Package 'coroICA'

October 12, 2022

Title Confounding Robust Independent Component Analysis for Noisy and Grouped Data

Version 1.0.2

Author Niklas Pfister and Sebastian Weichwald

Maintainer Niklas Pfister <np@math.ku.dk>

Description Contains an implementation of a confounding robust independent component analysis (ICA) for noisy and grouped data. The main function coroICA() performs a blind source separation, by maximizing an independence across sources and allows to adjust for varying confounding based on user-specified groups. Additionally, the package contains the function uwedge() which can be used to approximately jointly diagonalize a list of matrices. For more details see the project website <https://sweichwald.de/coroICA/>.

URL https://github.com/sweichwald/coroICA-R

BugReports https://github.com/sweichwald/coroICA-R/issues Depends R (>= 3.2.3) License AGPL-3 Encoding UTF-8 LazyData true Imports stats, MASS RoxygenNote 6.1.1 NeedsCompilation no Repository CRAN

R topics documented:

Date/Publication 2020-05-15 09:00:03 UTC

	coroICA uwedge																	
Index																		7

coroICA

Description

Estimates the unmixing matrix V=A^-1 of a confounded ICA model of the form X=AS+H, where H is confounding noise which is group-wise stationary and S are non-stationary signal sources. The function can also be used without a group-structure (i.e., using a single group) in which it corresponds to a noisy ICA that allows for arbitrary stationary noise H.

Usage

```
coroICA(X, group_index = NA, partition_index = NA, n_components = NA,
 n_components_uwedge = NA, rank_components = FALSE,
 pairing = "complement", max_matrices = 1, groupsize = 1,
 partitionsize = NA, timelags = NA, instantcov = TRUE,
 max_iter = 1000, tol = 1e-12, minimize_loss = FALSE,
 condition_threshold = NA, silent = TRUE)
```

Arguments

х	data matrix. Each column corresponds to one predictor variable.					
group_index	vector coding to which group each sample belongs, with length(group_index)=nrow(X). If no group index is provided a rigid grid with groupsize samples per group is used (which defaults to all samples if groupsize was not set).					
partition_inde	x					
	vector coding to which partition each sample belongs, with length(partition_index)=nrow(X). If no partition index is provided a rigid grid with partitionsize samples per partition is used.					
n_components	number of components to extract. If NA is passed, the same number of compo- nents as the input has dimensions is used.					
n_components_u	n_components_uwedge					
	number of components to extract during uwedge approximate joint diagonaliza- tion of the matrices. If NA is passed, the same number of components as the input has dimensions is used.					
rank_component	S					
	boolean, optional. When TRUE, the components will be ordered in decreasing stability.					
pairing	either 'complement', 'neighbouring' or 'allpairs'. If 'allpairs' the difference matrices are computed for all pairs of partition covariance matrices, if 'comple- ment' a one-vs-complement scheme is used and if 'neighbouring' differences with the right neighbour parition are used.					
<pre>max_matrices</pre>	float or 'no_partitions', optional (default=1). The fraction of (lagged) covariance matrices to use during training or, if 'no_partitions', at most as many covariance matrices are used as there are partitions.					

groupsize	int, optional. Approximate number of samples in each group when using a rigid grid as groups. If NA is passed, all samples will be in one group unless group_index is passed during fitting in which case the provided group index is used (the latter is the advised and preferred way).				
partitionsize	int or vector of ints, optional. Approximate number of samples in each partition when using a rigid grid as partition. If NA is passed, a (hopefully sane) default is used, again, unless partition_index is passed during fitting in which case the provided partition index is used. If a vector is passed, each element is used to construct a grid and all resulting partitions are used.				
timelags	vector of ints, optional. Specifies which timelags should be included. 0 correpsonds to covariance matrix.				
instantcov	boolean, default TRUE. Specifies whether to include covariance matrix when timelags are used.				
<pre>max_iter</pre>	int, optional. Maximum number of iterations for the uwedge approximate joint diagonalisation during fitting.				
tol	float, optional. Tolerance for terminating the uwedge approximate joint diagonalisation during fitting.				
minimize_loss	boolean, optional. Parameter is passed to uwedge and specifies whether to com- pute loss function in each iteration step of uwedge.				
condition_threshold					
	float, optional. Parameter is passed to uwedge and specifies whether and at which threshold to terminate uwedge iteration depending on the condition number of the unmixing matrix.				
silent	boolean whether to supress status outputs.				

Details

For further details see the references.

Value

object of class 'CoroICA' consisting of the following elements

V	the unmixing matrix.
coverged	boolean indicating whether the approximate joint diagonalisation converged due to tol.
n_iter	number of iterations of the approximate joint diagonalisation.
meanoffdiag	mean absolute value of the off-diagonal values of the to be jointly diagonalised matrices, i.e., a proxy of the approximate joint diagonalisation objective function.

Author(s)

Niklas Pfister and Sebastian Weichwald

References

Pfister, N., S. Weichwald, P. Bühlmann and B. Schölkopf (2018). Robustifying Independent Component Analysis by Adjusting for Group-Wise Stationary Noise ArXiv e-prints (arXiv:1806.01094).

Project website (https://sweichwald.de/coroICA/)

See Also

The function uwedge allows to perform to perform an approximate joint matrix diagonalization.

Examples

```
## Example
set.seed(1)
# Generate data from a block-wise variance model
d <- 2
m <- 10
n <- 5000
group_index <- rep(c(1,2), each=n)</pre>
partition_index <- rep(rep(1:m, each=n/m), 2)</pre>
S <- matrix(NA, 2*n, d)</pre>
H \leq matrix(NA, 2*n, d)
for(i in unique(group_index)){
  varH <- abs(rnorm(d))/4</pre>
  H[group_index==i, ] <- matrix(rnorm(d*n)*rep(varH, each=n), n, d)</pre>
  for(j in unique(partition_index[group_index==i])){
    varS <- abs(rnorm(d))</pre>
    index <- partition_index==j & group_index==i</pre>
    S[index,] <- matrix(rnorm(d*n/m)*rep(varS, each=n/m),</pre>
                                                         n/m, d)
  }
}
A <- matrix(rnorm(d^2), d, d)</pre>
A <- A%*%t(A)
X <- t(A%*%t(S+H))
# Apply coroICA
res <- coroICA(X, group_index, partition_index, pairing="allpairs", rank_components=TRUE)
# Compare results
par(mfrow=c(2,2))
plot((S+H)[,1], type="l", main="true source 1", ylab="S+H")
plot(res$Shat[,1], type="1", main="estimated source 1", ylab="Shat")
plot((S+H)[,2], type="1", main="true source 2", ylab="S+H")
plot(res$Shat[,2], type="1", main="estimated source 2", ylab="Shat")
cor(res$Shat, S+H)
```

uwedge

Description

Performs an approximate joint matrix diagonalization on a list of matrices. More precisely, for a list of matrices Rx the algorithm finds a matrix V such that for all i V Rx[i] t(V) is approximately diagonal.

Usage

```
uwedge(Rx, init = NA, Rx0 = NA, return_diag = FALSE, tol = 1e-10,
max_iter = 1000, n_components = NA, minimize_loss = FALSE,
condition_threshold = NA, silent = TRUE)
```

Arguments

Rx	list of matrices to be diagaonlized.				
init	matrix used in first step of initialization. If NA a default based on PCA is used				
Rx0	matrix used for initial scaling.				
return_diag	boolean. Specifies whether to return the list of diagonalized matrices.				
tol	float, optional. Tolerance for terminating the iteration.				
max_iter	int, optional. Maximum number of iterations.				
n_components	number of components to extract. If NA is passed, all components are used.				
minimize_loss	boolean whether to compute loss function in each iteration step and output V with smallest loss over all iterations. Defaults to FALSE since it is computationally more expensive.				
condition_threshold					
	float, optional. Stops iteration if condition number of V passes this threshold. Default NA, means no threshold is used.				
silent	boolean whether to supress status outputs.				

Details

For further details see the references.

Value

object of class 'uwedge' consisting of the following elements

V	joint diagonalizing matrix.
Rxdiag	list of diagonalized matrices.
converged	boolean specifying whether the algorithm converged for the given tol.
iterations	number of iterations of the approximate joint diagonalisation.

meanoffdiag	mean absolute value of the off-diagonal values of the to be jointly diagonalised
	matrices, i.e., a proxy of the approximate joint diagonalisation objective func-
	tion.

Author(s)

Niklas Pfister and Sebastian Weichwald

References

Pfister, N., S. Weichwald, P. Bühlmann and B. Schölkopf (2018). Robustifying Independent Component Analysis by Adjusting for Group-Wise Stationary Noise ArXiv e-prints (arXiv:1806.01094).

Tichavsky, P. and Yeredor, A. (2009). Fast Approximate Joint Diagonalization Incorporating Weight Matrices. IEEE Transactions on Signal Processing.

See Also

The function coroICA uses uwedge.

Examples

```
print(res$meanoffdiag)
```

Index

coroICA, 2, 6

uwedge, *4*, 5