From dolphins and ichthyosaurs to succulent Cactaceae and Euphorbiaceae, phenotypic convergence
provides some of the best known and most striking examples of evolution. Although convergence can
result from a variety of processes (e.g., shared developmental constraints), its association with
adaptation to shared selective environments is perhaps best known. Given the level of interest in
phenotypic convergence, there is an understandably large body of research focusing on a wide range of
study taxa. But how does one go about testing for phenotypic convergence? How do we go beyond
qualitative similarities to quantitative tests? Put another way, how can we be more certain that the
similarities we observe between distantly related lineages actually are convergence? Luckily, a wealth of
methods for quantitatively testing for convergence have been proposed in recent years. However, recent
work has also shown that some of these methods may have potentially serious biases (see Grossnickle et
al., 2024 to learn more). The convevol package for R includes functions for applying two related statistical
tests of phenotypic convergence. The popular C-measures (Stayton, 2015) and the newer Ct-measures,
which incorporate several changes to minimize the aforementioned biases. In this tutorial we'll focus on
Ct-measures.

First, we need some data to work with. Let’s suppose we have some hypothetical study group
and we’re interested in whether a shared ecological trait is associated with phenotypic convergence in
some taxa. Functions in convevol give us the ability to test such hypotheses, by evaluating whether
putatively convergent lineages are closer to each other in morphospace than were their respective
ancestors (e.g, see the focal lineages in the figure below). As already mentioned, the convevol package
includes functions to measure convergence via the C-measures of Stayton (2015) and the recently
updated Ct-measures of Grossnickle et al. (2024). Both the C-measures and Ct-measures compare the
phenotypic distances between tips (Dsp) to the maximum phenotypic distance between lineages at any
point in their evolutionary history (Dmax Or Dmaxt). While the original C-measures allow Dmax to be
measured between any two internal or external nodes, the Ct-measures constrain Dmax: to be measured
between two lineages at a specific point in time. While this means Ct-measures can only be computed
on time calibrated trees, it also solves some of the undesirable behavior of the original metrics when
dealing with taxa which are outlying in morphospace. For more information on the theory behind these
methods and their limitations, see Grossnickle et al. (2024). For now, we will walk through a hypothetical
example and demonstrate some of the functions in the convevol package.
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To use the Ct-measures we first need a time calibrated phylogeny including the taxa of interest. The
requirement for trees to be time calibrated is one of the major differences between the Ct-measures
(Grossnickle et al. 2024) and the C-measures (Stayton 2015). The tree of a fictitious group is included in
the package for testing purposes.

Let’s load this in now:

library(convevol)
data(“phy”)

For our example, let’s pretend that tips 4, 96, 42, 98, 94, 74, 14, 8, 36, 49, and 11 all share some
ecological trait potentially associated with morphological convergence.

Let’s save a vector with the tip names of these putatively convergent taxa and map it onto the tree:

conv.tax <- c("t4","t96","t42","t98","t94","t74","t14","t8","t36","t49","t11")
tax <- rep(0,length(phyStip))

names(tax) <- phyStip

tax[conv.tax] <- 1

set.seed(12345)

map <- make.simmap(phy,tax)

plot(map)
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Here we can see that in our example we have three distinct clades possessing the ecological trait of
interest, associated with three (or four?) separate evolutionary origins. We'll come back to this pattern in
just a minute because it will be important to how we group our taxa for our analyses. But, first, we’ll
need some morphological data to test for convergence.



A simulated dataset is also included with the package for testing purposes. The simulated data include
six morphological traits. In our focal lineages, four of those traits were simulated as evolving toward a
shared adaptive peak (i.e., they’re convergent), while the remaining two traits evolve via Brownian
motion. (Using a mix of convergent and non-convergent traits may better reflect typical empirical
datasets, such as that in Grossnickle et al. 2020.). For the non-focal lineages, we’ll leave all six traits to
evolve via a standard Brownian motion model (i.e., the lineages should be divergent).

Let’s load these data in now (for those interested, these data were simulated using the OUwie package,
with a =0.1, 8 = 20, 6 = 0.1 for convergent traits/taxa and 6 = 0, 6> = 0.1 for all other traits/taxa).

data(“trait”)

Now we’re ready to start testing the convevol functions. Our first step is to think about which taxa we’d
like to compare. Ct-measures (and C-measures) are computed by making pairwise comparisons between
individual taxa of interest. However, not all of the possible pairwise comparisons are meaningful in our
case because our focal taxa fall in three distinct clades. It is unlikely that we want to test whether two
members of one of these clades are morphologically convergent with each other because our
hypothesized driver of that morphological convergence (i.e., their shared ecology) was inherited from a
common ancestor. Rather, we’re much more likely to be interested in whether members of the clade
{t14, 8, t36} are morphologically convergent with members of the clade {t4, t96, t42, 198, t94} or {t49,
t11}. The “group” argument included in the Ct-measures allow us to modify which taxa we compare, and
tailor this to our particular hypothesis. We can do this by providing a vector which includes a group
name for each of our putatively convergent tips. If this vector is provided, convevol will only calculate Ct-
measures for intergroup comparisons.

Let’s define four groups corresponding to each independent origin of our ecology of interest, assuming
that the most recent common ancestor of t49 and t11 did not possess this trait (but we’ll come back to
them). Note that if you’re using the group function, you must assign all of your focal taxa to a group, but
it is alight for some groups to include a single taxon.

group <- rep(1, length(conv.tax))
names(group) <- conv.tax
group(c("t14","t8","t36")] <- 2
group["t49"] <-3

group["t11"] <-4

And now let’s map our groups onto the tree.

col <- group

col[col == 1] <- "yellow"
col[col == 2] <- "red"
col[col == 3] <- "light blue"
col[col == 4] <- "green"



plot(map)

tiplabels(tip = match(names(group),phyStip),bg = col,cex = 0.5)

legend("topleft",pch = 22, legend = c("Group 1","Group 2","Group 3","Group 4"), pt.bg =
c("yellow","red","light blue","green"), bg = "white")
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Before we proceed to our analysis it’s a good idea to use convevol’s pwCheck function to ensure we’ve
defined our groups in a way that doesn’t cause any issues for the analyses. As already mentioned, Ct-
measures measure Dmax: (the maximum historical phenotypic distance between lineages) at a specific
point in time. They do this by measuring the phenotypic distance between two focal lineages at each
internal node along the path between their most recent common ancestor and tips. The largest of these
measures becomes Dmaxt. Occasionally you may find that there are tip pairings without any valid
candidates for Dmaxt. This happens when there are no internal nodes between the tips and two taxa’s
most recent common ancestor (i.e., sister taxa). In most cases we likely don’t want to test for
convergence between these taxa anyway, but especially in large trees it is not always easy to know if we
have these pairings in our dataset. The pwCheck function helps us by going through each pairwise
comparison and calculating the number of valid points over which measurements of Dmax: can be made,
given our phylogeny, list of putatively convergent taxa, and any potential groupings.

check <- pwCheck(phy,conv.tax,group)
checkStaxa

The output returned shows a summary of the number of candidate Dmaxt measurements that can be
made for all possible pairwise comparisons. Note that the median value is 13, which means that Dmax: is
drawn from 13 candidate measurements between lineages. Note, also, that the minimum is zero. This is
problematic and means that at least one of our pairwise comparisons is between two lineages which
have no valid time point from which to measure Dmax:. The call to the “taxa” element in our pwCheck
output returns a matrix with the offending taxa. In this case, it looks like we cannot compare t49 and t11
—as can be seen in the phylogeny above, there are no internal nodes between the tips of t49 and t11
and their most recent common ancestor, meaning that there are no points at which candidate Dmax+
measurements can be obtained.

Because of the issue with t49 and t11, if we were to run our Ct-measures now, we’d get an error. To
avoid this, let’s re-format the group object to prevent comparing these two taxa. This can easily be done
by placing them in the same group.

group["t11"] <-3
check.ii <- pwCheck(phy,conv.tax,group)

## plot new groups
col.ii <- group

col.ii[col.ii == 1] <- "yellow"
col.ii[col.ii == 2] <- "red"
col.ii[col.ii == 3] <- "light blue"
plot(map)

tiplabels(tip = match(names(group),phyStip),bg = col.ii,cex = 0.5)
legend("topleft",pch = 22, legend = c("Group 1","Group 2","Group 3"), pt.bg =
c("yellow","red","light blue"), bg = "white")






When we run pwCheck again, we see that the minimum has now increased to seven. We should be
ready to run our Ct-measures. We'll start by just calculating the Ct-values without a significance test. This
is generally advisable to ensure everything runs smoothly. Although computational run times for the Ct-
measures (and C-measures) have been dramatically reduced relative to earlier versions of the package,
significance tests can still be time consuming, which makes any troubleshooting more challenging.

Let’s use the calcConvCt function to compute overall Ct values using our grouped taxa and simulated
data.

Ct <- calcConvCt(phy,trait,conv.tax,group)
Now let’s go through the different components of the output one by one.
CtSmean ## overall results, average of all pairwise comparisons

CtSgrp.mean ## overall, group specific, and group weighted means (i.e.,
averaged so unique intergroup comparisons have equal weight)

> Ctoimean
Ctl Ct2 Ct3 Ct4
0.56001969 8.37499714 0.13634313 0.020312%¢6
= Ctigrp.mean#f overall, group specific, and group weighted means
overall 12 13 2 3 overall.weighted
Ctl 0.56001969 0.55579489 0.61165444 0.46942454 0.54562463
Ctc2 8.37459714 7T.022215590 11.74533055 5.652e7407 8.15340684
Ct3 0.13634313 0.116%919%7 0,.1882659% 0.09076687 0.131598428

Ct4 0.020312%6 0.017e7e53 0.02770512 0.01342953 0.019e051%9

The first of these components show the overall average Ct1—Ct4 values for all possible pairwise
comparisons. The second shows group averaged comparisons. You'll notice that the first column matches
the results shown by calling CtSmean, while the next three columns show Ct values calculated for each
possible intergroup comparison. The final column again provides averaged results, but this time
averaged giving equal weight to each group pairing as opposed to each taxon pairing (i.e., so one large
group doesn’t disproportionately influence results). For more in-depth discussion on how to interpret
these values, see Stayton (2015) and Grossnickle et al. (2024). For now, we will focus on Ct1, which
reflects the proportion of the maximum distance between two lineages (Dmax:) that has been closed by
subsequent evolution. That our comparisons here are positive supports the hypothesis that the focal
taxa are morphologically convergent because the tips lie substantially closer to each other in
morphospace than their ancestors did.

Next, let’s look at an individual pairwise comparison as an example.

CtSCmat ## Ct values for each pairwise comparisons - these are
calculated from the meas.path tables (see next lines)



CtSmeas.path[1] ## meas.path table showing measurements used to calculate Ct
values for this pairwise comparison

[,13] [,14]
0.56953236 0.56253366

1 0.12686890 0.11480995

15 0.01756865

int.ancs
MR

-0.1773503
-0.7474636

gos
3.2450564
1 0.€4é0l1é6

HA NA
HR MR

14.648723
.11315% 8
4.271945

3.633564%
3.246141

The first of these commands returns the Ct values calculated for all 36 pairwise comparisons. The second
shows the measurements made between the two lineages that forms the basis of the first of these 36
pairwise comparisons (i.e., the first column of the Cmat matrix). For each node along the phylogenetic
paths between the two focal tips to their most recent common ancestor, this table shows the
reconstructed (or observed) value for each of our six morphological traits (the node.ancl — node.anc6
columns), the corresponding values reconstructed at the same time point along the opposite path (the
int.ancl —int.anc6 columns), and the euclidean distance between them (anc.diff). Dmaxt is the largest
value in the anc.diff column (excluding tips). Ct1 is calculated as the distance between tips (i.e., Dsp)
divided by Dmaxt, with the resulting value subtracted from one. Thus, in this example Ctlis 1 —
(4.98/12.63), or 0.61. Note that this value matches the first Ct1 value in the CtSCmat output.

The last thing we’ll do before conducting a significance test is plot the distance between our lineages
through time using convevol’s plotting function.

plotCt(Ct,phy,conv.tax,groups = group)

The lefthand panel of the output shows our focal lineages on the tree, with group labels, while the
righthand panel shows distance through time. The latter is color coded to show different intergroup
comparisons. Note the dramatic decrease in phenotypic distance observed for all pairwise comparisons,
which is indicative of morphological convergence.
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Now let’s rerun the same analysis, this time including a significance test. This test compares observed
morphological distances between lineages to those expected under Brownian motion, obtained using
simulated data. As such we’ll need to specify the number of simulations we’d like to conduct. In the

interest of time, we’ll limit ourselves to 25 simulated datasets, but you'll likely want to run more in
empirical cases. This analysis should take only a few minutes to run on most personal computers.

set.seed(12345)
system.time(Ct.sig <- convSigCt(phy,trait,conv.tax,group,nsim = 25))

Again, let’s look at the individual components of the output.

Ct.sigbgrp.mean



Ct.sigSgrp.pvals

> Ct.=2igigrp.mean

overall 12 13 2 3 overall.weighted
Ctl 0.56001969 0.55579489 0.61165444 0.465942454 0.54562463
Ct2 8.374595714 7T7.02221590 11.74533055 5.659267407 8.15340684
Ct3 0.13634313 0.1165195%7 0.188265%5 0.09076687 0.13158428
Ct4 0.020312%6 0.01767653 0.02770912 0.01342993 0.01%605185

> Ct.=sigigrp.pvals

e

overall 1 2 1 3 2 3 overall.weighted

crl 0 0.00 O O o
ct2 00.08 0 O 0
ct3 00.08 0 O 0

00.00 O O 0

Ct4

The grp.mean table here is the same as we saw above, but now we also have the grp.pvals table which
indicates whether the values in the grp.mean table are significantly different from the null expectation
(calculated from our simulated datasets). Note that the layout of the grp.pvals table is exactly the same
as grp.mean. It also appears that all these values are statistically significant. This coupled with the
positive Ct1 values strongly suggests convergent evolution (unsurprising since that’s what we simulated
these taxa to do)!

Next we can look in a bit more depth at the statistics calculated for our simulated datasets.

Ct.sigSsim.avg ## average Ct measurements for all pairwise comparisons for each NULL
simulation
Ct.sigSsim.path[1] ## path table for first pairwise comparison (tip 23 and tip 57 from first

and second NULL simulated dataset)

Ct.sigSsim.path[length(Ct.sigSmeas.path)+1]



Ct.sig$sim.avg## average Ct measurements for all pairwise comparisons for each NULL simulation
(11 [21 [, 3] [-41 [, 5] [-€1 [

71 [,81 [,81 [-10] [,11] [,12] [,13]
Ctl -0.0280131706 -0.058194331 0.241631803 -0.0618295511 -0.379370914 0.0354645654 -0.074228273 ¢.632013e-02 -0.0 -0.145555937 -0.123075434 -0.09131669% -0.0556609740
ct2 -0. 94398 4.017163815 -0.3953364483 -1.849455990 0.1503590614 -1.054075248 5 -0. -1.144947508 -1.607633027 -0.921306237 -0.0912092258
ct3 -0.027354232 0.102242571 -0.0184066326 -0.082996803 0. .031174063 & -0.027307202 -0.044648724 -0.052531842 -0.031750915 -0.0099609315
cté § -0.001175301 0.008660369 -0.0009044045 -0.004551215 0 .002362684 5 -0.001936204 -0.002617246 -0. © -0.00186907% -0.0001938035

[r15] [,1€] [,17] [ 18] (/18] [,20] 1 (23] [,24] (23]
=31 0.11£170795 -0.182500056 -0.132696698 -0.064343530 -0 0.031539475 -0.062364814 -0. 2 -1.135782=-02 -0.16552086 0.0105553386
ct2 0.921072 -1.173803892 -0. -0.965175640 -1. 0.868369051 -1.020763948 -0. 3 -9.0000752-02 -1.69601503 0.1901278031
Ct3 -0.020658699 -0.03596891% -0.045567738 -0. -0.026820534 -0.043300242 0.020866179 -0.030188509 -0.016262988 -7.1952242-03 -0.05747110 0.0070234484
Ct4 -0.001015 -0.001860815 -0.002519498 -0.002023056 -0.002451426 —-0.002608245 0.001952631 -0.001953552 -0.001201438 -5.658086e—05 -0.00326427 0.0004625535

$ [11## path table for first pa e comparison (tip 23 and tip 57 from first and second NULL simulated dataset
Smeas.pathl
node path height node.ancl node.anc? node.anc3 node.ancd node.ancS node.ancé  inc.ancl int.anc2 int.anc3  int.anc4 int.ancS  int.ancé

35587 -4, —4.546837 -3.
7 -5.546160 -3.7

-4

—4.716641% A NA HAE NA
& —4. 1.570526% -1.033847 -1.355272 -0.6701643
-4, . 4333426 7 777106 -1.1112422
-3 -0.9196570 1117759
-3 -1.5067221 5780568
-3 -1.5691659 -3. 6276566
.5401836 -3. -2,5017077 -3
.2148153 -2.1721122 -3.3850480 -4,

3 A
3

2

1

s}

s}

s}

[s}

0.4661975 —-1.3113934 -3.9310705 -4
Q

1

1

1

1

1

1

-2.0721815

X23 23 tip 50.000000 -4,
X126 126 Pl 45.395670 —6.1370316 -5,
X125 125 Pl 39.527033 -5.5586747 -4.
X124 124 Pl 31.161815 -7.3622664 -6. -5
X123 123 Pl 27.135851 -7.1739462 -6. -5.
X122 122 Pl 26.707596 —7.1484412 -€.0945125 -5.384220 -5
X121 121 Pl €039 -6.67 8 -6.6911256 -5.641558 -5.
X120 120 Pl 12.221165 —6.1485940 -7,3846900 -6.476256 -&.
X119 119 Pl 5.5%8962 —4.3912519 -5,4253471 -5.044712 -4.
X118 118 mrca 4£.373167 —4.0555936 -4.9680237 —4.663420 -4
X57 57 tip 50.000000 2.6677106 -0.3306576 -1.
X160 160 P2 113 5473 -1.3555676
X155 155 B2 479753 5286 -2.3195379
X158 158 P2 22.42675 1933544 -3.52962
X157 157 P2 11.435 L4786 -4.,65507
X156 156 P2 10.910771 -3.3632258 -4,5341962 —4.

o

=)

5577066 -1.5276243
5543154 -1,497369¢
4596650

-3.
-3.
-4,
-4,

-3.
-3.
-1,

3360516
5242914
9279486

O e

6402260
NA
NB

.5132172 -1
.T043647 -1
.4904356 2. -5. -3.6675790 2.7965567
.6000232 -1.9051545 -7, -5.911330 -5. 7 -5.0253183 1.4467416
.5204168 -1.1945413 -6. 7 -€.463518 -5.543378 -5.6636166 0.£090178
L2675706 —0.8199125 -5,9416597 —7.153969 -£.307686 -6.4061945 0.2440637 . 9545513
.2182936 —0.797 0.2633643 -2.0030705 4.9098045

—4. -5.

-5.8034590 -€.999883 -£.195106 -6.2375041

> Ct.sigSsim.path[length(Ct.sigSmeas.path)+l
Smeas.pathl

node path neight node.ancl nods.ancé node.ancs int.ancl int.anc2 int.anc3  int.ancd int.ancs  int.ancé
x23 23 tip 50.000000 -1.277 - 2467692543 HA NA NA NA NA

-1.0247405
-0.8562682
-1.4595

X126 126 Pl 45.395670 —0.4500963
X125 125 Pl 39.527033 —1.2455230 -0.3245669

3262803650
3301477346

3653047 -6.5111055 -7.60531607
6320218 -5.5955516 -6.63947663

.16702430 —6.5791432 1.461146%9 —,
.47024729 810722 1.21503147 -

612060

X124 124 Pl -1.5512592 -0.67567 -1.7694192 2933522 -4.3750440 -5.42753717 09830671 —4.5364668 -2, 944706
X123 123 Pl 135851 -1.4609231 -0.9907141 -1.4169514 1116851 -4. -5.24432 34644007 36951631
X122 122 Pl 26.707596 —1.5265667 -1. -1. 0618753 -5. 26640836 33587019

[ P S N

X121 121 Bl -1. 52 -1. - -1, 4846645 -4, . 90261055 12144479 L0E4773
X120 120 Pl -0.9062046 -1.0060036 0. -0 73 -3.50256232 46804002 417586
X115 119 Pl 5.538962 -1.6423120 -1.697026¢ 1. -1 . 05! -2.31472195 .01590577 . 403428
X118 118 mrca 4.373167 —-1.9605606 1164356 -1.87401036 -1 1025242 NR HA oty
X57 57 tip 50.000000 -7.1006936 3722444 -13.39533256 -6 0532137 NR HA 8017
X160 160 9113 -6.2413592 -7.2544337 -11.60503018 -&. .€518554 -0.7356160 0.06586141  0.63867 .32766856 1.4610432 16.743275
X158 1589 .479753 -4.3857980 -5.487514¢ -£.34510122 L0674 .5031242 -0.62036117  0.17969863 32209147 1.3467095 11.253587
X158 158 .426758 -4.3037620 -5.0300191 -6.46641110 00045656 7844 251 -1.29533103 -0.13420169 9.

X157 157 .435%85 -3.2014085 -3. -4.11974514 5040370205 -1.6340625 - 3 -1.08737435 -0.09234566 5

X156 156 .910771 -3.0112720 -3. 66400 -2.6592130 -0.5046493807 -1,5827381 -1.0507732 -1.14171769 -0.19334682 .4307905 5

The first element here shows Ct values calculated for each simulated dataset (notice that the number of
columns is equal to the number of simulations). The next shows the measurements from one simulated
dataset for the comparison between “t23” and “t57”. It has exactly the same layout as the meas.path
table we looked at earlier, but was computed using different data. The final element shows
measurements for the same comparison, but using a different simulated dataset. Note that the number
of tables in the “sim.path” component of the output will equal the number of pairwise comparisons
multiplied by the number of simulations — in our case 36*25 = 900.

Finally, let’s graph our results again, this time adding in some traces from our null simulations. Note that
the value given for nsim here indicates the number of pairwise comparisons from the null distribution,
not the number of simulated datasets (as it indicates above). As such, in our example, the maximum
value is 900, not 25.

plotCt(Ct.sig,phy,conv.tax,nsim = 50, groups = group)
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In contrast to our focal lineages, which show a decrease in phenotypic distances between lineages
following a peak, null simulations show a general increase in the morphological distance between the
same lineages through time.

In addition to the distance through time plots we’ve been using, convevol also provides the option to
plot two-dimensional morphospace time series using the plot2D function. This allows us to visualize how
two lineages move through morphospace over time, much like the example figure from the start of this
tutorial. Let’s do this now for our results. First, we’ll need to choose the taxa we’d like to visualize. In this
case let’s start off with “t4” and “t14”, which come from groups 1 and 2 respectively (it will shortly
become clear why we’ve chosen these two taxa). We'll also need to choose which of our six simulated
traits we’d like to visualize. If you’re having trouble deciding, note that plot2D does allow the user to run
and visualize principal components analysis (even if Ct values were calculated on untransformed data).



However, for our purposes we can just arbitrarily choose two of the traits we know were simulated to be
convergent.

tip <- c("t4","t14") ## choose species to highlight

foc.trt <- ¢("Vv2","V3") ## choose focal traits to plot
par(mfrow = c(4,4)) ## set parameters to panel all 15 plots
X <- plot2D(Ct, phy, tip, foc.trt, trait, cex = 0.5, leg = TRUE) ## plot morphospace
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It’s possible to visualize these timeseries in a variety of ways. By default, each time slice will be output as
a single plot, but these can be paneled (as in our example), or the save = TRUE option can be used to
output each as a separate png file which will be combined into an animated gif (using functions from the
magick package).

Although this is a handy way to visualize our data, the location of Dmax: is potentially a bit troubling in our
particular example. We can clearly see that Dmaxt is largely capturing differences between focal lineages
that accumulate after one of those lineages starts getting “pulled toward” their shared selective
optimum. If we’d prefer Dmaxt Not to record differences that arise after species begin shifting toward the
morphospace region where they putatively are convergent, convevol allows users to run more
conservative analyses (for more detail, including discussion of the rationale for conservative analyses,
see Grossnickle et al., 2024). These analyses fix Dmaxt to be measured before the origin of the stem
lineage of the oldest group of putatively convergent taxa for each pairwise comparison. Although this
resolves potential bias associated with asynchronous movement of lineages to the shared optimum,
users should note that 1) Ct values will typically be considerably lower when using this option, and 2)
many candidate nodes for Dmax: may be ruled out, meaning some taxon comparisons will no longer be
possible. As such, it’s a good idea for us to go back to the handy pwCheck function before we run new
analyses. We can run pwCheck as before, we just need to indicate that we’d like to run a conservative
analysis (i.e., conservative = TRUE).

check.iii <- pwCheck(phy, conv.tax, group, conservative = TRUE) ## run new pwCheck

check.iiiStaxa ## the taxon pairings which are invalid
check.iiiSgroup ## the group pairings which are invalid
» check.iii <- pwCheck(phy, conv.tax, group, conservative = TRUE) ## run new pwCheck
Min. lst Qu. Median Mean 3xd Qu. Max.
0.0 0.0 2.5 2.5 5.0 5.0
= check.iiiftaxa## the taxa pairings which are inwvalid
.11 .21 .31 I[.41 [,51 [.e1 [[,71 [.8] [,®8] [,101 [,111 [,121 [,131 [,14]) [,15] [.1e] [,17] [,18]
[1,] "£4m™ me4n  MEQEM MEQEnM ME42n ME4Dn MEgSn MEGEn MEg4n Meg4n MET4n MpT4n mel4n Mpl4n MEgno Wegn o mp3gn mp3gn
[2,] "£49" mgllm mp4ge mpllw mpggn mpllw mp4gnm o mplln o mpggn mpllw o mpggn mplln o mpggn o mplln o mpggn welln o mpgge mplim
> check.iiifgroup
[.11 [.21 [,31 [,41 [,51 [.€1 [,71 [,&81 [,®1 [,101 [,111 [,12]1 [,131 [,141 [,151 [,1€] [,171 [,18]
[1,1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2
3 3

[z,1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

Unfortunately, not all of the our pairwise comparisons are compatible with a conservative analysis. If we
look at the returned list of uninformative taxon and group pairings, we can clearly see that all
comparisons with species in group 3 fail to pass our check. This is because the parent node of the stem
lineage leading to this group is also its most recent common ancestor with species in the other two
groups. In this particular case we have a few options, we could split group 3 in two again, and run
separate analyses alternating which of the two taxa are included. Or, we can cut our losses and just drop
group 3 altogether. For simplicity’s sake we’ll do the latter.

conv.tax <- names(group[group %in% c(1,2)])  ## remove taxa in group 3 from the analysis
group <- group[group %in% c(1,2)]
Ct.cons <- calcConvCt(phy, trait, conv.tax, group, conservative = TRUE)



And now we can plot our two-dimensional morphospace again to see if the questionable Dmaxt
placement has been resolved.

par(mfrow = c(4,4))
Y <- plot2D(Ct.cons, phy, tip, foc.trt, trait, cex = 0.5)

Although Dmaxt looks a lot shorter than it was before, this looks much better. Furthermore, we’re still
getting positive Ct1 values suggesting convergence, albeit weaker convergence than originally thought.
Finally, we can run another significance test to confirm whether our results are still significant.



set.seed(12345)
Ct.cons.sig <- convSigCt(phy, trait, conv.tax, group, nsim = 25, conservative = TRUE)

> set.seed (12345
» Ct.cons.=2ig <- conv5iglt (phy, trait, conv.tax, group, nsim = 25, conservative = TRUE)
[[1]]
overall 1 2 overall.weighted
cel 0.184 0.184 0.184
cc2 1.267 1.267 1.2687
Cc3 0.021 0.021 0.021
Ct4 0.003 0.003 0.003

[[2]]

overall 1 2 overall.weighted

Ccl 0.04 0.04 0.04
ccz2 0.04 0.04 0.04
Ct3 0.04 0.04 0.04
Ct4 0.04 0.04 0.04

They are, but not as convincingly as before. This really drives home a trait of the Ct-measures. They are
generally more conservative (particularly in terms of raw Ct values) than the original C-measures. Given
the earlier C-measures propensity to mischaracterize divergent lineages as convergent (see Grossnickle
et al., 2024 for more details), we think this is a reasonable trade-off. Regardless, in our example, the
combination of statistically significant results, positive Ct values, and evidence from our visualizations
suggest that example taxa show phenotypic convergence.
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