
From dolphins and ichthyosaurs to succulent Cactaceae and Euphorbiaceae, phenotypic convergence 

provides some of the best known and most striking examples of evolution. Although convergence can 

result from a variety of processes (e.g., shared developmental constraints), its association with 

adaptation to shared selective environments is perhaps best known. Given the level of interest in 

phenotypic convergence, there is an understandably large body of research focusing on a wide range of 

study taxa. But how does one go about testing for phenotypic convergence? How do we go beyond 

qualitative similarities to quantitative tests? Put another way, how can we be more certain that the 

similarities we observe between distantly related lineages actually are convergence? Luckily, a wealth of 

methods for quantitatively testing for convergence have been proposed in recent years. However, recent 

work has also shown that some of these methods may have potentially serious biases (see Grossnickle et 

al., 2024 to learn more). The convevol package for R includes functions for applying two related statistical 

tests of phenotypic convergence. The popular C-measures (Stayton, 2015) and the newer Ct-measures, 

which incorporate several changes to minimize the aforementioned biases. In this tutorial we'll focus on 

Ct-measures. 

First, we need some data to work with. Let’s suppose we have some hypothetical study group 

and we’re interested in whether a shared ecological trait is associated with phenotypic convergence in 

some taxa. Functions in convevol give us the ability to test such hypotheses, by evaluating whether 

putatively convergent lineages are closer to each other in morphospace than were their respective 

ancestors (e.g, see the focal lineages in the figure below). As already mentioned, the convevol package 

includes functions to measure convergence via the C-measures of Stayton (2015) and the recently 

updated Ct-measures of Grossnickle et al. (2024). Both the C-measures and Ct-measures compare the 

phenotypic distances between tips (Dtip) to the maximum phenotypic distance between lineages at any 

point in their evolutionary history (Dmax or Dmax.t). While the original C-measures allow Dmax to be 

measured between any two internal or external nodes, the Ct-measures constrain Dmax.t to be measured 

between two lineages at a specific point in time. While this means Ct-measures can only be computed 

on time calibrated trees, it also solves some of the undesirable behavior of the original metrics when 

dealing with taxa which are outlying in morphospace. For more information on the theory behind these 

methods and their limitations, see Grossnickle et al. (2024). For now, we will walk through a hypothetical 

example and demonstrate some of the functions in the convevol package. 

 

 
 



To use the Ct-measures we first need a time calibrated phylogeny including the taxa of interest. The 

requirement for trees to be time calibrated is one of the major differences between the Ct-measures 

(Grossnickle et al. 2024) and the C-measures (Stayton 2015). The tree of a fictitious group is included in 

the package for testing purposes. 

 

Let’s load this in now: 

  

library(convevol) 

data(“phy”) 

 

For our example, let’s pretend that tips 4, 96, 42, 98, 94, 74, 14, 8, 36, 49, and 11 all share some 

ecological trait potentially associated with morphological convergence. 

 

Let’s save a vector with the tip names of these putatively convergent taxa and map it onto the tree: 

  

conv.tax <- c("t4","t96","t42","t98","t94","t74","t14","t8","t36","t49","t11") 

tax <- rep(0,length(phy$tip)) 

names(tax) <- phy$tip 

tax[conv.tax] <- 1 

set.seed(12345) 

map <- make.simmap(phy,tax) 

plot(map) 

 



 
 

Here we can see that in our example we have three distinct clades possessing the ecological trait of 

interest, associated with three (or four?) separate evolutionary origins. We’ll come back to this pattern in 

just a minute because it will be important to how we group our taxa for our analyses. But, first, we’ll 

need some morphological data to test for convergence. 

 



A simulated dataset is also included with the package for testing purposes. The simulated data include 

six morphological traits. In our focal lineages, four of those traits were simulated as evolving toward a 

shared adaptive peak (i.e., they’re convergent), while the remaining two traits evolve via Brownian 

motion. (Using a mix of convergent and non-convergent traits may better reflect typical empirical 

datasets, such as that in Grossnickle et al. 2020.). For the non-focal lineages, we’ll leave all six traits to 

evolve via a standard Brownian motion model (i.e., the lineages should be divergent).  

 

Let’s load these data in now (for those interested, these data were simulated using the OUwie package, 

with α = 0.1, θ = 20, σ2 = 0.1 for convergent traits/taxa and θ = 0, σ2 = 0.1 for all other traits/taxa). 

 

 data(“trait”) 

 

Now we’re ready to start testing the convevol functions. Our first step is to think about which taxa we’d 

like to compare. Ct-measures (and C-measures) are computed by making pairwise comparisons between 

individual taxa of interest. However, not all of the possible pairwise comparisons are meaningful in our 

case because our focal taxa fall in three distinct clades. It is unlikely that we want to test whether two 

members of one of these clades are morphologically convergent with each other because our 

hypothesized driver of that morphological convergence (i.e., their shared ecology) was inherited from a 

common ancestor. Rather, we’re much more likely to be interested in whether members of the clade 

{t14, t8, t36} are morphologically convergent with members of the clade {t4, t96, t42, t98, t94} or {t49, 

t11}. The “group” argument included in the Ct-measures allow us to modify which taxa we compare, and 

tailor this to our particular hypothesis. We can do this by providing a vector which includes a group 

name for each of our putatively convergent tips. If this vector is provided, convevol will only calculate Ct-

measures for intergroup comparisons. 

 

Let’s define four groups corresponding to each independent origin of our ecology of interest, assuming 

that the most recent common ancestor of t49 and t11 did not possess this trait (but we’ll come back to 

them). Note that if you’re using the group function, you must assign all of your focal taxa to a group, but 

it is alight for some groups to include a single taxon. 

  

group <- rep(1, length(conv.tax)) 

names(group) <- conv.tax 

group[c("t14","t8","t36")] <- 2 

group["t49"] <- 3 

group["t11"] <- 4 

 

And now let’s map our groups onto the tree. 

 

col <- group 

col[col == 1] <- "yellow" 

col[col == 2] <- "red" 

col[col == 3] <- "light blue" 

col[col == 4] <- "green" 

 



plot(map) 

tiplabels(tip = match(names(group),phy$tip),bg = col,cex = 0.5) 

legend("topleft",pch = 22, legend = c("Group 1","Group 2","Group 3","Group 4"), pt.bg = 

c("yellow","red","light blue","green"), bg = "white") 

 

 



Before we proceed to our analysis it’s a good idea to use convevol’s pwCheck function to ensure we’ve 

defined our groups in a way that doesn’t cause any issues for the analyses. As already mentioned, Ct-

measures measure Dmax.t (the maximum historical phenotypic distance between lineages) at a specific 

point in time. They do this by measuring the phenotypic distance between two focal lineages at each 

internal node along the path between their most recent common ancestor and tips. The largest of these 

measures becomes Dmax.t. Occasionally you may find that there are tip pairings without any valid 

candidates for Dmax.t. This happens when there are no internal nodes between the tips and two taxa’s 

most recent common ancestor (i.e., sister taxa). In most cases we likely don’t want to test for 

convergence between these taxa anyway, but especially in large trees it is not always easy to know if we 

have these pairings in our dataset. The pwCheck function helps us by going through each pairwise 

comparison and calculating the number of valid points over which measurements of Dmax.t can be made, 

given our phylogeny, list of putatively convergent taxa, and any potential groupings. 

 

 check <- pwCheck(phy,conv.tax,group) 

 check$taxa 

 

The output returned shows a summary of the number of candidate Dmax.t  measurements that can be 

made for all possible pairwise comparisons. Note that the median value is 13, which means that Dmax.t is 

drawn from 13 candidate measurements between lineages. Note, also, that the minimum is zero. This is 

problematic and means that at least one of our pairwise comparisons is between two lineages which 

have no valid time point from which to measure Dmax.t. The call to the “taxa” element in our pwCheck 

output returns a matrix with the offending taxa. In this case, it looks like we cannot compare t49 and t11 

– as can be seen in the phylogeny above, there are no internal nodes between the tips of t49 and t11 

and their most recent common ancestor, meaning that there are no points at which candidate Dmax.t 

measurements can be obtained. 

 

Because of the issue with t49 and t11, if we were to run our Ct-measures now, we’d get an error. To 

avoid this, let’s re-format the group object to prevent comparing these two taxa. This can easily be done 

by placing them in the same group. 

 

 group["t11"] <- 3 

check.ii <- pwCheck(phy,conv.tax,group) 

 

## plot new groups 

col.ii <- group 

col.ii[col.ii == 1] <- "yellow" 

col.ii[col.ii == 2] <- "red" 

col.ii[col.ii == 3] <- "light blue" 

 

plot(map) 

tiplabels(tip = match(names(group),phy$tip),bg = col.ii,cex = 0.5) 

legend("topleft",pch = 22, legend = c("Group 1","Group 2","Group 3"), pt.bg = 

c("yellow","red","light blue"), bg = "white") 

 



 



When we run pwCheck again, we see that the minimum has now increased to seven. We should be 

ready to run our Ct-measures. We’ll start by just calculating the Ct-values without a significance test. This 

is generally advisable to ensure everything runs smoothly. Although computational run times for the Ct-

measures (and C-measures) have been dramatically reduced relative to earlier versions of the package, 

significance tests can still be time consuming, which makes any troubleshooting more challenging. 

 

Let’s use the calcConvCt function to compute overall Ct values using our grouped taxa and simulated 

data. 

 

 Ct <- calcConvCt(phy,trait,conv.tax,group) 

 

Now let’s go through the different components of the output one by one. 

 

Ct$mean   ## overall results, average of all pairwise comparisons 

Ct$grp.mean ## overall, group specific, and group weighted means (i.e., 

averaged so unique intergroup comparisons have equal weight) 

 

 
 

The first of these components show the overall average Ct1–Ct4 values for all possible pairwise 

comparisons. The second shows group averaged comparisons. You’ll notice that the first column matches 

the results shown by calling Ct$mean, while the next three columns show Ct values calculated for each 

possible intergroup comparison. The final column again provides averaged results, but this time 

averaged giving equal weight to each group pairing as opposed to each taxon pairing (i.e., so one large 

group doesn’t disproportionately influence results). For more in-depth discussion on how to interpret 

these values, see Stayton (2015) and Grossnickle et al. (2024). For now, we will focus on Ct1, which 

reflects the proportion of the maximum distance between two lineages (Dmax.t) that has been closed by 

subsequent evolution. That our comparisons here are positive supports the hypothesis that the focal 

taxa are morphologically convergent because the tips lie substantially closer to each other in 

morphospace than their ancestors did. 

 

Next, let’s look at an individual pairwise comparison as an example. 

 

Ct$Cmat ## Ct values for each pairwise comparisons - these are 

calculated from the meas.path tables (see next lines) 

 



Ct$meas.path[1] ## meas.path table showing measurements used to calculate Ct 

values for this pairwise comparison 

 

 
 

The first of these commands returns the Ct values calculated for all 36 pairwise comparisons. The second 

shows the measurements made between the two lineages that forms the basis of the first of these 36 

pairwise comparisons (i.e., the first column of the Cmat matrix). For each node along the phylogenetic 

paths between the two focal tips to their most recent common ancestor, this table shows the 

reconstructed (or observed) value for each of our six morphological traits (the node.anc1 – node.anc6 

columns), the corresponding values reconstructed at the same time point along the opposite path (the 

int.anc1 – int.anc6 columns), and the euclidean distance between them (anc.diff). Dmax.t is the largest 

value in the anc.diff column (excluding tips). Ct1 is calculated as the distance between tips (i.e., Dtip) 

divided by Dmax.t, with the resulting value subtracted from one. Thus, in this example Ct1 is 1 – 

(4.98/12.63), or 0.61. Note that this value matches the first Ct1 value in the Ct$Cmat output.   

 

The last thing we’ll do before conducting a significance test is plot the distance between our lineages 

through time using convevol’s plotting function. 

 

plotCt(Ct,phy,conv.tax,groups = group) 

 

The lefthand panel of the output shows our focal lineages on the tree, with group labels, while the 

righthand panel shows distance through time. The latter is color coded to show different intergroup 

comparisons. Note the dramatic decrease in phenotypic distance observed for all pairwise comparisons, 

which is indicative of morphological convergence. 

 

  



 
Now let’s rerun the same analysis, this time including a significance test. This test compares observed 

morphological distances between lineages to those expected under Brownian motion, obtained using 

simulated data. As such we’ll need to specify the number of simulations we’d like to conduct. In the 

interest of time, we’ll limit ourselves to 25 simulated datasets, but you’ll likely want to run more in 

empirical cases. This analysis should take only a few minutes to run on most personal computers. 

 

 set.seed(12345) 

system.time(Ct.sig <- convSigCt(phy,trait,conv.tax,group,nsim = 25)) 

 

Again, let’s look at the individual components of the output. 

 

Ct.sig$grp.mean 



Ct.sig$grp.pvals 

 

 
 

The grp.mean table here is the same as we saw above, but now we also have the grp.pvals table which 

indicates whether the values in the grp.mean table are significantly different from the null expectation 

(calculated from our simulated datasets). Note that the layout of the grp.pvals table is exactly the same 

as grp.mean. It also appears that all these values are statistically significant. This coupled with the 

positive Ct1 values strongly suggests convergent evolution (unsurprising since that’s what we simulated 

these taxa to do)! 

 

Next we can look in a bit more depth at the statistics calculated for our simulated datasets. 

 

Ct.sig$sim.avg ## average Ct measurements for all pairwise comparisons for each NULL 

simulation 

 

Ct.sig$sim.path[1] ## path table for first pairwise comparison (tip 23 and tip 57 from first 

and second NULL simulated dataset) 

 

Ct.sig$sim.path[length(Ct.sig$meas.path)+1] 

 



 
 

The first element here shows Ct values calculated for each simulated dataset (notice that the number of 

columns is equal to the number of simulations). The next shows the measurements from one simulated 

dataset for the comparison between “t23” and “t57”. It has exactly the same layout as the meas.path 

table we looked at earlier, but was computed using different data. The final element shows 

measurements for the same comparison, but using a different simulated dataset. Note that the number 

of tables in the “sim.path” component of the output will equal the number of pairwise comparisons 

multiplied by the number of simulations – in our case 36*25 = 900.  

 

Finally, let’s graph our results again, this time adding in some traces from our null simulations. Note that 

the value given for nsim here indicates the number of pairwise comparisons from the null distribution, 

not the number of simulated datasets (as it indicates above). As such, in our example, the maximum 

value is 900, not 25. 

 

 plotCt(Ct.sig,phy,conv.tax,nsim = 50, groups = group) 

 

  



 
In contrast to our focal lineages, which show a decrease in phenotypic distances between lineages 

following a peak, null simulations show a general increase in the morphological distance between the 

same lineages through time. 

 

In addition to the distance through time plots we’ve been using, convevol also provides the option to 

plot two-dimensional morphospace time series using the plot2D function. This allows us to visualize how 

two lineages move through morphospace over time, much like the example figure from the start of this 

tutorial. Let’s do this now for our results. First, we’ll need to choose the taxa we’d like to visualize. In this 

case let’s start off with “t4” and “t14”, which come from groups 1 and 2 respectively (it will shortly 

become clear why we’ve chosen these two taxa). We’ll also need to choose which of our six simulated 

traits we’d like to visualize. If you’re having trouble deciding, note that plot2D does allow the user to run 

and visualize principal components analysis (even if Ct values were calculated on untransformed data). 



However, for our purposes we can just arbitrarily choose two of the traits we know were simulated to be 

convergent. 

 

 tip <- c("t4","t14")    ## choose species to highlight 

foc.trt <- c("V2","V3")    ## choose focal traits to plot 

par(mfrow = c(4,4))    ## set parameters to panel all 15 plots 

X <- plot2D(Ct, phy, tip, foc.trt, trait, cex = 0.5, leg = TRUE) ## plot morphospace 

 

 
 



It’s possible to visualize these timeseries in a variety of ways. By default, each time slice will be output as 

a single plot, but these can be paneled (as in our example), or the save = TRUE option can be used to 

output each as a separate png file which will be combined into an animated gif (using functions from the 

magick package). 

 

Although this is a handy way to visualize our data, the location of Dmax.t is potentially a bit troubling in our 

particular example. We can clearly see that Dmax.t is largely capturing differences between focal lineages 

that accumulate after one of those lineages starts getting “pulled toward” their shared selective 

optimum. If we’d prefer Dmax.t not to record differences that arise after species begin shifting toward the 

morphospace region where they putatively are convergent, convevol allows users to run more 

conservative analyses (for more detail, including discussion of the rationale for conservative analyses, 

see Grossnickle et al., 2024). These analyses fix Dmax.t to be measured before the origin of the stem 

lineage of the oldest group of putatively convergent taxa for each pairwise comparison. Although this 

resolves potential bias associated with asynchronous movement of lineages to the shared optimum, 

users should note that 1) Ct values will typically be considerably lower when using this option, and 2) 

many candidate nodes for Dmax.t may be ruled out, meaning some taxon comparisons will no longer be 

possible. As such, it’s a good idea for us to go back to the handy pwCheck function before we run new 

analyses. We can run pwCheck as before, we just need to indicate that we’d like to run a conservative 

analysis (i.e., conservative = TRUE). 

 

 check.iii <- pwCheck(phy, conv.tax, group, conservative = TRUE) ## run new pwCheck 

check.iii$taxa   ## the taxon pairings which are invalid 

check.iii$group   ## the group pairings which are invalid 

 

 

 
 

Unfortunately, not all of the our pairwise comparisons are compatible with a conservative analysis. If we 

look at the returned list of uninformative taxon and group pairings, we can clearly see that all 

comparisons with species in group 3 fail to pass our check. This is because the parent node of the stem 

lineage leading to this group is also its most recent common ancestor with species in the other two 

groups. In this particular case we have a few options, we could split group 3 in two again, and run 

separate analyses alternating which of the two taxa are included. Or, we can cut our losses and just drop 

group 3 altogether. For simplicity’s sake we’ll do the latter. 

 

conv.tax <- names(group[group %in% c(1,2)]) ## remove taxa in group 3 from the analysis 

group <- group[group %in% c(1,2)] 

Ct.cons <- calcConvCt(phy, trait, conv.tax, group, conservative = TRUE) 



 

And now we can plot our two-dimensional morphospace again to see if the questionable Dmax.t 

placement has been resolved. 

 

par(mfrow = c(4,4)) 

Y <- plot2D(Ct.cons, phy, tip, foc.trt, trait, cex = 0.5) 

 

 
 

Although Dmax.t looks a lot shorter than it was before, this looks much better. Furthermore, we’re still 

getting positive Ct1 values suggesting convergence, albeit weaker convergence than originally thought. 

Finally, we can run another significance test to confirm whether our results are still significant. 

 



 set.seed(12345) 

Ct.cons.sig <- convSigCt(phy, trait, conv.tax, group, nsim = 25, conservative = TRUE) 

 

 
 

They are, but not as convincingly as before. This really drives home a trait of the Ct-measures. They are 

generally more conservative (particularly in terms of raw Ct values) than the original C-measures. Given 

the earlier C-measures propensity to mischaracterize divergent lineages as convergent (see Grossnickle 

et al., 2024 for more details), we think this is a reasonable trade-off. Regardless, in our example, the 

combination of statistically significant results, positive Ct values, and evidence from our visualizations 

suggest that example taxa show phenotypic convergence. 
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