to.

• projections: A num_points x num_dims matrix with the point projections on the cluster-
supporting lines.

• sizes: A num_clusters x 1 vector with the number of points in each cluster.

• centers: A num_clusters x num_dims matrix with the coordinates of the cluster centers.

• directions: A num_clusters x num_dims matrix with the final direction of each cluster-
supporting line.

• angles: A num_clusters x 1 vector with the angles between the cluster-supporting lines and
the main direction.

• lengths: A num_clusters x 1 vector with the lengths of the cluster-supporting lines.

Note

This function is stochastic. For reproducibility set a PRNG seed with set.seed.

Examples

2D example
x <- clugen(2, 5, 1000, c(1, 3), 0.5, c(10, 10), 8, 1.5, 2)
graphics::plot(x$points, col = x$clusters, xlab = "x", ylab = "y", asp = 1)
3D example
x <- clugen(3, 5, 1000, c(2, 3, 4), 0.5, c(15, 13, 14), 7, 1, 2)

clumerge Merges the fields (specified in fields) of two or more data sets

Description

Merges the fields (specified in fields) of two or more data sets (passed as lists). The fields to be
merged need to have the same number of columns. The corresponding merged field will contain the
rows of the fields to be merged, and will have a common "supertype".

8 clupoints_n

Usage

clumerge(..., fields = c("points", "clusters"), clusters_field = "clusters")

Arguments

... One or more cluster data sets (in the form of lists) whose fields are to be
merged.

fields Fields to be merged, which must exist in the data sets given in

clusters_field Field containing the integer cluster labels. If specified, cluster assignments in
individual datasets will be updated in the merged dataset so that clusters are
considered separate.

Details

The clusters_field parameter specifies a field containing integers that identify the cluster to
which the respective points belongs to. If clusters_field is specified (by default it’s specified as
"clusters"), cluster assignments in individual datasets will be updated in the merged dataset so
that clusters are considered separate. This parameter can be set to NA, in which case no field will be
considered as a special cluster assignments field.

This function can be used to merge data sets generated with the clugen function, by default merging
the points and clusters fields in those data sets. It also works with arbitrary data by specifying
alternative fields in the fields parameter. It can be used, for example, to merge third-party data
with clugen-generated data.

Value

A list whose fields consist of the merged fields in the original data sets.

Examples

a <- clugen(2, 5, 100, c(1, 3), 0.5, c(10, 10), 8, 1.5, 2)
b <- clugen(2, 3, 250, c(-1, 3), 0.5, c(13, 14), 7, 1, 2)
ab <- clumerge(a, b)

clupoints_n Create points from their projections on a cluster-supporting line

Description

Each point is placed around its projection using the normal distribution (µ = 0, σ = lat_disp).

Usage

clupoints_n(projs, lat_disp, line_len, clu_dir, clu_ctr)

clupoints_n_1 9

Arguments

projs Point projections on the cluster-supporting line (p× n matrix).
lat_disp Standard deviation for the normal distribution, i.e., cluster lateral dispersion.
line_len Length of cluster-supporting line (ignored).
clu_dir Direction of the cluster-supporting line.
clu_ctr Center position of the cluster-supporting line (ignored).

Details

This function’s main intended use is by the main clugen function, generating the final points when
the point_dist_fn parameter is set to "n".

Value

Generated points (p× n matrix).

Note

This function is stochastic. For reproducibility set a PRNG seed with set.seed.

Examples

set.seed(123)
ctr <- c(0, 0)
dir <- c(1, 0)
pdist <- c(-0.5, -0.2, 0.1, 0.3)
proj <- points_on_line(ctr, dir, pdist)
clupoints_n(proj, 0.01, NA, dir, NA)

clupoints_n_1 Create points from their projections on a cluster-supporting line

Description

Each point is placed on a hyperplane orthogonal to that line and centered at the point’s projection,
using the normal distribution (µ = 0, σ = lat_disp).

Usage

clupoints_n_1(projs, lat_disp, line_len, clu_dir, clu_ctr)

Arguments

projs Point projections on the cluster-supporting line (p× n matrix).
lat_disp Standard deviation for the normal distribution, i.e., cluster lateral dispersion.
line_len Length of cluster-supporting line (ignored).
clu_dir Direction of the cluster-supporting line.
clu_ctr Center position of the cluster-supporting line (ignored).

10 clupoints_n_1_template

Details

This function’s main intended use is by the main clugen function, generating the final points when
the point_dist_fn parameter is set to "n-1".

Value

Generated points (p× n matrix).

Note

This function is stochastic. For reproducibility set a PRNG seed with set.seed.

Examples

set.seed(123)
ctr <- c(0, 0)
dir <- c(1, 0)
pdist <- c(-0.5, -0.2, 0.1, 0.3)
proj <- points_on_line(ctr, dir, pdist)
clupoints_n_1(proj, 0.1, NA, dir, NA)

clupoints_n_1_template

Create points from their projections on a cluster-supporting line

Description

Generate points from their n-dimensional projections on a cluster-supporting line, placing each
point on a hyperplane orthogonal to that line and centered at the point’s projection. The function
specified in dist_fn is used to perform the actual placement.

Usage

clupoints_n_1_template(projs, lat_disp, clu_dir, dist_fn)

Arguments

projs Point projections on the cluster-supporting line (p× n matrix).

lat_disp Dispersion of points from their projection.

clu_dir Direction of the cluster-supporting line (unit vector).

dist_fn Function to place points on a second line, orthogonal to the first.

Details

This function is used internally by clupoints_n_1 and may be useful for constructing user-defined
final point placement strategies for the point_dist_fn parameter of the main clugen function.

clusizes 11

Value

Generated points (p× n matrix).

Note

This function is stochastic. For reproducibility set a PRNG seed with set.seed.

Examples

set.seed(123)
ctr <- c(0, 0)
dir <- c(1, 0)
pdist <- c(-0.5, -0.2, 0.1, 0.3)
proj <- points_on_line(ctr, dir, pdist)
clupoints_n_1_template(proj, 0, dir, function(p, l) stats::runif(p))

clusizes Determine cluster sizes, i.e., the number of points in each cluster

Description

Cluster sizes are determined using the normal distribution (µ = num_points / num_clusters, σ =
µ/3), and then assuring that the final cluster sizes add up to num_points via the fix_num_points
function.

Usage

clusizes(num_clusters, num_points, allow_empty)

Arguments

num_clusters Number of clusters.
num_points Total number of points.
allow_empty Allow empty clusters?

Value

Number of points in each cluster (vector of length num_clusters).

Note

This function is stochastic. For reproducibility set a PRNG seed with set.seed.

Examples

set.seed(123)
sizes <- clusizes(4, 1000, TRUE)
sizes
sum(sizes)

12 fix_num_points

fix_empty Certify that, given enough points, no clusters are left empty

Description

Certifies that, given enough points, no clusters are left empty. This is done by removing a point
from the largest cluster and adding it to an empty cluster while there are empty clusters. If the total
number of points is smaller than the number of clusters (or if the allow_empty parameter is set to
TRUE), this function does nothing.

Usage

fix_empty(clu_num_points, allow_empty = FALSE)

Arguments

clu_num_points Number of points in each cluster (vector of size c), where c is the number of
clusters.

allow_empty Allow empty clusters?

Details

This function is used internally by clusizes and might be useful for custom cluster sizing implemen-
tations given as the clusizes_fn parameter of the main clugen function.

Value

Number of points in each cluster, after being fixed by this function (vector of size c).

Examples

clusters <- c(3, 4, 5, 0, 0) # A vector with some empty elements
clusters <- fix_empty(clusters) # Apply this function
clusters # Check that there's no more empty elements

fix_num_points Certify that array values add up to a specific total

Description

Certifies that the values in the clu_num_points array, i.e. the number of points in each clus-
ter, add up to num_points. If this is not the case, the clu_num_points array is modified in-
place, incrementing the value corresponding to the smallest cluster while sum(clu_num_points) <
num_points, or decrementing the value corresponding to the largest cluster while sum(clu_num_points)
> num_points.

llengths 13

Usage

fix_num_points(clu_num_points, num_points)

Arguments

clu_num_points Number of points in each cluster (vector of size c), where c is the number of
clusters.

num_points The expected total number of points.

Details

This function is used internally by clusizes and might be useful for custom cluster sizing implemen-
tations given as the clusizes_fn parameter of the main clugen function.

Value

Number of points in each cluster, after being fixed by this function.

Examples

clusters <- c(1, 6, 3) # 10 total points
clusters <- fix_num_points(clusters, 12) # But we want 12 total points
clusters # Check that we now have 12 points

llengths Determine length of cluster-supporting lines

Description

Line lengths are determined using the folded normal distribution (µ = llength, σ = llength_disp
).

Usage

llengths(num_clusters, llength, llength_disp)

Arguments

num_clusters Number of clusters.

llength Average line length.

llength_disp Line length dispersion.

Value

Lengths of cluster-supporting lines (vector of size num_clusters).

14 points_on_line

Note

This function is stochastic. For reproducibility set a PRNG seed with set.seed.

Examples

set.seed(123)
llengths(4, 20, 3.5)

points_on_line Determine coordinates of points on a line

Description

Determine coordinates of points on a line with center and direction, based on the distances from
the center given in dist_center.

This works by using the vector formulation of the line equation assuming direction is a n-
dimensional unit vector. In other words, considering d = as.matrix(direction) (n× 1 vector),
c = as.matrix(center) (n × 1 vector), and w = as.matrix(dist_center) (p × 1 vector), the
coordinates of points on the line are given by:

P = 1 cT +wdT

where P is the p× n matrix of point coordinates on the line, and 1 is a p× 1 vector with all entries
equal to 1.

Usage

points_on_line(center, direction, dist_center)

Arguments

center Center of the line (n-component vector).

direction Line direction (n-component unit vector).

dist_center Distance of each point to the center of the line (n-component vector, where n is
the number of points).

Value

Coordinates of points on the specified line (p× n matrix).

Examples

points_on_line(c(5, 5), c(1, 0), seq(-4, 4, length.out=5)) # 2D, 5 points

points_on_line(c(-2, 0, 0, 2), c(0, 0, -1, 0), c(10, -10)) # 4D, 2 points

rand_ortho_vector 15

rand_ortho_vector Get a random unit vector orthogonal to u.

Description

Get a random unit vector orthogonal to u.

Usage

rand_ortho_vector(u)

Arguments

u A unit vector.

Value

A random unit vector orthogonal to u.

Note

This function is stochastic. For reproducibility set a PRNG seed with set.seed.

Examples

r <- stats::runif(3) # Get a random 3D vector
r <- r / norm(r, "2") # Normalize it
o <- rand_ortho_vector(r) # Get a random unit vector orthogonal to r
r %*% o # Check that r and o are orthogonal (result should be ~0)

rand_unit_vector Get a random unit vector with num_dims components.

Description

Get a random unit vector with num_dims components.

Usage

rand_unit_vector(num_dims)

Arguments

num_dims Number of components in vector (i.e. vector size).

16 rand_vector_at_angle

Value

A random unit vector with num_dims components.

Note

This function is stochastic. For reproducibility set a PRNG seed with set.seed.

Examples

r <- rand_unit_vector(4)
norm(r, "2")

rand_vector_at_angle Get a random unit vector at a given angle with another vector.

Description

Get a random unit vector which is at angle radians of vector u. Note that u is expected to be a unit
vector itself.

Usage

rand_vector_at_angle(u, angle)

Arguments

u Unit vector with n components.

angle Angle in radians.

Value

Random unit vector with n components which is at angle radians with vector u.

Note

This function is stochastic. For reproducibility set a PRNG seed with set.seed.

Examples

u <- c(1.0, 0, 0.5, -0.5) # Define a 4D vector
u <- u / norm(u, "2") # Normalize the vector
v <- rand_vector_at_angle(u, pi / 4) # Get a vector at 45 degrees
arad <- acos((u %*% v) / norm(u,"2") * norm(v, "2")) # Get angle in radians
arad * 180 / pi # Convert to degrees, should be close to 45 degrees

Index

angle_btw, 2
angle_deltas, 3, 6

clucenters, 3, 6
clugen, 4, 8–10, 12, 13
clumerge, 7
clupoints_n, 6, 8
clupoints_n_1, 6, 9, 10
clupoints_n_1_template, 10
clusizes, 6, 11, 12, 13

fix_empty, 12
fix_num_points, 11, 12

llengths, 6, 13

points_on_line, 14

rand_ortho_vector, 15
rand_unit_vector, 15
rand_vector_at_angle, 16

set.seed, 3, 4, 6, 7, 9–11, 14–16

17

	angle_btw
	angle_deltas
	clucenters
	clugen
	clumerge
	clupoints_n
	clupoints_n_1
	clupoints_n_1_template
	clusizes
	fix_empty
	fix_num_points
	llengths
	points_on_line
	rand_ortho_vector
	rand_unit_vector
	rand_vector_at_angle
	Index

