
Package ‘dgpsi’
December 15, 2024

Type Package

Title Interface to 'dgpsi' for Deep and Linked Gaussian Process
Emulations

Version 2.5.0

Maintainer Deyu Ming <deyu.ming.16@ucl.ac.uk>

Description Interface to the 'python' package 'dgpsi' for Gaussian process, deep Gaussian process,
and linked deep Gaussian process emulations of computer models and networks using stochas-
tic imputation (SI).
The implementations follow Ming & Guillas (2021) <doi:10.1137/20M1323771> and
Ming, Williamson, & Guillas (2023) <doi:10.1080/00401706.2022.2124311> and
Ming & Williamson (2023) <doi:10.48550/arXiv.2306.01212>. To get started with the package,
see <https://mingdeyu.github.io/dgpsi-R/>.

License MIT + file LICENSE

URL https://github.com/mingdeyu/dgpsi-R,

https://mingdeyu.github.io/dgpsi-R/

BugReports https://github.com/mingdeyu/dgpsi-R/issues

Encoding UTF-8

Depends R (>= 4.0)

Imports reticulate (>= 1.26), benchmarkme (>= 1.0.8), utils, ggplot2,
ggforce, reshape2, patchwork, lhs, methods, stats, clhs, dplyr,
uuid, tidyr, rlang, lifecycle, magrittr, visNetwork, parallel,
kableExtra

Suggests knitr, rmarkdown, MASS, R.utils, spelling

VignetteBuilder knitr

RoxygenNote 7.3.2

Language en-US

NeedsCompilation no

Author Deyu Ming [aut, cre, cph],
Daniel Williamson [aut]

Repository CRAN

Date/Publication 2024-12-14 23:40:02 UTC

1

https://doi.org/10.1137/20M1323771
https://doi.org/10.1080/00401706.2022.2124311
https://doi.org/10.48550/arXiv.2306.01212
https://mingdeyu.github.io/dgpsi-R/
https://github.com/mingdeyu/dgpsi-R
https://mingdeyu.github.io/dgpsi-R/
https://github.com/mingdeyu/dgpsi-R/issues

2 alm

Contents
alm . 2
continue . 6
deserialize . 8
design . 9
dgp . 20
draw . 28
get_thread_num . 29
gp . 30
init_py . 35
lgp . 36
mice . 39
nllik . 44
pack . 45
plot . 46
predict . 50
prune . 55
read . 57
serialize . 58
set_id . 59
set_imp . 60
set_seed . 61
set_thread_num . 62
set_vecchia . 62
summary . 64
trace_plot . 65
unpack . 66
update . 66
validate . 69
vigf . 74
window . 78
write . 80

Index 81

alm Locate the next design point(s) for a (D)GP emulator or a bundle of
(D)GP emulators using Active Learning MacKay (ALM)

Description

[Updated]

This function searches from a candidate set to locate the next design point(s) to be added to a (D)GP
emulator or a bundle of (D)GP emulators using the Active Learning MacKay (ALM) criterion (see
the reference below).

alm 3

Usage

alm(object, ...)

S3 method for class 'gp'
alm(
object,
x_cand = NULL,
n_start = 20,
batch_size = 1,
M = 50,
workers = 1,
limits = NULL,
int = FALSE,
...

)

S3 method for class 'dgp'
alm(
object,
x_cand = NULL,
n_start = 20,
batch_size = 1,
M = 50,
workers = 1,
limits = NULL,
int = FALSE,
aggregate = NULL,
...

)

S3 method for class 'bundle'
alm(
object,
x_cand = NULL,
n_start = 20,
batch_size = 1,
M = 50,
workers = 1,
limits = NULL,
int = FALSE,
aggregate = NULL,
...

)

Arguments

object can be one of the following:

• the S3 class gp.

4 alm

• the S3 class dgp.
• the S3 class bundle.

... any arguments (with names different from those of arguments used in alm())
that are used by aggregate can be passed here.

x_cand a matrix (with each row being a design point and column being an input di-
mension) that gives a candidate set from which the next design point(s) are de-
termined. If object is an instance of the bundle class and aggregate is not
supplied, x_cand can also be a list. The list must have a length equal to the
number of emulators in object, with each element being a matrix representing
the candidate set for a corresponding emulator in the bundle. Defaults to NULL.

n_start [New] an integer that gives the number of initial design points to be used to
determine next design point(s). This argument is only used when x_cand is
NULL. Defaults to 20.

batch_size an integer that gives the number of design points to be chosen. Defaults to 1.

M [New] the size of the conditioning set for the Vecchia approximation in the cri-
terion calculation. This argument is only used if the emulator object was con-
structed under the Vecchia approximation. Defaults to 50.

workers the number of processes to be used for design point selection. If set to NULL,
the number of processes is set to max physical cores available %/% 2.
Defaults to 1. The argument does not currently support Windows machines
when the aggregate function is provided, due to the significant overhead caused
by initializing the Python environment for each worker under spawning.

limits a two-column matrix that gives the ranges of each input dimension, or a vector
of length two if there is only one input dimension. If a vector is provided, it will
be converted to a two-column row matrix. The rows of the matrix correspond to
input dimensions, and its first and second columns correspond to the minimum
and maximum values of the input dimensions. This argument is only used when
x_cand = NULL. Defaults to NULL.

int [New] a bool or a vector of bools that indicates if an input dimension is an
integer type. If a single bool is given, it will be applied to all input dimensions.
If a vector is provided, it should have a length equal to the input dimensions and
will be applied to individual input dimensions. This argument is only used when
x_cand = NULL. Defaults to FALSE.

aggregate an R function that aggregates scores of the ALM across different output dimen-
sions (if object is an instance of the dgp class) or across different emulators (if
object is an instance of the bundle class). The function should be specified in
the following basic form:

• the first argument is a matrix representing scores. The rows of the matrix
correspond to different design points. The number of columns of the matrix
is equal to:

– the emulator output dimension if object is an instance of the dgp class;
or

– the number of emulators contained in object if object is an instance
of the bundle class.

alm 5

• the output should be a vector that gives aggregate scores at different design
points.

Set to NULL to disable aggregation. Defaults to NULL.

Details

See further examples and tutorials at https://mingdeyu.github.io/dgpsi-R/.

Value

1. If x_cand is not NULL:

• When object is an instance of the gp class, a vector of length batch_size is returned,
containing the positions (row numbers) of the next design points from x_cand.

• When object is an instance of the dgp class, a vector of length batch_size * D is re-
turned, containing the positions (row numbers) of the next design points from x_cand to
be added to the DGP emulator.

– D is the number of output dimensions of the DGP emulator if no likelihood layer is
included.

– For a DGP emulator with a Hetero or NegBin likelihood layer, D = 2.
– For a DGP emulator with a Categorical likelihood layer, D = 1 for binary output or

D = K for multi-class output with K classes.
• When object is an instance of the bundle class, a matrix is returned with batch_size

rows and a column for each emulator in the bundle, containing the positions (row num-
bers) of the next design points from x_cand for individual emulators.

2. If x_cand is NULL:

• When object is an instance of the gp class, a matrix with batch_size rows is returned,
giving the next design points to be evaluated.

• When object is an instance of the dgp class, a matrix with batch_size * D rows is
returned, where:

– D is the number of output dimensions of the DGP emulator if no likelihood layer is
included.

– For a DGP emulator with a Hetero or NegBin likelihood layer, D = 2.
– For a DGP emulator with a Categorical likelihood layer, D = 1 for binary output or

D = K for multi-class output with K classes.
• When object is an instance of the bundle class, a list is returned with a length equal

to the number of emulators in the bundle. Each element of the list is a matrix with
batch_size rows, where each row represents a design point to be added to the corre-
sponding emulator.

Note

The first column of the matrix supplied to the first argument of aggregate must correspond to the
first output dimension of the DGP emulator if object is an instance of the dgp class, and so on
for subsequent columns and dimensions. If object is an instance of the bundle class, the first
column must correspond to the first emulator in the bundle, and so on for subsequent columns and
emulators.

https://mingdeyu.github.io/dgpsi-R/

6 continue

References

MacKay, D. J. (1992). Information-based objective functions for active data selection. Neural
Computation, 4(4), 590-604.

Examples

Not run:

load packages and the Python env
library(lhs)
library(dgpsi)

construct a 1D non-stationary function
f <- function(x) {
sin(30*((2*x-1)/2-0.4)^5)*cos(20*((2*x-1)/2-0.4))

}

generate the initial design
X <- maximinLHS(10,1)
Y <- f(X)

training a 2-layered DGP emulator with the global connection off
m <- dgp(X, Y, connect = F)

specify the input range
lim <- c(0,1)

locate the next design point using ALM
X_new <- alm(m, limits = lim)

obtain the corresponding output at the located design point
Y_new <- f(X_new)

combine the new input-output pair to the existing data
X <- rbind(X, X_new)
Y <- rbind(Y, Y_new)

update the DGP emulator with the new input and output data and refit
m <- update(m, X, Y, refit = TRUE)

plot the LOO validation
plot(m)

End(Not run)

continue Continue training a DGP emulator

Description

This function implements additional training iterations for a DGP emulator.

continue 7

Usage

continue(
object,
N = NULL,
cores = 1,
ess_burn = 10,
verb = TRUE,
burnin = NULL,
B = NULL

)

Arguments

object an instance of the dgp class.

N additional number of iterations to train the DGP emulator. If set to NULL, the
number of iterations is set to 500 if the DGP emulator was constructed without
the Vecchia approximation, and is set to 200 if Vecchia approximation was used.
Defaults to NULL.

cores the number of processes to be used to optimize GP components (in the same
layer) at each M-step of the training. If set to NULL, the number of processes
is set to (max physical cores available - 1) if the DGP emulator was
constructed without the Vecchia approximation. Otherwise, the number of pro-
cesses is set to max physical cores available %/% 2. Only use multiple
processes when there is a large number of GP components in different layers
and optimization of GP components is computationally expensive. Defaults to
1.

ess_burn number of burnin steps for ESS-within-Gibbs at each I-step of the training. De-
faults to 10.

verb a bool indicating if a progress bar will be printed during training. Defaults to
TRUE.

burnin the number of training iterations to be discarded for point estimates calculation.
Must be smaller than the overall training iterations so-far implemented. If this is
not specified, only the last 25% of iterations are used. This overrides the value
of burnin set in dgp(). Defaults to NULL.

B the number of imputations to produce predictions. Increase the value to account
for more imputation uncertainty. This overrides the value of B set in dgp() if B
is not NULL. Defaults to NULL.

Details

See further examples and tutorials at https://mingdeyu.github.io/dgpsi-R/.

Value

An updated object.

https://mingdeyu.github.io/dgpsi-R/

8 deserialize

Note

• One can also use this function to fit an untrained DGP emulator constructed by dgp() with
training = FALSE.

• The following slots:

– loo and oos created by validate(); and
– results created by predict() in object will be removed and not contained in the re-

turned object.

Examples

Not run:

See dgp() for an example.

End(Not run)

deserialize Restore the serialized emulator

Description

[New]

This function restores the serialized emulator created by serialize().

Usage

deserialize(object)

Arguments

object the serialized object of an emulator.

Details

See further examples and tutorials at https://mingdeyu.github.io/dgpsi-R/.

Value

The S3 class of a GP emulator, a DGP emulator, a linked (D)GP emulator, or a bundle of (D)GP
emulators.

Note

See the Note section in serialize().

https://mingdeyu.github.io/dgpsi-R/

design 9

Examples

Not run:

library(future)
library(future.apply)
library(dgpsi)

model
f <- function(x) {
(sin(7.5*x)+1)/2

}

training data
X <- seq(0, 1, length = 10)
Y <- sapply(X, f)

train a DGP emulator
m <- dgp(X, Y, name = "matern2.5")

testing input data
X_dgp <- seq(0, 1, length = 100)

serialize the DGP emulator
m_serialized <- serialize(m)

start a multi-session with three cores for parallel predictions
plan(multisession, workers = 3)

perform parallel predictions
results <- future_lapply(1:length(X_dgp), function(i) {

m_deserialized <- deserialize(m_serialized)
mean_i <- predict(m_deserialized, X_dgp[i])$results$mean

}, future.seed = TRUE)

reset the future plan to sequential
plan(sequential)

combine mean predictions
pred_mean <- do.call(rbind, results)

End(Not run)

design Sequential design of a (D)GP emulator or a bundle of (D)GP emula-
tors

Description

[Updated]

10 design

This function implements sequential design and active learning for a (D)GP emulator or a bundle
of (D)GP emulators, supporting an array of popular methods as well as user-specified approaches.
It can also be used as a wrapper for Bayesian optimization methods.

Usage

design(
object,
N,
x_cand,
y_cand,
n_sample,
n_cand,
limits,
f,
reps,
freq,
x_test,
y_test,
reset,
target,
method,
batch_size,
eval,
verb,
autosave,
new_wave,
M_val,
cores,
...

)

S3 method for class 'gp'
design(
object,
N,
x_cand = NULL,
y_cand = NULL,
n_sample = 200,
n_cand = lifecycle::deprecated(),
limits = NULL,
f = NULL,
reps = 1,
freq = c(1, 1),
x_test = NULL,
y_test = NULL,
reset = FALSE,
target = NULL,
method = vigf,

design 11

batch_size = 1,
eval = NULL,
verb = TRUE,
autosave = list(),
new_wave = TRUE,
M_val = 50,
cores = 1,
...

)

S3 method for class 'dgp'
design(
object,
N,
x_cand = NULL,
y_cand = NULL,
n_sample = 200,
n_cand = lifecycle::deprecated(),
limits = NULL,
f = NULL,
reps = 1,
freq = c(1, 1),
x_test = NULL,
y_test = NULL,
reset = FALSE,
target = NULL,
method = vigf,
batch_size = 1,
eval = NULL,
verb = TRUE,
autosave = list(),
new_wave = TRUE,
M_val = 50,
cores = 1,
train_N = NULL,
refit_cores = 1,
pruning = TRUE,
control = list(),
...

)

S3 method for class 'bundle'
design(
object,
N,
x_cand = NULL,
y_cand = NULL,
n_sample = 200,

12 design

n_cand = lifecycle::deprecated(),
limits = NULL,
f = NULL,
reps = 1,
freq = c(1, 1),
x_test = NULL,
y_test = NULL,
reset = FALSE,
target = NULL,
method = vigf,
batch_size = 1,
eval = NULL,
verb = TRUE,
autosave = list(),
new_wave = TRUE,
M_val = 50,
cores = 1,
train_N = NULL,
refit_cores = 1,
...

)

Arguments

object can be one of the following:

• the S3 class gp.
• the S3 class dgp.
• the S3 class bundle.

N the number of iterations for the sequential design.

x_cand a matrix (with each row being a design point and column being an input dimen-
sion) that gives a candidate set from which the next design points are determined.
Defaults to NULL.

y_cand a matrix (with each row being a simulator evaluation and column being an output
dimension) that gives the realizations from the simulator at input positions in
x_cand. Defaults to NULL.

n_sample [New] an integer that gives the size of a sub-set to be sampled from the candidate
set x_cand at each step of the sequential design to determine the next design
point, if x_cand is not NULL.
Defaults to 200.

n_cand [Deprecated] this argument is deprecated. Use n_sample instead.

limits a two-column matrix that gives the ranges of each input dimension, or a vector
of length two if there is only one input dimension. If a vector is provided, it will
be converted to a two-column row matrix. The rows of the matrix correspond to
input dimensions, and its first and second columns correspond to the minimum
and maximum values of the input dimensions. Set limits = NULL if x_cand is
supplied. This argument is only used when x_cand is not supplied, i.e., x_cand

design 13

= NULL. Defaults to NULL. If you provide a custom method function with an
argument called limits, the value of limits will be passed to your function.

f an R function representing the simulator. f must adhere to the following rules:
• First argument: a matrix where rows correspond to different design points,

and columns represent input dimensions.
• Function output:

– a matrix where rows correspond to different outputs (matching the in-
put design points) and columns represent output dimensions. If there is
only one output dimension, the function should return a matrix with a
single column.

– alternatively, a list where:

* the first element is the output matrix as described above.

* additional named elements can optionally update values of argu-
ments with matching names passed via This list output is useful
if additional arguments to f, method, or eval need to be updated af-
ter each sequential design iteration.

See the Note section below for additional details. This argument is required and
must be supplied when y_cand = NULL. Defaults to NULL.

reps an integer that gives the number of repetitions of the located design points to be
created and used for evaluations of f. Set the argument to an integer greater than
1 only if f is a stochastic function that can generate different responses given
for the same input and the supplied emulator object can deal with stochastic
responses, e.g., a (D)GP emulator with nugget_est = TRUE or a DGP emulator
with a likelihood layer. The argument is only used when f is supplied. Defaults
to 1.

freq a vector of two integers with the first element indicating the number of iterations
taken between re-estimating the emulator hyperparameters, and the second el-
ement defining the number of iterations to take between re-calculation of eval-
uating metrics on the validation set (see x_test below) via the eval function.
Defaults to c(1, 1).

x_test a matrix (with each row being an input testing data point and each column being
an input dimension) that gives the testing input data to evaluate the emulator
after each freq[2] iterations of the sequential design. Set to NULL for LOO-
based emulator validation. Defaults to NULL. This argument is only used if eval
= NULL.

y_test the testing output data corresponding to x_test for emulator validation after
each freq[2] iterations of the sequential design:

• if object is an instance of the gp class, y_test is a matrix with only one
column and each row contains a testing output data point from the corre-
sponding row of x_test.

• if object is an instance of the dgp class, y_test is a matrix with its rows
containing testing output data points corresponding to the same rows of
x_test and columns representing the output dimensions.

• if object is an instance of the bundle class, y_test is a matrix with each
row representing the outputs for the corresponding row of x_test and each
column representing the output of the different emulators in the bundle.

14 design

Set to NULL for LOO-based emulator validation. Defaults to NULL. This argu-
ment is only used if eval = NULL.

reset A bool or a vector of bools indicating whether to reset the hyperparameters of
the emulator(s) to their initial values (as set during initial construction) before
re-fitting. The re-fitting occurs based on the frequency specified by freq[1].
This option is useful when hyperparameters are suspected to have converged to
a local optimum affecting validation performance.

• If a single bool is provided, it applies to every iteration of the sequential
design.

• If a vector is provided, its length must equal N (even if the re-fit frequency
specified in freq[1] is not 1) and it will apply to the corresponding itera-
tions of the sequential design.

Defaults to FALSE.

target a number or vector specifying the target evaluation metric value(s) at which
the sequential design should terminate. Defaults to NULL, in which case the
sequential design stops after N steps. See the Note section below for further
details about target.

method [Updated] an R function that determines the next design points to be evaluated
by f. The function must adhere to the following rules:

• First argument: an emulator object, which can be one of the following:
– an instance of the gp class (produced by gp());
– an instance of the dgp class (produced by dgp());
– an instance of the bundle class (produced by pack()).

• Second argument (if x_cand is not NULL): a candidate matrix representing
a set of potential design points from which the method function selects the
next points.

• Function output:
– If x_cand is not NULL:

* for gp or dgp objects, the output must be a vector of row indices cor-
responding to the selected design points from the candidate matrix
(the second argument).

* for bundle objects, the output must be a matrix containing the row
indices of the selected design points from the candidate matrix. Each
column corresponds to the indices for an individual emulator in the
bundle.

– If x_cand is NULL:

* for gp or dgp objects, the output must be a matrix where each row
represents a new design point to be added.

* for bundle objects, the output must be a list with a length equal to
the number of emulators in the bundle. Each element in the list is
a matrix where rows represent the new design points for the corre-
sponding emulator.

See alm(), mice(), and vigf() for examples of built-in method functions. De-
faults to vigf().

design 15

batch_size [New] an integer specifying the number of design points to select in a single
iteration. Defaults to 1. This argument is used by the built-in method functions
alm(), mice(), and vigf(). If you provide a custom method function with an
argument named batch_size, the value of batch_size will be passed to your
function.

eval an R function that computes a customized metric for evaluating emulator per-
formance. The function must adhere to the following rules:

• First argument: an emulator object, which can be one of the following:
– an instance of the gp class (produced by gp());
– an instance of the dgp class (produced by dgp());
– an instance of the bundle class (produced by pack()).

• Function output:
– for gp objects, the output must be a single metric value.
– for dgp objects, the output can be a single metric value or a vector of

metric values with a length equal to the number of output dimensions.
– for bundle objects, the output can be a single metric value or a vector

of metric values with a length equal to the number of emulators in the
bundle.

If no custom function is provided, a built-in evaluation metric (RMSE or log-
loss, in the case of DGP emulators with categorical likelihoods) will be used.
Defaults to NULL. See the Note section below for additional details.

verb a bool indicating if trace information will be printed during the sequential de-
sign. Defaults to TRUE.

autosave a list that contains configuration settings for the automatic saving of the emula-
tor:

• switch: a bool indicating whether to enable automatic saving of the emu-
lator during sequential design. When set to TRUE, the emulator in the final
iteration is always saved. Defaults to FALSE.

• directory: a string specifying the directory path where the emulators will
be stored. Emulators will be stored in a sub-directory of directory named
’emulator-id’. Defaults to ’./check_points’.

• fname: a string representing the base name for the saved emulator files.
Defaults to ’check_point’.

• save_freq: an integer indicating the frequency of automatic saves, mea-
sured in the number of iterations. Defaults to 5.

• overwrite: a bool value controlling the file saving behavior. When set to
TRUE, each new automatic save overwrites the previous one, keeping only
the latest version. If FALSE, each automatic save creates a new file, preserv-
ing all previous versions. Defaults to FALSE.

new_wave a bool indicating whether the current call to design() will create a new wave of
sequential designs or add the next sequence of designs to the most recent wave.
This argument is relevant only if waves already exist in the emulator. Creat-
ing new waves can improve the visualization of sequential design performance
across different calls to design() via draw(), and allows for specifying a dif-
ferent evaluation frequency in freq. However, disabling this option can help

16 design

limit the number of waves visualized in draw() to avoid issues such as running
out of distinct colors for large numbers of waves. Defaults to TRUE.

M_val [New] an integer that gives the size of the conditioning set for the Vecchia ap-
proximation in emulator validations. This argument is only used if the emulator
object was constructed under the Vecchia approximation. Defaults to 50.

cores an integer that gives the number of processes to be used for emulator validation.
If set to NULL, the number of processes is set to max physical cores available %/% 2.
Defaults to 1. This argument is only used if eval = NULL.

... Any arguments with names that differ from those used in design() but are
required by f, method, or eval can be passed here. design() will forward
relevant arguments to f, method, and eval based on the names of the additional
arguments provided.

train_N the number of training iterations to be used for re-fitting the DGP emulator at
each step of the sequential design:

• If train_N is an integer, the DGP emulator will be re-fitted at each step
(based on the re-fit frequency specified in freq[1]) using train_N itera-
tions.

• If train_N is a vector, its length must be N, even if the re-fit frequency
specified in freq[1] is not 1.

• If train_N is NULL, the DGP emulator will be re-fitted at each step (based
on the re-fit frequency specified in freq[1]) using:

– 100 iterations if the DGP emulator was constructed without the Vecchia
approximation, or

– 50 iterations if the Vecchia approximation was used.
Defaults to NULL.

refit_cores the number of processes to be used to re-fit GP components (in the same layer
of a DGP emulator) at each M-step during the re-fitting. If set to NULL, the num-
ber of processes is set to (max physical cores available - 1) if the DGP
emulator was constructed without the Vecchia approximation. Otherwise, the
number of processes is set to max physical cores available %/% 2. Only
use multiple processes when there is a large number of GP components in dif-
ferent layers and optimization of GP components is computationally expensive.
Defaults to 1.

pruning a bool indicating if dynamic pruning of DGP structures will be implemented
during the sequential design after the total number of design points exceeds
min_size in control. The argument is only applicable to DGP emulators (i.e.,
object is an instance of dgp class) produced by dgp(). Defaults to TRUE.

control a list that can supply any of the following components to control the dynamic
pruning of the DGP emulator:

• min_size, the minimum number of design points required to trigger dy-
namic pruning. Defaults to 10 times the number of input dimensions.

• threshold, the R2 value above which a GP node is considered redundant.
Defaults to 0.97.

• nexceed, the minimum number of consecutive iterations that the R2 value
of a GP node must exceed threshold to trigger the removal of that node
from the DGP structure. Defaults to 3.

design 17

The argument is only used when pruning = TRUE.

Details

See further examples and tutorials at https://mingdeyu.github.io/dgpsi-R/.

Value

An updated object is returned with a slot called design that contains:

• S slots, named wave1, wave2,..., waveS, that contain information of S waves of sequential
design that have been applied to the emulator. Each slot contains the following elements:

– N, an integer that gives the numbers of iterations implemented in the corresponding wave;
– rmse, a matrix providing the evaluation metric values for emulators constructed during the

corresponding wave, when eval = NULL. Each row of the matrix represents an iteration.

* for an object of class gp, the matrix contains a single column of RMSE values.

* for an object of class dgp without a categorical likelihood, each row contains mean/median
squared errors corresponding to different output dimensions.

* for an object of class dgp with a categorical likelihood, the matrix contains a single
column of log-loss values.

* for an object of class bundle, each row contains either mean/median squared errors
or log-loss values for the emulators in the bundle.

– metric: a matrix providing the values of custom evaluation metrics, as computed by the
user-supplied eval function, for emulators constructed during the corresponding wave.

– freq, an integer that gives the frequency that the emulator validations are implemented
during the corresponding wave.

– enrichment, a vector of size N that gives the number of new design points added after
each step of the sequential design (if object is an instance of the gp or dgp class), or a
matrix that gives the number of new design points added to emulators in a bundle after
each step of the sequential design (if object is an instance of the bundle class).

If target is not NULL, the following additional elements are also included:

– target: the target evaluating metric computed by the eval or built-in function to stop
the sequential design.

– reached: indicates whether the target was reached at the end of the sequential design:

* a bool if object is an instance of the gp or dgp class.

* a vector of bools if object is an instance of the bundle class, with its length deter-
mined as follows:
· equal to the number of emulators in the bundle when eval = NULL.
· equal to the length of the output from eval when a custom eval function is pro-

vided.

• a slot called type that gives the type of validation:

– either LOO (’loo’) or OOS (’oos’) if eval = NULL. See validate() for more information
about LOO and OOS.

– ’customized’ if a customized R function is provided to eval.

• two slots called x_test and y_test that contain the data points for the OOS validation if the
type slot is ’oos’.

https://mingdeyu.github.io/dgpsi-R/

18 design

• If y_cand = NULL and x_cand is supplied, and there are NAs returned from the supplied f
during the sequential design, a slot called exclusion is included that records the located
design positions that produced NAs via f. The sequential design will use this information to
avoid re-visiting the same locations in later runs of design().

See Note section below for further information.

Note

• Validation of an emulator is forced after the final step of a sequential design even if N is not a
multiple of the second element in freq.

• Any loo or oos slot that already exists in object will be cleaned, and a new slot called loo
or oos will be created in the returned object depending on whether x_test and y_test are
provided. The new slot gives the validation information of the emulator constructed in the
final step of the sequential design. See validate() for more information about the slots loo
and oos.

• If object has previously been used by design() for sequential design, the information of the
current wave of the sequential design will replace those of old waves and be contained in the
returned object, unless

– the validation type (LOO or OOS depending on whether x_test and y_test are supplied
or not) of the current wave of the sequential design is the same as the validation types
(shown in the type of the design slot of object) in previous waves, and if the validation
type is OOS, x_test and y_test in the current wave must also be identical to those in
the previous waves;

– both the current and previous waves of the sequential design supply customized evalua-
tion functions to eval. Users need to ensure the customized evaluation functions are con-
sistent among different waves. Otherwise, the trace plot of RMSEs produced by draw()
will show values of different evaluation metrics in different waves.

For the above two cases, the information of the current wave of the sequential design will be
added to the design slot of the returned object under the name waveS.

• If object is an instance of the gp class and eval = NULL, the matrix in the rmse slot is single-
columned. If object is an instance of the dgp or bundle class and eval = NULL, the matrix
in the rmse slot can have multiple columns that correspond to different output dimensions or
different emulators in the bundle.

• If object is an instance of the gp class and eval = NULL, target needs to be a single value
giving the RMSE threshold. If object is an instance of the dgp or bundle class and eval
= NULL, target can be a vector of values that gives the thresholds of evaluating metrics for
different output dimensions or different emulators. If a single value is provided, it will be used
as the threshold for all output dimensions (if object is an instance of the dgp) or all emulators
(if object is an instance of the bundle). If a customized function is supplied to eval and
target is given as a vector, the user needs to ensure that the length of target is equal to that
of the output from eval.

• When defining f, it is important to ensure that:

– the column order of the first argument of f is consistent with the training input used for
the emulator;

design 19

– the column order of the output matrix of f is consistent with the order of emulator output
dimensions (if object is an instance of the dgp class), or the order of emulators placed
in object (if object is an instance of the bundle class).

• The output matrix produced by f may include NAs. This is especially beneficial as it allows
the sequential design process to continue without interruption, even if errors or NA outputs are
encountered from f at certain input locations identified by the sequential design. Users should
ensure that any errors within f are handled by appropriately returning NAs.

• When defining eval, the output metric needs to be positive if draw() is used with log = T.
And one needs to ensure that a lower metric value indicates a better emulation performance if
target is set.

Examples

Not run:

load packages and the Python env
library(lhs)
library(dgpsi)

construct a 2D non-stationary function that takes a matrix as the input
f <- function(x) {

sin(1/((0.7*x[,1,drop=F]+0.3)*(0.7*x[,2,drop=F]+0.3)))
}

generate the initial design
X <- maximinLHS(5,2)
Y <- f(X)

generate the validation data
validate_x <- maximinLHS(30,2)
validate_y <- f(validate_x)

training a 2-layered DGP emulator with the initial design
m <- dgp(X, Y)

specify the ranges of the input dimensions
lim_1 <- c(0, 1)
lim_2 <- c(0, 1)
lim <- rbind(lim_1, lim_2)

1st wave of the sequential design with 10 steps
m <- design(m, N=10, limits = lim, f = f, x_test = validate_x, y_test = validate_y)

2nd wave of the sequential design with 10 steps
m <- design(m, N=10, limits = lim, f = f, x_test = validate_x, y_test = validate_y)

3rd wave of the sequential design with 10 steps
m <- design(m, N=10, limits = lim, f = f, x_test = validate_x, y_test = validate_y)

draw the design created by the sequential design
draw(m,'design')

20 dgp

inspect the trace of RMSEs during the sequential design
draw(m,'rmse')

reduce the number of imputations for faster OOS
m_faster <- set_imp(m, 5)

plot the OOS validation with the faster DGP emulator
plot(m_faster, x_test = validate_x, y_test = validate_y)

End(Not run)

dgp Deep Gaussian process emulator construction

Description

This function builds and trains a DGP emulator.

Usage

dgp(
X,
Y,
depth = 2,
node = ncol(X),
name = "sexp",
lengthscale = 1,
bounds = NULL,
prior = "ga",
share = TRUE,
nugget_est = FALSE,
nugget = NULL,
scale_est = TRUE,
scale = 1,
connect = TRUE,
likelihood = NULL,
training = TRUE,
verb = TRUE,
check_rep = TRUE,
vecchia = FALSE,
M = 25,
ord = NULL,
N = ifelse(vecchia, 200, 500),
cores = 1,
blocked_gibbs = TRUE,
ess_burn = 10,
burnin = NULL,

dgp 21

B = 10,
internal_input_idx = NULL,
linked_idx = NULL,
id = NULL

)

Arguments

X a matrix where each row is an input training data point and each column repre-
sents an input dimension.

Y a matrix containing observed training output data. The matrix has its rows
being output data points and columns representing output dimensions. When
likelihood (see below) is not NULL, Y must be a matrix with a single column.

depth number of layers (including the likelihood layer) for a DGP structure. depth
must be at least 2. Defaults to 2.

node number of GP nodes in each layer (except for the final layer or the layer feeding
the likelihood node) of the DGP. Defaults to ncol(X).

name a character or a vector of characters that indicates the kernel functions (either
"sexp" for squared exponential kernel or "matern2.5" for Matérn-2.5 kernel)
used in the DGP emulator:

1. if a single character is supplied, the corresponding kernel function will be
used for all GP nodes in the DGP hierarchy.

2. if a vector of characters is supplied, each character of the vector specifies
the kernel function that will be applied to all GP nodes in the corresponding
layer.

Defaults to "sexp".

lengthscale initial lengthscales for GP nodes in the DGP emulator. It can be a single numeric
value or a vector:

1. if it is a single numeric value, the value will be applied as the initial length-
scales for all GP nodes in the DGP hierarchy.

2. if it is a vector, each element of the vector specifies the initial lengthscales
that will be applied to all GP nodes in the corresponding layer. The vector
should have a length of depth if likelihood = NULL or a length of depth
- 1 if likelihood is not NULL.

Defaults to a numeric value of 1.0.

bounds the lower and upper bounds of lengthscales in GP nodes. It can be a vector or a
matrix:

1. if it is a vector, the lower bound (the first element of the vector) and upper
bound (the second element of the vector) will be applied to lengthscales for
all GP nodes in the DGP hierarchy.

2. if it is a matrix, each row of the matrix specifies the lower and upper bounds
of lengthscales for all GP nodes in the corresponding layer. The matrix
should have its row number equal to depth if likelihood = NULL or to
depth - 1 if likelihood is not NULL.

Defaults to NULL where no bounds are specified for the lengthscales.

22 dgp

prior prior to be used for MAP estimation of lengthscales and nuggets of all GP nodes
in the DGP hierarchy:

• gamma prior ("ga"),
• inverse gamma prior ("inv_ga"), or
• jointly robust prior ("ref").

Defaults to "ga".

share a bool indicating if all input dimensions of a GP node share a common length-
scale. Defaults to TRUE.

nugget_est a bool or a bool vector that indicates if the nuggets of GP nodes (if any) in the
final layer are to be estimated. If a single bool is provided, it will be applied
to all GP nodes (if any) in the final layer. If a bool vector (which must have a
length of ncol(Y)) is provided, each bool element in the vector will be applied
to the corresponding GP node (if any) in the final layer. The value of a bool has
following effects:

• FALSE: the nugget of the corresponding GP in the final layer is fixed to the
corresponding value defined in nugget (see below).

• TRUE: the nugget of the corresponding GP in the final layer will be estimated
with the initial value given by the correspondence in nugget (see below).

Defaults to FALSE.

nugget the initial nugget value(s) of GP nodes (if any) in each layer:

1. if it is a single numeric value, the value will be applied as the initial nugget
for all GP nodes in the DGP hierarchy.

2. if it is a vector, each element of the vector specifies the initial nugget that
will be applied to all GP nodes in the corresponding layer. The vector
should have a length of depth if likelihood = NULL or a length of depth
- 1 if likelihood is not NULL.

Set nugget to a small value and the bools in nugget_est to FALSE for deter-
ministic emulation, where the emulator interpolates the training data points. Set
nugget to a larger value and the bools in nugget_est to TRUE for stochastic
emulation where the computer model outputs are assumed to follow a homoge-
neous Gaussian distribution. Defaults to 1e-6 if nugget_est = FALSE and 0.01
if nugget_est = TRUE. If likelihood is not NULL and nugget_est = FALSE, the
nuggets of GPs that feed into the likelihood layer default to 1e-4.

scale_est a bool or a bool vector that indicates if the variance of GP nodes (if any) in the
final layer are to be estimated. If a single bool is provided, it will be applied
to all GP nodes (if any) in the final layer. If a bool vector (which must have a
length of ncol(Y)) is provided, each bool element in the vector will be applied
to the corresponding GP node (if any) in the final layer. The value of a bool has
following effects:

• FALSE: the variance of the corresponding GP in the final layer is fixed to the
corresponding value defined in scale (see below).

• TRUE: the variance of the corresponding GP in the final layer will be es-
timated with the initial value given by the correspondence in scale (see
below).

dgp 23

Defaults to TRUE.

scale the initial variance value(s) of GP nodes (if any) in the final layer. If it is a single
numeric value, it will be applied to all GP nodes (if any) in the final layer. If it
is a vector (which must have a length of ncol(Y)), each numeric in the vector
will be applied to the corresponding GP node (if any) in the final layer. Defaults
to 1.

connect a bool indicating whether to implement global input connection to the DGP
structure. Setting it to FALSE may produce a better emulator in some cases at the
cost of slower training. Defaults to TRUE.

likelihood the likelihood type of a DGP emulator:

1. NULL: no likelihood layer is included in the emulator.
2. "Hetero": a heteroskedastic Gaussian likelihood layer is added for stochas-

tic emulation where the computer model outputs are assumed to follow
a heteroskedastic Gaussian distribution (i.e., the computer model outputs
have input-dependent noise).

3. "Poisson": a Poisson likelihood layer is added for emulation where the
computer model outputs are counts and a Poisson distribution is used to
model them.

4. "NegBin": a negative Binomial likelihood layer is added for emulation
where the computer model outputs are counts and a negative Binomial dis-
tribution is used to capture dispersion variability in input space.

5. [New] "Categorical": a categorical likelihood layer is added for emula-
tion (classification), where the computer model output is categorical.

When likelihood is not NULL, the value of nugget_est is overridden by FALSE.
Defaults to NULL.

training a bool indicating if the initialized DGP emulator will be trained. When set
to FALSE, dgp() returns an untrained DGP emulator, to which one can apply
summary() to inspect its specifications or apply predict() to check its emula-
tion performance before training. Defaults to TRUE.

verb a bool indicating if the trace information on DGP emulator construction and
training will be printed during the function execution. Defaults to TRUE.

check_rep a bool indicating whether to check for repetitions in the dataset, i.e., if one input
position has multiple outputs. Defaults to TRUE.

vecchia [New] a bool indicating whether to use Vecchia approximation for large-scale
DGP emulator construction and prediction. Defaults to FALSE.

M [New] the size of the conditioning set for the Vecchia approximation in the DGP
emulator training. Defaults to 25.

ord [New] an R function that returns the ordering of the input to each GP node
contained in the DGP emulator for the Vecchia approximation. The function
must satisfy the following basic rules:

• the first argument represents the input to a GP node scaled by its length-
scales.

• the output of the function is a vector of indices that gives the ordering of
the input to the GP node.

24 dgp

If ord = NULL, the default random ordering is used. Defaults to NULL.

N number of iterations for the training. Defaults to 500 if vecchia = FALSE and
200 if vecchia = TRUE. This argument is only used when training = TRUE.

cores the number of processes to be used to optimize GP components (in the same
layer) at each M-step of the training. If set to NULL, the number of processes
is set to (max physical cores available - 1) if vecchia = FALSE and
max physical cores available %/% 2 if vecchia = TRUE. Only use multiple
processes when there is a large number of GP components in different layers
and optimization of GP components is computationally expensive. Defaults to
1.

blocked_gibbs a bool indicating if the latent variables are imputed layer-wise using ESS-within-
Blocked-Gibbs. ESS-within-Blocked-Gibbs would be faster and more efficient
than ESS-within-Gibbs that imputes latent variables node-wise because it re-
duces the number of components to be sampled during Gibbs steps, especially
when there is a large number of GP nodes in layers due to higher input dimen-
sions. Default to TRUE.

ess_burn number of burnin steps for the ESS-within-Gibbs at each I-step of the training.
Defaults to 10. This argument is only used when training = TRUE.

burnin the number of training iterations to be discarded for point estimates of model
parameters. Must be smaller than the training iterations N. If this is not specified,
only the last 25% of iterations are used. Defaults to NULL. This argument is only
used when training = TRUE.

B the number of imputations used to produce predictions. Increase the value to
refine the representation of imputation uncertainty. Defaults to 10.

internal_input_idx

[Deprecated] The argument will be removed in the next release. To set up
connections of emulators for linked emulations, please use the updated lgp()
function instead.
Column indices of X that are generated by the linked emulators in the preceding
layers. Set internal_input_idx = NULL if the DGP emulator is in the first
layer of a system or all columns in X are generated by the linked emulators in
the preceding layers. Defaults to NULL.

linked_idx [Deprecated] The argument will be removed in the next release. To set up
connections of emulators for linked emulation, please use the updated lgp()
function instead.
Either a vector or a list of vectors:

• If linked_idx is a vector, it gives indices of columns in the pooled output
matrix (formed by column-combined outputs of all emulators in the feeding
layer) that feed into the DGP emulator. The length of the vector shall equal
to the length of internal_input_idx when internal_input_idx is not
NULL. If the DGP emulator is in the first layer of a linked emulator system,
the vector gives the column indices of the global input (formed by column-
combining all input matrices of emulators in the first layer) that the DGP
emulator will use. If the DGP emulator is to be used in both the first and
subsequent layers, one should initially set linked_idx to the appropriate
values for the situation where the emulator is not in the first layer. Then,

dgp 25

use the function set_linked_idx() to reset the linking information when
the emulator is in the first layer.

• When the DGP emulator is not in the first layer of a linked emulator system,
linked_idx can be a list that gives the information on connections between
the DGP emulator and emulators in all preceding layers. The length of the
list should equal to the number of layers before the DGP emulator. Each
element of the list is a vector that gives indices of columns in the pooled
output matrix (formed by column-combined outputs of all emulators) in
the corresponding layer that feed into the DGP emulator. If the DGP em-
ulator has no connections to any emulator in a certain layer, set NULL in
the corresponding position of the list. The order of input dimensions in
X[,internal_input_idx] should be consistent with linked_idx. For ex-
ample, a DGP emulator in the 4th-layer that is fed by the output dimension
2 and 4 of emulators in layer 2 and all output dimension 1 to 3 of emula-
tors in layer 3 should have linked_idx = list(NULL, c(2,4), c(1,2,3)
). In addition, the first and second columns of X[,internal_input_idx]
should correspond to the output dimensions 2 and 4 from layer 2, and the
third to fifth columns of X[,internal_input_idx] should correspond to
the output dimensions 1 to 3 from layer 3.

Set linked_idx = NULL if the DGP emulator will not be used for linked emula-
tions. However, if this is no longer the case, one can use set_linked_idx() to
add linking information to the DGP emulator. Defaults to NULL.

id an ID to be assigned to the DGP emulator. If an ID is not provided (i.e., id =
NULL), a UUID (Universally Unique Identifier) will be automatically generated
and assigned to the emulator. Default to NULL.

Details

See further examples and tutorials at https://mingdeyu.github.io/dgpsi-R/.

Value

An S3 class named dgp that contains five slots:

• id: A number or character string assigned through the id argument.

• data: a list that contains two elements: X and Y which are the training input and output data
respectively.

• specs: a list that contains

1. L (i.e., the number of layers in the DGP hierarchy) sub-lists named layer1, layer2,..., layerL.
Each sub-list contains D (i.e., the number of GP/likelihood nodes in the corresponding
layer) sub-lists named node1, node2,..., nodeD. If a sub-list corresponds to a likeli-
hood node, it contains one element called type that gives the name (Hetero, Poisson,
NegBin, or Categorical) of the likelihood node. If a sub-list corresponds to a GP node,
it contains four elements:

– kernel: the type of the kernel function used for the GP node.
– lengthscales: a vector of lengthscales in the kernel function.
– scale: the variance value in the kernel function.

https://mingdeyu.github.io/dgpsi-R/

26 dgp

– nugget: the nugget value in the kernel function.
2. [Deprecated] internal_dims: the column indices of X that correspond to the linked

emulators in the preceding layers of a linked system. The slot will be removed in the
next release.

3. [Deprecated] external_dims: the column indices of X that correspond to global inputs
to the linked system of emulators. It is shown as FALSE if internal_input_idx = NULL.
The slot will be removed in the next release.

4. [Deprecated] linked_idx: the value passed to argument linked_idx. It is shown as
FALSE if the argument linked_idx is NULL. The slot will be removed in the next release.

5. seed: the random seed generated to produce imputations. This information is stored for
reproducibility when the DGP emulator (that was saved by write() with the light option
light = TRUE) is loaded back to R by read().

6. B: the number of imputations used to generate the emulator.
7. [New] vecchia: whether the Vecchia approximation is used for the GP emulator training.
8. [New] M: the size of the conditioning set for the Vecchia approximation in the DGP emu-

lator training. M is generated only when vecchia = TRUE.

• constructor_obj: a ’python’ object that stores the information of the constructed DGP em-
ulator.

• container_obj: a ’python’ object that stores the information for the linked emulation.

• emulator_obj: a ’python’ object that stores the information for the predictions from the DGP
emulator.

The returned dgp object can be used by

• predict() for DGP predictions.

• continue() for additional DGP training iterations.

• validate() for LOO and OOS validations.

• plot() for validation plots.

• lgp() for linked (D)GP emulator constructions.

• window() for model parameter trimming.

• summary() to summarize the trained DGP emulator.

• write() to save the DGP emulator to a .pkl file.

• set_imp() to change the number of imputations.

• design() for sequential design.

• update() to update the DGP emulator with new inputs and outputs.

• alm(), mice(), and vigf() to locate next design points.

Note

Any R vector detected in X and Y will be treated as a column vector and automatically converted
into a single-column R matrix. Thus, if X is a single data point with multiple dimensions, it must be
given as a matrix.

dgp 27

Examples

Not run:

load the package and the Python env
library(dgpsi)

construct a step function
f <- function(x) {

if (x < 0.5) return(-1)
if (x >= 0.5) return(1)
}

generate training data
X <- seq(0, 1, length = 10)
Y <- sapply(X, f)

set a random seed
set_seed(999)

training a DGP emulator
m <- dgp(X, Y)

continue for further training iterations
m <- continue(m)

summarizing
summary(m)

trace plot
trace_plot(m)

trim the traces of model parameters
m <- window(m, 800)

LOO cross validation
m <- validate(m)
plot(m)

prediction
test_x <- seq(0, 1, length = 200)
m <- predict(m, x = test_x)

OOS validation
validate_x <- sample(test_x, 10)
validate_y <- sapply(validate_x, f)
plot(m, validate_x, validate_y)

write and read the constructed emulator
write(m, 'step_dgp')
m <- read('step_dgp')

End(Not run)

28 draw

draw Validation and diagnostic plots for a sequential design

Description

[Updated]

This function draws diagnostic and validation plots for a sequential design of a (D)GP emulator or
a bundle of (D)GP emulators.

Usage

draw(object, ...)

S3 method for class 'gp'
draw(object, type = "rmse", log = FALSE, ...)

S3 method for class 'dgp'
draw(object, type = "rmse", log = FALSE, ...)

S3 method for class 'bundle'
draw(object, type = "rmse", log = FALSE, emulator = NULL, ...)

Arguments

object can be one of the following emulator classes:

• the S3 class gp.
• the S3 class dgp.
• the S3 class bundle.

... N/A.

type specifies the type of plot or visualization to generate:

• "rmse": generates a trace plot of RMSEs, log-losses for DGP emulators
with categorical likelihoods, or custom evaluation metrics specified via the
"eval" argument in the [design()] function.

• "design": shows visualizations of input designs created by the sequential
design procedure.

Defaults to "rmse".

log a bool indicating whether to plot RMSEs, log-losses (for DGP emulators with
categorical likelihoods), or custom evaluation metrics on a log scale when type
= "rmse". Defaults to FALSE.

emulator [Updated] an index or vector of indices of emulators packed in object. This
argument is only used if object is an instance of the bundle class. When set to
NULL, all emulators in the bundle are drawn. Defaults to NULL.

get_thread_num 29

Details

See further examples and tutorials at https://mingdeyu.github.io/dgpsi-R/.

Value

A patchwork object.

Examples

Not run:

See design() for an example.

End(Not run)

get_thread_num Get the number of threads

Description

[New]

This function gets the number of threads used for parallel computations involved in the package.

Usage

get_thread_num()

Details

See further examples and tutorials at https://mingdeyu.github.io/dgpsi-R/.

Value

the number of threads.

https://mingdeyu.github.io/dgpsi-R/
https://mingdeyu.github.io/dgpsi-R/

30 gp

gp Gaussian process emulator construction

Description

This function builds and trains a GP emulator.

Usage

gp(
X,
Y,
name = "sexp",
lengthscale = rep(0.1, ncol(X)),
bounds = NULL,
prior = "ref",
nugget_est = FALSE,
nugget = ifelse(nugget_est, 0.01, 1e-08),
scale_est = TRUE,
scale = 1,
training = TRUE,
verb = TRUE,
vecchia = FALSE,
M = 25,
ord = NULL,
internal_input_idx = NULL,
linked_idx = NULL,
id = NULL

)

Arguments

X a matrix where each row is an input data point and each column is an input
dimension.

Y a matrix with only one column and each row being an output data point.

name kernel function to be used. Either "sexp" for squared exponential kernel or
"matern2.5" for Matérn-2.5 kernel. Defaults to "sexp".

lengthscale initial values of lengthscales in the kernel function. It can be a single numeric
value or a vector of length ncol(X):

• if it is a single numeric value, it is assumed that kernel functions across
input dimensions share the same lengthscale;

• if it is a vector, it is assumed that kernel functions across input dimensions
have different lengthscales.

Defaults to a vector of 0.1.

gp 31

bounds the lower and upper bounds of lengthscales in the kernel function. It is a vector
of length two where the first element is the lower bound and the second element
is the upper bound. The bounds will be applied to all lengthscales in the kernel
function. Defaults to NULL where no bounds are specified for the lengthscales.

prior prior to be used for Maximum a Posterior for lengthscales and nugget of the
GP: gamma prior ("ga"), inverse gamma prior ("inv_ga"), or jointly robust
prior ("ref"). Defaults to "ref". See the reference below for the jointly robust
prior.

nugget_est a bool indicating if the nugget term is to be estimated:

1. FALSE: the nugget term is fixed to nugget.
2. TRUE: the nugget term will be estimated.

Defaults to FALSE.

nugget the initial nugget value. If nugget_est = FALSE, the assigned value is fixed dur-
ing the training. Set nugget to a small value (e.g., 1e-8) and the corresponding
bool in nugget_est to FALSE for deterministic computer models where the emu-
lator should interpolate the training data points. Set nugget to a larger value and
the corresponding bool in nugget_est to TRUE for stochastic emulation where
the computer model outputs are assumed to follow a homogeneous Gaussian
distribution. Defaults to 1e-8 if nugget_est = FALSE and 0.01 if nugget_est
= TRUE.

scale_est a bool indicating if the variance is to be estimated:

1. FALSE: the variance is fixed to scale.
2. TRUE: the variance term will be estimated.

Defaults to TRUE.

scale the initial variance value. If scale_est = FALSE, the assigned value is fixed
during the training. Defaults to 1.

training a bool indicating if the initialized GP emulator will be trained. When set to
FALSE, gp() returns an untrained GP emulator, to which one can apply summary()
to inspect its specification or apply predict() to check its emulation perfor-
mance before the training. Defaults to TRUE.

verb a bool indicating if the trace information on GP emulator construction and train-
ing will be printed during function execution. Defaults to TRUE.

vecchia [New] a bool indicating whether to use Vecchia approximation for large-scale
GP emulator construction and prediction. Defaults to FALSE. The Vecchia ap-
proximation implemented for the GP emulation largely follows Katzfuss et al.
(2022). See reference below.

M [New] the size of the conditioning set for the Vecchia approximation in the GP
emulator training. Defaults to 25.

ord [New] an R function that returns the ordering of the input to the GP emulator for
the Vecchia approximation. The function must satisfy the following basic rules:

• the first argument represents the input scaled by the lengthscales.
• the output of the function is a vector of indices that gives the ordering of

the input to the GP emulator.

32 gp

If ord = NULL, the default random ordering is used. Defaults to NULL.

internal_input_idx

[Deprecated] The column indices of X that are generated by the linked emula-
tors in the preceding layers. Set internal_input_idx = NULL if the GP emula-
tor is in the first layer of a system or all columns in X are generated by the linked
emulators in the preceding layers. Defaults to NULL.

The argument will be removed in the next release. To set up connections
of emulators for linked emulations, please use the updated lgp() function
instead.

linked_idx [Deprecated] Either a vector or a list of vectors:

• If linked_idx is a vector, it gives indices of columns in the pooled output
matrix (formed by column-combined outputs of all emulators in the feeding
layer) that feed into the GP emulator. The length of the vector shall equal
to the length of internal_input_idx when internal_input_idx is not
NULL. If the GP emulator is in the first layer of a linked emulator system,
the vector gives the column indices of the global input (formed by column-
combining all input matrices of emulators in the first layer) that the GP
emulator will use. If the GP emulator is to be used in both the first and
subsequent layers, one should initially set linked_idx to the appropriate
values for the situation where the emulator is not in the first layer. Then,
use the function set_linked_idx() to reset the linking information when
the emulator is in the first layer.

• When the GP emulator is not in the first layer of a linked emulator sys-
tem, linked_idx can be a list that gives the information on connections
between the GP emulator and emulators in all preceding layers. The length
of the list should equal to the number of layers before the GP emulator.
Each element of the list is a vector that gives indices of columns in the
pooled output matrix (formed by column-combined outputs of all emula-
tors) in the corresponding layer that feed into the GP emulator. If the GP
emulator has no connections to any emulator in a certain layer, set NULL
in the corresponding position of the list. The order of input dimensions in
X[,internal_input_idx] should be consistent with linked_idx. For ex-
ample, a GP emulator in the second layer that is fed by the output dimension
1 and 3 of emulators in layer 1 should have linked_idx = list(c(1,3)
). In addition, the first and second columns of X[,internal_input_idx]
should correspond to the output dimensions 1 and 3 from layer 1.

Set linked_idx = NULL if the GP emulator will not be used for linked emula-
tions. However, if this is no longer the case, one can use set_linked_idx() to
add linking information to the GP emulator. Defaults to NULL.

The argument will be removed in the next release. To set up connections
of emulators for linked emulations, please use the updated lgp() function
instead.

id an ID to be assigned to the GP emulator. If an ID is not provided (i.e., id =
NULL), a UUID (Universally Unique Identifier) will be automatically generated
and assigned to the emulator. Default to NULL.

gp 33

Details

See further examples and tutorials at https://mingdeyu.github.io/dgpsi-R/.

Value

An S3 class named gp that contains five slots:

• id: A number or character string assigned through the id argument.

• data: a list that contains two elements: X and Y which are the training input and output data
respectively.

• specs: a list that contains seven elements:

1. kernel: the type of the kernel function used. Either "sexp" for squared exponential
kernel or "matern2.5" for Matérn-2.5 kernel.

2. lengthscales: a vector of lengthscales in the kernel function.
3. scale: the variance value in the kernel function.
4. nugget: the nugget value in the kernel function.
5. [Deprecated] internal_dims: the column indices of X that correspond to the linked

emulators in the preceding layers of a linked system. The slot will be removed in the
next release.

6. [Deprecated] external_dims: the column indices of X that correspond to global inputs
to the linked system of emulators. It is shown as FALSE if internal_input_idx = NULL.
The slot will be removed in the next release.

7. [Deprecated] linked_idx: the value passed to argument linked_idx. It is shown as
FALSE if the argument linked_idx is NULL. The slot will be removed in the next release.

8. [New] vecchia: whether the Vecchia approximation is used for the GP emulator training.
9. [New] M: the size of the conditioning set for the Vecchia approximation in the GP emulator

training.

• constructor_obj: a ’python’ object that stores the information of the constructed GP emu-
lator.

• container_obj: a ’python’ object that stores the information for the linked emulation.

• emulator_obj: a ’python’ object that stores the information for the predictions from the GP
emulator.

The returned gp object can be used by

• predict() for GP predictions.

• validate() for LOO and OOS validations.

• plot() for validation plots.

• lgp() for linked (D)GP emulator constructions.

• summary() to summarize the trained GP emulator.

• write() to save the GP emulator to a .pkl file.

• design() for sequential designs.

• update() to update the GP emulator with new inputs and outputs.

• alm(), mice(), and vigf() to locate next design points.

https://mingdeyu.github.io/dgpsi-R/

34 gp

Note

Any R vector detected in X and Y will be treated as a column vector and automatically converted
into a single-column R matrix. Thus, if X is a single data point with multiple dimensions, it must be
given as a matrix.

References

• Gu, M. (2019). Jointly robust prior for Gaussian stochastic process in emulation, calibration
and variable selection. Bayesian Analysis, 14(3), 857-885.

• Katzfuss, M., Guinness, J., & Lawrence, E. (2022). Scaled Vecchia approximation for fast
computer-model emulation. SIAM/ASA Journal on Uncertainty Quantification, 10(2), 537-
554.

Examples

Not run:
load the package and the Python env
library(dgpsi)

construct a step function
f <- function(x) {

if (x < 0.5) return(-1)
if (x >= 0.5) return(1)
}

generate training data
X <- seq(0, 1, length = 10)
Y <- sapply(X, f)

training
m <- gp(X, Y)

summarizing
summary(m)

LOO cross validation
m <- validate(m)
plot(m)

prediction
test_x <- seq(0, 1, length = 200)
m <- predict(m, x = test_x)

OOS validation
validate_x <- sample(test_x, 10)
validate_y <- sapply(validate_x, f)
plot(m, validate_x, validate_y)

write and read the constructed emulator
write(m, 'step_gp')
m <- read('step_gp')

init_py 35

End(Not run)

init_py ’python’ environment initialization

Description

This function initializes the ’python’ environment for the package.

Usage

init_py(
py_ver = NULL,
dgpsi_ver = NULL,
reinstall = FALSE,
uninstall = FALSE,
verb = TRUE

)

Arguments

py_ver a string that gives the ’python’ version to be installed. If py_ver = NULL, the
default ’python’ version ’3.9.13’ will be installed.

dgpsi_ver a string that gives the ’python’ version of ’dgpsi’ to be used. If dgpsi_ver =
NULL,

• the latest ’python’ version of ’dgpsi’ will be used, if the package is installed
from CRAN;

• the development ’python’ version of ’dgpsi’ will be used, if the package is
installed from GitHub.

reinstall a bool that indicates whether to reinstall the ’python’ version of ’dgpsi’ specified
in dgpsi_ver if it has already been installed. This argument is useful when the
development version of the R package is installed and one may want to regularly
update the development ’python’ version of ’dgpsi’. Defaults to FALSE.

uninstall a bool that indicates whether to uninstall the ’python’ version of ’dgpsi’ specified
in dgpsi_ver if it has already been installed. This argument is useful when the
’python’ environment is corrupted and one wants to completely uninstall and
reinstall it. Defaults to FALSE.

verb a bool indicating if trace information will be printed during function execution.
Defaults to TRUE.

Details

See further examples and tutorials at https://mingdeyu.github.io/dgpsi-R/.

https://mingdeyu.github.io/dgpsi-R/

36 lgp

Value

No return value, called to install required ’python’ environment.

Examples

Not run:

See gp(), dgp(), or lgp() for an example.

End(Not run)

lgp Linked (D)GP emulator construction

Description

[Updated]

This function constructs a linked (D)GP emulator for a model chain or network.

Usage

lgp(struc, emulators = NULL, B = 10, activate = TRUE, verb = TRUE, id = NULL)

Arguments

struc the structure of the linked emulator, which can take one of two forms:

• [Deprecated] a list contains L (the number of layers in a systems of com-
puter models) sub-lists, each of which represents a layer and contains (D)GP
emulators (represented by instances of S3 class gp or dgp) of computer
models. The sub-lists are placed in the list in the same order of the spec-
ified computer model system’s hierarchy. This option is deprecated and
will be removed in the next release.

• [New] a data frame that defines the connection structure between emulators
in the linked system, with the following columns:

– From_Emulator: the ID of the emulator providing the output. This ID
must match the id slot in the corresponding emulator object (produced
by gp() or dgp()) within emulators argument of lgp(), or it should
be special value "Global", indicating the global inputs to the model
chain or network. The id slot is either automatically generated by gp()
or dgp(), or can be manually specified via the id argument in these
functions or set with the set_id() function.

– To_Emulator: the ID of the emulator receiving the input, also matching
the id slot in the corresponding emulator object.

lgp 37

– From_Output: a single integer specifying the output dimension of the
From_Emulator that is being connected to the input dimension of the
To_Emulator specified by To_Input. If From_Emulator is "Global",
then From_Output indicates the dimension of the global input passed
to the To_Emulator.

– To_Input: a single integer specifying the input dimension of the To_Emulator
that is receiving the From_Output dimension from the From_Emulator.

Each row represents a single one-to-one connection between a specified
output dimension of From_Emulator and a corresponding input dimension
of To_Emulator. If multiple connections are required between two emula-
tors, each connection should be specified in a separate row.
Note: When using the data frame option for struc, the emulators argu-
ment must be provided.

emulators [New] a list of emulator objects, each containing an id slot that uniquely identi-
fies it within the linked system. The id slot in each emulator object must match
the From_Emulator/To_Emulator columns in struc.
If the same emulator is used multiple times within the linked system, the list
must contain distinct copies of that emulator, each with a unique ID stored in
their id slot. Use the set_id() function to produce copies with different IDs to
ensure each instance can be uniquely referenced.

B the number of imputations used for prediction. Increase the value to refine repre-
sentation of imputation uncertainty. If the system consists of only GP emulators,
B is set to 1 automatically. Defaults to 10.

activate [New] a bool indicating whether the initialized linked emulator should be acti-
vated:

• If activate = FALSE, lgp() returns an inactive linked emulator, allowing
inspection of its structure using summary().

• If activate = TRUE, lgp() returns an active linked emulator, ready for pre-
diction and validation using predict() and validate(), respectively.

Defaults to TRUE. This argument is only applicable when struc is specified as a
data frame.

verb [New] a bool indicating if the trace information on linked (D)GP emulator con-
struction should be printed during the function call. Defaults to TRUE. This ar-
gument is only applicable when struc is specified as a data frame.

id an ID to be assigned to the linked (D)GP emulator. If an ID is not provided
(i.e., id = NULL), a UUID (Universally Unique Identifier) will be automatically
generated and assigned to the emulator. Defaults to NULL.

Details

See further examples and tutorials at https://mingdeyu.github.io/dgpsi-R/.

Value

An S3 class named lgp that contains three slots:

• id: A number or character string assigned through the id argument.

https://mingdeyu.github.io/dgpsi-R/

38 lgp

• constructor_obj: a list of ’python’ objects that stores the information of the constructed
linked emulator.

• emulator_obj, a ’python’ object that stores the information for predictions from the linked
emulator.

• specs: a list that contains

1. seed: the random seed generated to produce the imputations. This information is stored
for reproducibility when the linked (D)GP emulator (that was saved by write() with the
light option light = TRUE) is loaded back to R by read().

2. B: the number of imputations used to generate the linked (D)GP emulator.

[New] If struc is a data frame, specs also includes:

1. metadata: a data frame providing configuration details for each emulator in the linked
system, with following columns:

– Emulator: the ID of an emulator.
– Layer: the layer in the linked system where the emulator is positioned. A lower
Layer number indicates a position closer to the input, with layer numbering increas-
ing as you move away from the input.

– Pos_in_Layer: the position of the emulator within its layer. A lower Pos_in_Layer
number indicates a position higher up in that layer.

– Total_Input_Dims: the total number of input dimensions of the emulator.
– Total_Output_Dims: the total number of output dimensions of the emulator.

2. struc: The linked system structure, as supplied by struc.

The returned lgp object can be used by

• predict() for linked (D)GP predictions.

• validate() for OOS validation.

• plot() for validation plots.

• summary() to summarize the constructed linked (D)GP emulator.

• write() to save the linked (D)GP emulator to a .pkl file.

Examples

Not run:

load the package and the Python env
library(dgpsi)

model 1
f1 <- function(x) {

(sin(7.5*x)+1)/2
}
model 2
f2 <- function(x) {

2/3*sin(2*(2*x - 1))+4/3*exp(-30*(2*(2*x-1))^2)-1/3
}
linked model
f12 <- function(x) {

mice 39

f2(f1(x))
}

training data for Model 1
X1 <- seq(0, 1, length = 9)
Y1 <- sapply(X1, f1)
training data for Model 2
X2 <- seq(0, 1, length = 13)
Y2 <- sapply(X2, f2)

emulation of model 1
m1 <- gp(X1, Y1, name = "matern2.5", id = "emulator1")
emulation of model 2
m2 <- dgp(X2, Y2, depth = 2, name = "matern2.5", id = "emulator2")

struc <- data.frame(From_Emulator = c("Global", "emulator1"),
To_Emulator = c("emulator1", "emulator2"),
From_Output = c(1, 1),
To_Input = c(1, 1))

emulators <- list(m1, m2)

construct the linked emulator for visual inspection
m_link <- lgp(struc, emulators, activate = FALSE)

visual inspection
summary(m_link)

build the linked emulator for prediction
m_link <- lgp(struc, emulators, activate = TRUE)
test_x <- seq(0, 1, length = 300)
m_link <- predict(m_link, x = test_x)

OOS validation
validate_x <- sample(test_x, 20)
validate_y <- sapply(validate_x, f12)
plot(m_link, validate_x, validate_y, style = 2)

write and read the constructed linked emulator
write(m_link, 'linked_emulator')
m_link <- read('linked_emulator')

End(Not run)

mice Locate the next design point for a (D)GP emulator or a bundle of
(D)GP emulators using MICE

Description

[Updated]

40 mice

This function searches from a candidate set to locate the next design point(s) to be added to a (D)GP
emulator or a bundle of (D)GP emulators using the Mutual Information for Computer Experiments
(MICE), see the reference below.

Usage

mice(object, ...)

S3 method for class 'gp'
mice(
object,
x_cand = NULL,
n_cand = 200,
batch_size = 1,
M = 50,
nugget_s = 1e-06,
workers = 1,
limits = NULL,
int = FALSE,
...

)

S3 method for class 'dgp'
mice(
object,
x_cand = NULL,
n_cand = 200,
batch_size = 1,
M = 50,
nugget_s = 1e-06,
workers = 1,
limits = NULL,
int = FALSE,
aggregate = NULL,
...

)

S3 method for class 'bundle'
mice(
object,
x_cand = NULL,
n_cand = 200,
batch_size = 1,
M = 50,
nugget_s = 1e-06,
workers = 1,
limits = NULL,
int = FALSE,
aggregate = NULL,

mice 41

...
)

Arguments

object can be one of the following:
• the S3 class gp.
• the S3 class dgp.
• the S3 class bundle.

... any arguments (with names different from those of arguments used in mice())
that are used by aggregate can be passed here.

x_cand a matrix (with each row being a design point and column being an input di-
mension) that gives a candidate set from which the next design point(s) are de-
termined. If object is an instance of the bundle class and aggregate is not
supplied, x_cand can also be a list. The list must have a length equal to the
number of emulators in object, with each element being a matrix representing
the candidate set for a corresponding emulator in the bundle. Defaults to NULL.

n_cand an integer specifying the size of the candidate set to be generated for selecting
the next design point(s). This argument is used only when x_cand is NULL.
Defaults to 200.

batch_size an integer that gives the number of design points to be chosen. Defaults to 1.
M [New] the size of the conditioning set for the Vecchia approximation in the cri-

terion calculation. This argument is only used if the emulator object was con-
structed under the Vecchia approximation. Defaults to 50.

nugget_s the value of the smoothing nugget term used by MICE. Defaults to 1e-6.
workers the number of processes to be used for the criterion calculation. If set to NULL,

the number of processes is set to max physical cores available %/% 2.
Defaults to 1.

limits [New] a two-column matrix that gives the ranges of each input dimension, or a
vector of length two if there is only one input dimension. If a vector is provided,
it will be converted to a two-column row matrix. The rows of the matrix corre-
spond to input dimensions, and its first and second columns correspond to the
minimum and maximum values of the input dimensions. This argument is only
used when x_cand = NULL. Defaults to NULL.

int [New] a bool or a vector of bools that indicates if an input dimension is an
integer type. If a single bool is given, it will be applied to all input dimensions.
If a vector is provided, it should have a length equal to the input dimensions and
will be applied to individual input dimensions. This argument is only used when
x_cand = NULL. Defaults to FALSE.

aggregate an R function that aggregates scores of the MICE across different output dimen-
sions (if object is an instance of the dgp class) or across different emulators (if
object is an instance of the bundle class). The function should be specified in
the following basic form:

• the first argument is a matrix representing scores. The rows of the matrix
correspond to different design points. The number of columns of the matrix
equals to:

42 mice

– the emulator output dimension if object is an instance of the dgp class;
or

– the number of emulators contained in object if object is an instance
of the bundle class.

• the output should be a vector that gives aggregate scores at different design
points.

Set to NULL to disable aggregation. Defaults to NULL.

Details

See further examples and tutorials at https://mingdeyu.github.io/dgpsi-R/.

Value

1. If x_cand is not NULL:

• When object is an instance of the gp class, a vector of length batch_size is returned,
containing the positions (row numbers) of the next design points from x_cand.

• When object is an instance of the dgp class, a vector of length batch_size * D is re-
turned, containing the positions (row numbers) of the next design points from x_cand to
be added to the DGP emulator.

– D is the number of output dimensions of the DGP emulator if no likelihood layer is
included.

– For a DGP emulator with a Hetero or NegBin likelihood layer, D = 2.

– For a DGP emulator with a Categorical likelihood layer, D = 1 for binary output or
D = K for multi-class output with K classes.

• When object is an instance of the bundle class, a matrix is returned with batch_size
rows and a column for each emulator in the bundle, containing the positions (row num-
bers) of the next design points from x_cand for individual emulators.

2. If x_cand is NULL:

• When object is an instance of the gp class, a matrix with batch_size rows is returned,
giving the next design points to be evaluated.

• When object is an instance of the dgp class, a matrix with batch_size * D rows is
returned, where:

– D is the number of output dimensions of the DGP emulator if no likelihood layer is
included.

– For a DGP emulator with a Hetero or NegBin likelihood layer, D = 2.

– For a DGP emulator with a Categorical likelihood layer, D = 1 for binary output or
D = K for multi-class output with K classes.

• When object is an instance of the bundle class, a list is returned with a length equal
to the number of emulators in the bundle. Each element of the list is a matrix with
batch_size rows, where each row represents a design point to be added to the corre-
sponding emulator.

https://mingdeyu.github.io/dgpsi-R/

mice 43

Note

The first column of the matrix supplied to the first argument of aggregate must correspond to the
first output dimension of the DGP emulator if object is an instance of the dgp class, and so on
for subsequent columns and dimensions. If object is an instance of the bundle class, the first
column must correspond to the first emulator in the bundle, and so on for subsequent columns and
emulators.

References

Beck, J., & Guillas, S. (2016). Sequential design with mutual information for computer experiments
(MICE): emulation of a tsunami model. SIAM/ASA Journal on Uncertainty Quantification, 4(1),
739-766.

Examples

Not run:

load packages and the Python env
library(lhs)
library(dgpsi)

construct a 1D non-stationary function
f <- function(x) {
sin(30*((2*x-1)/2-0.4)^5)*cos(20*((2*x-1)/2-0.4))

}

generate the initial design
X <- maximinLHS(10,1)
Y <- f(X)

training a 2-layered DGP emulator with the global connection off
m <- dgp(X, Y, connect = F)

generate a candidate set
x_cand <- maximinLHS(200,1)

locate the next design point using MICE
next_point <- mice(m, x_cand = x_cand)
X_new <- x_cand[next_point,,drop = F]

obtain the corresponding output at the located design point
Y_new <- f(X_new)

combine the new input-output pair to the existing data
X <- rbind(X, X_new)
Y <- rbind(Y, Y_new)

update the DGP emulator with the new input and output data and refit
m <- update(m, X, Y, refit = TRUE)

plot the LOO validation

44 nllik

plot(m)

End(Not run)

nllik Calculate the predictive negative log-likelihood

Description

This function computes the predictive negative log-likelihood from a DGP emulator with a likeli-
hood layer.

Usage

nllik(object, x, y)

Arguments

object an instance of the dgp class and it should be produced by dgp() with likelihood
not being NULL;

x a matrix where each row is an input testing data point and each column is an
input dimension.

y a matrix with only one column where each row is a scalar-valued testing output
data point.

Details

See further examples and tutorials at https://mingdeyu.github.io/dgpsi-R/.

Value

An updated object is returned with an additional slot named NLL that contains two elements. The
first one, named meanNLL, is a scalar that gives the average negative predicted log-likelihood across
all testing data points. The second one, named allNLL, is a vector that gives the negative predicted
log-likelihood for each testing data point.

https://mingdeyu.github.io/dgpsi-R/

pack 45

pack Pack GP and DGP emulators into a bundle

Description

This function packs GP emulators and DGP emulators into a bundle class for sequential designs if
each emulator emulates one output dimension of the underlying simulator.

Usage

pack(..., id = NULL)

Arguments

... a sequence or a list of emulators produced by gp() or dgp().

id an ID to be assigned to the bundle emulator. If an ID is not provided (i.e., id =
NULL), a UUID (Universally Unique Identifier) will be automatically generated
and assigned to the emulator. Default to NULL.

Details

See further examples and tutorials at https://mingdeyu.github.io/dgpsi-R/.

Value

An S3 class named bundle to be used by design() for sequential designs. It has:

• a slot called id that is assigned through the id argument.

• N slots named emulator1,...,emulatorN, each of which contains a GP or DGP emulator,
where N is the number of emulators that are provided to the function.

• a slot called data which contains two elements X and Y. X contains N matrices named emulator1,...,emulatorN
that are training input data for different emulators. Y contains N single-column matrices named
emulator1,...,emulatorN that are training output data for different emulators.

Examples

Not run:

load packages
library(lhs)
library(dgpsi)

construct a function with a two-dimensional output
f <- function(x) {
y1 = sin(30*((2*x-1)/2-0.4)^5)*cos(20*((2*x-1)/2-0.4))
y2 = 1/3*sin(2*(2*x - 1))+2/3*exp(-30*(2*(2*x-1))^2)+1/3
return(cbind(y1,y2))
}

https://mingdeyu.github.io/dgpsi-R/

46 plot

generate the initial design
X <- maximinLHS(10,1)
Y <- f(X)

generate the validation data
validate_x <- maximinLHS(30,1)
validate_y <- f(validate_x)

training a 2-layered DGP emulator with respect to each output with the global connection off
m1 <- dgp(X, Y[,1], connect = F)
m2 <- dgp(X, Y[,2], connect = F)

specify the range of the input dimension
lim <- c(0, 1)

pack emulators to form an emulator bundle
m <- pack(m1, m2)

1st wave of the sequential design with 10 iterations and the target RMSE of 0.01
m <- design(m, N = 10, limits = lim, f = f, x_test = validate_x, y_test = validate_y, target = 0.01)

2rd wave of the sequential design with additional 10 iterations and the same target
m <- design(m, N = 10, limits = lim, f = f, x_test = validate_x, y_test = validate_y, target = 0.01)

draw sequential designs of the two packed emulators
draw(m, type = 'design')

inspect the traces of RMSEs of the two packed emulators
draw(m, type = 'rmse')

write and read the constructed emulator bundle
write(m, 'bundle_dgp')
m <- read('bundle_dgp')

unpack the bundle into individual emulators
m_unpacked <- unpack(m)

plot OOS validations of individual emulators
plot(m_unpacked[[1]], x_test = validate_x, y_test = validate_y[,1])
plot(m_unpacked[[2]], x_test = validate_x, y_test = validate_y[,2])

End(Not run)

plot Validation plots of a constructed GP, DGP, or linked (D)GP emulator

Description

[Updated]
This function draws validation plots of a GP, DGP, or linked (D)GP emulator.

plot 47

Usage

S3 method for class 'dgp'
plot(
x,
x_test = NULL,
y_test = NULL,
dim = NULL,
method = NULL,
sample_size = 50,
style = 1,
min_max = TRUE,
normalize = TRUE,
color = "turbo",
type = "points",
verb = TRUE,
M = 50,
force = FALSE,
cores = 1,
...

)

S3 method for class 'lgp'
plot(
x,
x_test = NULL,
y_test = NULL,
dim = NULL,
method = NULL,
sample_size = 50,
style = 1,
min_max = TRUE,
color = "turbo",
type = "points",
M = 50,
verb = TRUE,
force = FALSE,
cores = 1,
...

)

S3 method for class 'gp'
plot(
x,
x_test = NULL,
y_test = NULL,
dim = NULL,
method = NULL,
sample_size = 50,

48 plot

style = 1,
min_max = TRUE,
color = "turbo",
type = "points",
verb = TRUE,
M = 50,
force = FALSE,
cores = 1,
...

)

Arguments

x can be one of the following emulator classes:

• the S3 class gp.
• the S3 class dgp.
• the S3 class lgp.

x_test same as that of validate().

y_test same as that of validate().

dim [Updated] if dim = NULL, the index of an emulator’s input within the design
will be shown on the x-axis in validation plots. Otherwise, dim indicates which
dimension of an emulator’s input will be shown on the x-axis in validation plots:

• If x is an instance of the gp of dgp class, dim is an integer.
• [Deprecated] If x is an instance of the lgp class created by lgp() without

specifying the struc argument in data frame form, dim can be:
1. an integer referring to the dimension of the global input to emulators in

the first layer of a linked emulator system; or
2. a vector of three integers referring to the dimension (specified by the

third integer) of the global input to an emulator (specified by the second
integer) in a layer (specified by the first integer) that is not the first layer
of a linked emulator system.

This option for linked (D)GP emulators is deprecated and will be re-
moved in the next release.

• [New] If x is an instance of the lgp class created by lgp() with argument
struc in data frame form, dim is an integer referring to the dimension of
the global input to the linked emulator system.

This argument is only used when style = 1. Defaults to NULL.

method same as that of validate().

sample_size same as that of validate().

style either 1 or 2, indicating two different plotting styles for validation.

min_max a bool indicating if min-max normalization will be used to scale the testing
output, RMSE, predictive mean and std from the emulator. Defaults to TRUE.
This argument is not applicable to DGP emulators with categorical likelihoods.

plot 49

normalize [New] a bool indicating if normalization will be used to scale the counts in
validation plots of DGP emulators with categorical likelihoods when style = 2.
Defaults to TRUE.

color a character string indicating the color map to use when style = 2:

• 'magma' (or 'A')
• 'inferno' (or 'B')
• 'plasma' (or ’C’)
• 'viridis' (or 'D')
• 'cividis' (or 'E')
• 'rocket' (or 'F')
• 'mako' (or 'G')
• 'turbo' (or 'H')

Defaults to 'turbo' (or 'H').

type either 'line' or 'points, indicating whether to draw testing data in the OOS
validation plot as a line or individual points when the input of the emulator is
one-dimensional and style = 1. This argument is not applicable to DGP emu-
lators with categorical likelihoods. Defaults to 'points'

verb a bool indicating if trace information on plotting will be printed during execu-
tion. Defaults to TRUE.

M [New] same as that of validate().

force same as that of validate().

cores same as that of validate().

... N/A.

Details

See further examples and tutorials at https://mingdeyu.github.io/dgpsi-R/.

Value

A patchwork object.

Note

• plot() calls validate() internally to obtain validation results for plotting. However, plot()
will not export the emulator object with validation results. Instead, it only returns the plotting
object. For small-scale validations (i.e., small training or testing data points), direct execution
of plot() works well. However, for moderate- to large-scale validation, it is recommended
to first run validate() to obtain and store validation results in the emulator object, and then
supply the object to plot(). plot() checks the object’s loo and oos slots prior to calling
validate() and will not perform further calculation if the required information is already
stored.

• plot() will only use stored OOS validation if x_test and y_test are identical to those used
by validate() to produce the data contained in the object’s oos slot, otherwise plot() will
re-evaluate OOS validation before plotting.

https://mingdeyu.github.io/dgpsi-R/

50 predict

• The returned patchwork::patchwork object contains the ggplot2::ggplot2 objects. One can
modify the included individual ggplots by accessing them with double-bracket indexing. See
https://patchwork.data-imaginist.com/ for further information.

Examples

Not run:

See gp(), dgp(), or lgp() for an example.

End(Not run)

predict Prediction from GP, DGP, or linked (D)GP emulators

Description

[Updated]
This function implements prediction from GP, DGP, or linked (D)GP emulators.

Usage

S3 method for class 'dgp'
predict(
object,
x,
method = NULL,
mode = "label",
full_layer = FALSE,
sample_size = 50,
M = 50,
cores = 1,
chunks = NULL,
...

)

S3 method for class 'lgp'
predict(
object,
x,
method = NULL,
full_layer = FALSE,
sample_size = 50,
M = 50,
cores = 1,
chunks = NULL,
...

https://patchwork.data-imaginist.com/

predict 51

)

S3 method for class 'gp'
predict(
object,
x,
method = NULL,
sample_size = 50,
M = 50,
cores = 1,
chunks = NULL,
...

)

Arguments

object an instance of the gp, dgp, or lgp class.

x the testing input data:

• if object is an instance of the gp or dgp class, x is a matrix where each row
is an input testing data point and each column is an input dimension.

• [Deprecated] if object is an instance of the lgp class created by lgp()
without specifying argument struc in data frame form, x can be either a
matrix or a list:

– if x is a matrix, its rows are treated as instances of the Global inputs.
In this case, it is assumed that the only global input to the system is the
input to the emulators in the first layer and there is no global input to
emulators in other layers.

– if x is a list, it should have L (the number of layers in an emulator sys-
tem) elements. The first element is a matrix that represents the global
testing input data that feed into the emulators in the first layer of the
system. The remaining L-1 elements are L-1 sub-lists, each of which
contains a number (the same number of emulators in the corresponding
layer) of matrices (rows being testing input data points and columns
being input dimensions) that represent the global testing input data to
the emulators in the corresponding layer. The matrices must be placed
in the sub-lists based on how their corresponding emulators are placed
in struc argument of lgp(). If there is no global input data to a certain
emulator, set NULL in the corresponding sub-list of x.

This option for linked (D)GP emulators is deprecated and will be re-
moved in the next release.

• [New] If object is an instance of the lgp class created by lgp() with argu-
ment struc in data frame form, x must be a matrix representing the global
input, where each row corresponds to a test data point and each column rep-
resents a global input dimension. The column indices in x must align with
the indices specified in the From_Output column of the struc data frame
(used in lgp()), corresponding to rows where the From_Emulator column
is "Global".

52 predict

method [Updated] the prediction approach to use: either the mean-variance approach
("mean_var") or the sampling approach ("sampling"). The mean-variance ap-
proach returns the means and variances of the predictive distributions, while
the sampling approach generates samples from predictive distributions using
the derived means and variances. For DGP emulators with a categorical like-
lihood (likelihood = "Categorical" in dgp()), method is only applicable
when full_layer = TRUE. In this case, the sampling approach generates sam-
ples from the GP nodes in all hidden layers using the derived means and vari-
ances, and subsequently propagates these samples through the categorical like-
lihood. By default, the method is set to "sampling" for DGP emulators with
Poisson, Negative Binomial, and Categorical likelihoods, and to "mean_var"
otherwise.

mode [New] whether to predict the classes ("label") or probabilities ("proba") of
different classes when object is a DGP emulator with a categorical likelihood.
Defaults to "label".

full_layer a bool indicating whether to output the predictions of all layers. Defaults to
FALSE. Only used when object is a DGP or a linked (D)GP emulator.

sample_size the number of samples to draw for each given imputation if method = "sampling".
Defaults to 50.

M [New] the size of the conditioning set for the Vecchia approximation in the em-
ulator prediction. Defaults to 50. This argument is only used if the emulator
object was constructed under the Vecchia approximation.

cores the number of processes to be used for prediction. If set to NULL, the number of
processes is set to max physical cores available %/% 2. Defaults to 1.

chunks the number of chunks that the testing input matrix x will be divided into for
multi-cores to work on. Only used when cores is not 1. If not specified (i.e.,
chunks = NULL), the number of chunks is set to the value of cores. Defaults to
NULL.

... N/A.

Details

See further examples and tutorials at https://mingdeyu.github.io/dgpsi-R/.

Value

• If object is an instance of the gp class:

1. if method = "mean_var": an updated object is returned with an additional slot called
results that contains two matrices named mean for the predictive means and var for the
predictive variances. Each matrix has only one column with its rows corresponding to
testing positions (i.e., rows of x).

2. if method = "sampling": an updated object is returned with an additional slot called
results that contains a matrix whose rows correspond to testing positions and columns
correspond to sample_size number of samples drawn from the predictive distribution of
GP.

• If object is an instance of the dgp class:

https://mingdeyu.github.io/dgpsi-R/

predict 53

1. if method = "mean_var" and full_layer = FALSE: an updated object is returned with
an additional slot called results that contains two matrices named mean for the predic-
tive means and var for the predictive variances respectively. Each matrix has its rows
corresponding to testing positions and columns corresponding to DGP global output di-
mensions (i.e., the number of GP/likelihood nodes in the final layer).

2. if method = "mean_var" and full_layer = TRUE: an updated object is returned with an
additional slot called results that contains two sub-lists named mean for the predictive
means and var for the predictive variances respectively. Each sub-list contains L (i.e., the
number of layers) matrices named layer1, layer2,..., layerL. Each matrix has its
rows corresponding to testing positions and columns corresponding to output dimensions
(i.e., the number of GP/likelihood nodes from the associated layer).

3. if method = "sampling" and full_layer = FALSE: an updated object is returned with
an additional slot called results that contains D (i.e., the number of GP/likelihood nodes
in the final layer) matrices named output1, output2,..., outputD. Each matrix has
its rows corresponding to testing positions and columns corresponding to samples of size:
B * sample_size, where B is the number of imputations specified in dgp().

4. if method = "sampling" and full_layer = TRUE: an updated object is returned with
an additional slot called results that contains L (i.e., the number of layers) sub-lists
named layer1, layer2,..., layerL. Each sub-list represents samples drawn from
the GP/likelihood nodes in the corresponding layer, and contains D (i.e., the number of
GP/likelihood nodes in the corresponding layer) matrices named output1, output2,..., outputD.
Each matrix gives samples of the output from one of D GP/likelihood nodes, and has its
rows corresponding to testing positions and columns corresponding to samples of size: B
* sample_size, where B is the number of imputations specified in dgp().

• [New] If object is an instance of the dgp class with a categorical likelihood:

1. if full_layer = FALSE and mode = "label": an updated object is returned with an ad-
ditional slot called results that contains one matrix named label. The matrix has rows
corresponding to testing positions and columns corresponding to sample labels of size: B
* sample_size, where B is the number of imputations specified in dgp().

2. if full_layer = FALSE and mode = "proba", an updated object is returned with an ad-
ditional slot called results. This slot contains D matrices (where D is the number of
classes in the training output), where each matrix gives probability samples for the cor-
responding class with its rows corresponding to testing positions and columns containing
probabilities. The number of columns of each matrix is B * sample_size, where B is the
number of imputations specified in the dgp() function.

3. if method = "mean_var" and full_layer = TRUE: an updated object is returned with an
additional slot called results that contains L (i.e., the number of layers) sub-lists named
layer1, layer2,..., layerL. Each of first L-1 sub-lists contains two matrices named
mean for the predictive means and var for the predictive variances of the GP nodes in the
associated layer. Rows of each matrix correspond to testing positions.

– when mode = "label", the sub-list LayerL contains one matrix named label. The
matrix has its rows corresponding to testing positions and columns corresponding to
label samples of size: B * sample_size. B is the number of imputations specified in
dgp().

– when mode = "proba", the sub-list LayerL contains D matrices (where D is the num-
ber of classes in the training output), where each matrix gives probability samples for
the corresponding class with its rows corresponding to testing positions and columns

54 predict

containing probabilities. The number of columns of each matrix is B * sample_size.
B is the number of imputations specified in dgp().

4. if method = "sampling" and full_layer = TRUE: an updated object is returned with an
additional slot called results that contains L (i.e., the number of layers) sub-lists named
layer1, layer2,..., layerL. Each of first L-1 sub-lists represents samples drawn
from the GP nodes in the corresponding layer, and contains D (i.e., the number of GP
nodes in the corresponding layer) matrices named output1, output2,..., outputD.
Each matrix gives samples of the output from one of D GP nodes, and has its rows
corresponding to testing positions and columns corresponding to samples of size: B *
sample_size.

– when mode = "label", the sub-list LayerL contains one matrix named label. The
matrix has its rows corresponding to testing positions and columns corresponding to
label samples of size: B * sample_size.

– when mode = "proba", the sub-list LayerL contains D matrices (where D is the num-
ber of classes in the training output), where each matrix gives probability samples for
the corresponding class with its rows corresponding to testing positions and columns
containing probabilities. The number of columns of each matrix is B * sample_size.

B is the number of imputations specified in dgp().

• [Updated] If object is an instance of the lgp class:

1. if method = "mean_var" and full_layer = FALSE: an updated object is returned with
an additional slot called results that contains two sub-lists named mean for the predic-
tive means and var for the predictive variances respectively. Each sub-list contains K
(same number of emulators in the final layer of the system) matrices named using the
IDs of the corresponding emulators in the final layer. Each matrix has rows correspond-
ing to global testing positions and columns corresponding to output dimensions of the
associated emulator in the final layer.

2. if method = "mean_var" and full_layer = TRUE: an updated object is returned with an
additional slot called results that contains two sub-lists named mean for the predictive
means and var for the predictive variances respectively. Each sub-list contains L (i.e., the
number of layers in the emulated system) components named layer1, layer2,..., layerL.
Each component represents a layer and contains K (same number of emulators in the
corresponding layer of the system) matrices named using the IDs of the corresponding
emulators in that layer. Each matrix has its rows corresponding to global testing positions
and columns corresponding to output dimensions of the associated GP/DGP emulator in
the corresponding layer.

3. if method = "sampling" and full_layer = FALSE: an updated object is returned with
an additional slot called results that contains K (same number of emulators in the final
layer of the system) sub-lists named using the IDs of the corresponding emulators in the
final layer. Each sub-list contains D matrices, named output1, output2,..., outputD,
that correspond to the output dimensions of the GP/DGP emulator. Each matrix has rows
corresponding to testing positions and columns corresponding to samples of size: B *
sample_size, where B is the number of imputations specified in lgp().

4. if method = "sampling" and full_layer = TRUE: an updated object is returned with
an additional slot called results that contains L (i.e., the number of layers of the emu-
lated system) sub-lists named layer1, layer2,..., layerL. Each sub-list represents a
layer and contains K (same number of emulators in the corresponding layer of the system)
components named using the IDs of the corresponding emulators in that layer. Each com-

prune 55

ponent contains D matrices, named output1, output2,..., outputD, that correspond
to the output dimensions of the GP/DGP emulator. Each matrix has its rows correspond-
ing to testing positions and columns corresponding to samples of size: B * sample_size,
where B is the number of imputations specified in lgp().

If object is an instance of the lgp class created by lgp() without specifying the struc
argument in data frame form, the IDs, that are used as names of sub-lists or matrices within
results, will be replaced by emulator1, emulator2, and so on.

The results slot will also include:

• [New] the value of M, which represents the size of the conditioning set for the Vecchia approx-
imation, if used, in the emulator prediction.

• the value of sample_size if method = "sampling".

Examples

Not run:

See gp(), dgp(), or lgp() for an example.

End(Not run)

prune Static pruning of a DGP emulator

Description

This function implements static pruning for a DGP emulator.

Usage

prune(object, control = list(), verb = TRUE)

Arguments

object an instance of the dgp class that is generated by dgp().

control a list that can supply the following two components to control static pruning of
the DGP emulator:

• min_size, the minimum number of design points required to trigger prun-
ing. Defaults to 10 times of the input dimensions.

• threshold, the R2 value above which a GP node is considered redundant
and removable. Defaults to 0.97.

verb a bool indicating if trace information will be printed during the function execu-
tion. Defaults to TRUE.

Details

See further examples and tutorials at https://mingdeyu.github.io/dgpsi-R/.

https://mingdeyu.github.io/dgpsi-R/

56 prune

Value

An updated object that could be an instance of gp, dgp, or bundle (of GP emulators) class.

Note

• The function requires a DGP emulator that has been trained with a dataset comprising a min-
imum size equal to min_size in control. If the training dataset size is smaller than this, it
is recommended that the design of the DGP emulator is enriched and its structure pruned dy-
namically using the design() function. Depending on the design of the DGP emulator, static
pruning may not be accurate. It is thus recommended that dynamic pruning is implemented as
a part of a sequential design via design().

• The following slots:

– loo and oos created by validate(); and
– results created by predict();

in object will be removed and not contained in the returned object.

Examples

Not run:

load the package and the Python env
library(dgpsi)

construct the borehole function over a hypercube
f <- function(x){

x[,1] <- (0.15 - 0.5) * x[,1] + 0.5
x[,2] <- exp((log(50000) - log(100)) * x[,2] + log(100))
x[,3] <- (115600 - 63070) *x[,3] + 63070
x[,4] <- (1110 - 990) * x[,4] + 990
x[,5] <- (116 - 63.1) * x[,5] + 63.1
x[,6] <- (820 - 700) * x[,6] + 700
x[,7] <- (1680 - 1120) * x[,7] + 1120
x[,8] <- (12045 - 9855) * x[,8] + 9855
y <- apply(x, 1, RobustGaSP::borehole)

}

set a random seed
set_seed(999)

generate training data
X <- maximinLHS(80, 8)
Y <- f(X)

generate validation data
validate_x <- maximinLHS(500, 8)
validate_y <- f(validate_x)

training a DGP emulator with anisotropic squared exponential kernels
m <- dgp(X, Y, share = F)

read 57

OOS validation of the DGP emulator
plot(m, validate_x, validate_y)

prune the emulator until no more GP nodes are removable
m <- prune(m)

OOS validation of the resulting emulator
plot(m, validate_x, validate_y)

End(Not run)

read Load the stored emulator

Description

This function loads the .pkl file that stores the emulator.

Usage

read(pkl_file)

Arguments

pkl_file the path to and the name of the .pkl file where the emulator is stored.

Details

See further examples and tutorials at https://mingdeyu.github.io/dgpsi-R/.

Value

The S3 class of a GP emulator, a DGP emulator, a linked (D)GP emulator, or a bundle of (D)GP
emulators.

Examples

Not run:

See gp(), dgp(), lgp(), or pack() for an example.

End(Not run)

https://mingdeyu.github.io/dgpsi-R/

58 serialize

serialize Serialize the constructed emulator

Description

[New]
This function serializes the constructed emulator.

Usage

serialize(object, light = TRUE)

Arguments

object an instance of the S3 class gp, dgp, lgp, or bundle.

light a bool indicating if a light version of the constructed emulator (that requires a
small storage) will be serialized. Defaults to TRUE.

Details

See further examples and tutorials at https://mingdeyu.github.io/dgpsi-R/.

Value

A serialized version of object.

Note

Since the constructed emulators are ’python’ objects, they cannot be directly exported to other R
processes for parallel processing in multi-session workers created through spawning. This function
provides a solution by converting the emulators into serialized objects, which can be restored using
deserialize() for multi-session processing. Note that in forking, serialization is generally not
required.

Examples

Not run:

library(future)
library(future.apply)
library(dgpsi)

model
f <- function(x) {
(sin(7.5*x)+1)/2

}

training data

https://mingdeyu.github.io/dgpsi-R/

set_id 59

X <- seq(0, 1, length = 10)
Y <- sapply(X, f)

train a DGP emulator
m <- dgp(X, Y, name = "matern2.5")

testing input data
X_dgp <- seq(0, 1, length = 100)

serialize the DGP emulator
m_serialized <- serialize(m)

start a multi-session with three cores for parallel predictions
plan(multisession, workers = 3)

perform parallel predictions
results <- future_lapply(1:length(X_dgp), function(i) {

m_deserialized <- deserialize(m_serialized)
mean_i <- predict(m_deserialized, X_dgp[i])$results$mean

}, future.seed = TRUE)

reset the future plan to sequential
plan(sequential)

combine mean predictions
pred_mean <- do.call(rbind, results)

End(Not run)

set_id Set Emulator ID

Description

[New]

This function assigns a unique identifier to an emulator.

Usage

set_id(object, id)

Arguments

object an emulator object to which the ID will be assigned.

id a unique identifier for the emulator as either a numeric or character string. En-
sure this ID does not conflict with other emulator IDs, especially when used in
linked emulations.

60 set_imp

Details

See further examples and tutorials at https://mingdeyu.github.io/dgpsi-R/.

Value

The updated object, with the assigned ID stored in its id slot.

Examples

Not run:

See lgp() for an example.

End(Not run)

set_imp Reset number of imputations for a DGP emulator

Description

This function resets the number of imputations for prediction from a DGP emulator.

Usage

set_imp(object, B = 5)

Arguments

object an instance of the S3 class dgp.
B the number of imputations to produce predictions from object. Increase the

value to improve imputation uncertainty quantification. Decrease the value to
improve speed of prediction. Defaults to 5.

Details

See further examples and tutorials at https://mingdeyu.github.io/dgpsi-R/.

Value

An updated object with the information of B incorporated.

Note

• This function is useful when a DGP emulator has been trained and one wants to make faster
predictions by decreasing the number of imputations without rebuilding the emulator.

• The following slots:
– loo and oos created by validate(); and
– results created by predict() in object will be removed and not contained in the re-

turned object.

https://mingdeyu.github.io/dgpsi-R/
https://mingdeyu.github.io/dgpsi-R/

set_seed 61

Examples

Not run:

See design() for an example.

End(Not run)

set_seed Random seed generator

Description

This function initializes a random number generator that sets the random seed in both R and Python
to ensure reproducible results from the package.

Usage

set_seed(seed)

Arguments

seed a single integer value.

Details

See further examples and tutorials at https://mingdeyu.github.io/dgpsi-R/.

Value

No return value.

Examples

Not run:

See dgp() for an example.

End(Not run)

https://mingdeyu.github.io/dgpsi-R/

62 set_vecchia

set_thread_num Set the number of threads

Description

[New]

This function sets the number of threads for parallel computations involved in the package.

Usage

set_thread_num(num)

Arguments

num the number of threads. If it is greater than the maximum number of threads
available, the number of threads will be set to the maximum value.

Details

See further examples and tutorials at https://mingdeyu.github.io/dgpsi-R/.

Value

No return value.

set_vecchia Add or remove the Vecchia approximation

Description

[New]

This function adds or removes the Vecchia approximation from a GP, DGP or linked (D)GP emula-
tor constructed by gp(), dgp() or lgp().

Usage

set_vecchia(object, vecchia = TRUE, M = 25, ord = NULL)

https://mingdeyu.github.io/dgpsi-R/

set_vecchia 63

Arguments

object an instance of the S3 class gp, dgp, or lgp.

vecchia a bool or a list of bools to indicate the addition or removal of the Vecchia ap-
proximation:

• if object is an instance of the gp or dgp class, vecchia is a bool that
indicates either addition (vecchia = TRUE) or removal (vecchia = FALSE)
of the Vecchia approximation from object.

• if object is an instance of the lgp class, x can be a bool or a list of bools:

– if vecchia is a bool, it indicates either addition (vecchia = TRUE) or
removal (vecchia = FALSE) of the Vecchia approximation from all in-
dividual (D)GP emulators contained in object.

– if vecchia is a list of bools, it should have same shape as struc that
was supplied to lgp(). Each bool in the list indicates if the corre-
sponding (D)GP emulator contained in object shall have the Vecchia
approximation added or removed.

M the size of the conditioning set for the Vecchia approximation in the (D)GP
emulator training. Defaults to 25.

ord an R function that returns the ordering of the input to the (D)GP emulator for
the Vecchia approximation. The function must satisfy the following basic rules:

• the first argument represents the lengthscale-scaled input to the GP emula-
tor or the lengthscale-scaled input to a GP node of the DGP emulator.

• the output of the function is a vector of indices that gives the ordering of the
input to the GP emulator or the input to the GP nodes of the DGP emulator.

If ord = NULL, the default random ordering is used. Defaults to NULL.

Details

See further examples and tutorials at https://mingdeyu.github.io/dgpsi-R/.

Value

An updated object with the Vecchia approximation either added or removed.

Note

This function is useful for quickly switching between Vecchia and non-Vecchia approximations for
an existing emulator without the need to reconstruct the emulator. If the emulator was built without
the Vecchia approximation, the function can add it, and if the emulator was built with the Vecchia
approximation, the function can remove it. If the current state already matches the requested state,
the emulator remains unchanged.

https://mingdeyu.github.io/dgpsi-R/

64 summary

summary Summary of a constructed GP, DGP, or linked (D)GP emulator

Description

[Updated]

This function provides a summary of key information for a GP, DGP, or linked (D)GP emulator by
generating either a table or an interactive plot of the emulator’s structure.

Usage

S3 method for class 'gp'
summary(object, type = "plot", ...)

S3 method for class 'dgp'
summary(object, type = "plot", ...)

S3 method for class 'lgp'
summary(object, type = "plot", group_size = 1, ...)

Arguments

object can be one of the following:

• the S3 class gp.

• the S3 class dgp.

• the S3 class lgp.

type a character string, either "table" or "plot", indicating the format of the output.
If set to "table", the function returns a summary in table. If set to "plot", the
function returns an interactive visualization. Defaults to "plot". If the object
was created with lgp() where struc is not a data frame, type will automatically
default to "table".

... Any arguments that can be passed to kableExtra::kbl() when type = "table".

group_size an integer specifying the number of consecutive layers to be grouped together
in the interactive visualization of linked emulators when type = "plot". This
argument is only applicable if object is an instance of the lgp class. Defaults
to 1.

Details

See further examples and tutorials at https://mingdeyu.github.io/dgpsi-R/.

https://mingdeyu.github.io/dgpsi-R/

trace_plot 65

Value

Either a summary table (returned as kableExtra object) or an interactive visualization (returned
as a visNetwork object) of the emulator. The visualization is compatible with R Markdown
documents and the RStudio Viewer. The summary table can be further customized by kableEx-
tra::kableExtra package. The resulting visNetwork object can be saved as an HTML file using
visNetwork::visSave() from the visNetwork::visNetwork package.

Examples

Not run:

See gp(), dgp(), or lgp() for an example.

End(Not run)

trace_plot Trace plot for DGP hyperparameters

Description

This function draws trace plots for the hyperparameters of a chosen GP node in a DGP emulator.

Usage

trace_plot(object, layer = NULL, node = 1)

Arguments

object an instance of the dgp class.

layer the index of a layer. Defaults to NULL for the final layer.

node the index of a GP node in the layer specified by layer. Defaults to 1 for the first
GP node in the corresponding layer.

Details

See further examples and tutorials at https://mingdeyu.github.io/dgpsi-R/.

Value

A ggplot object.

Examples

Not run:

See dgp() for an example.

End(Not run)

https://mingdeyu.github.io/dgpsi-R/

66 update

unpack Unpack a bundle of (D)GP emulators

Description

This function unpacks a bundle of (D)GP emulators safely so that any further manipulations of
unpacked individual emulators will not impact those in the bundle.

Usage

unpack(object)

Arguments

object an instance of the class bundle.

Details

See further examples and tutorials at https://mingdeyu.github.io/dgpsi-R/.

Value

A named list that contains individual emulators (named emulator1,...,emulatorS) packed in
object, where S is the number of emulators in object.

Examples

Not run:

See pack() for an example.

End(Not run)

update Update a GP or DGP emulator

Description

This function updates the training input and output of a GP or DGP emulator with an option to refit
the emulator.

https://mingdeyu.github.io/dgpsi-R/

update 67

Usage

update(object, X, Y, refit, reset, verb, ...)

S3 method for class 'dgp'
update(
object,
X,
Y,
refit = TRUE,
reset = FALSE,
verb = TRUE,
N = NULL,
cores = 1,
ess_burn = 10,
B = NULL,
...

)

S3 method for class 'gp'
update(object, X, Y, refit = TRUE, reset = FALSE, verb = TRUE, ...)

Arguments

object can be one of the following:

• the S3 class gp.
• the S3 class dgp.

X the new input data which is a matrix where each row is an input training data
point and each column represents an input dimension.

Y the new output data:

• If object is an instance of the gp class, Y is a matrix with only one column
and each row being an output data point.

• If object is an instance of the dgp class, Y is a matrix with its rows being
output data points and columns being output dimensions. When likelihood
(see below) is not NULL, Y must be a matrix with only one column.

refit a bool indicating whether to re-fit the emulator object after the training input
and output are updated. Defaults to TRUE.

reset a bool indicating whether to reset hyperparameters of the emulator object to
the initial values first obtained when the emulator was constructed. Use if it is
suspected that a local mode for the hyperparameters has been reached through
successive updates. Defaults to FALSE.

verb a bool indicating if trace information will be printed during the function execu-
tion. Defaults to TRUE.

... N/A.

N [Updated] number of training iterations used to re-fit the emulator object if it
is an instance of the dgp class. If set to NULL, the number of iterations is set to

68 update

100 if the DGP emulator was constructed without the Vecchia approximation,
and is set to 50 if Vecchia approximation was used. Defaults to NULL.

cores the number of processes to be used to re-fit GP components (in the same layer)
at each M-step during the re-fitting. If set to NULL, the number of processes
is set to (max physical cores available - 1) if vecchia = FALSE and
max physical cores available %/% 2 if vecchia = TRUE. Only use multiple
processes when there is a large number of GP components in different layers
and optimization of GP components is computationally expensive. Defaults to
1.

ess_burn number of burnin steps for the ESS-within-Gibbs sampler at each I-step of the
training of the emulator object if it is an instance of the dgp class. Defaults to
10.

B the number of imputations for predictions from the updated emulator object if
it is an instance of the dgp class. This overrides the number of imputations set
in object. Set to NULL to use the same number of imputations set in object.
Defaults to NULL.

Details

See further examples and tutorials at https://mingdeyu.github.io/dgpsi-R/.

Value

An updated object.

Note

• The following slots:

– loo and oos created by validate();

– results created by predict(); and

– design created by design()

in object will be removed and not contained in the returned object.

Examples

Not run:

See alm(), mice(), or vigf() for an example.

End(Not run)

https://mingdeyu.github.io/dgpsi-R/

validate 69

validate Validate a constructed GP, DGP, or linked (D)GP emulator

Description

This function calculates Leave-One-Out (LOO) cross validation or Out-Of-Sample (OOS) valida-
tion statistics for a constructed GP, DGP, or linked (D)GP emulator.

Usage

validate(
object,
x_test,
y_test,
method,
sample_size,
verb,
M,
force,
cores,
...

)

S3 method for class 'gp'
validate(
object,
x_test = NULL,
y_test = NULL,
method = NULL,
sample_size = 50,
verb = TRUE,
M = 50,
force = FALSE,
cores = 1,
...

)

S3 method for class 'dgp'
validate(
object,
x_test = NULL,
y_test = NULL,
method = NULL,
sample_size = 50,
verb = TRUE,
M = 50,
force = FALSE,

70 validate

cores = 1,
...

)

S3 method for class 'lgp'
validate(
object,
x_test = NULL,
y_test = NULL,
method = NULL,
sample_size = 50,
verb = TRUE,
M = 50,
force = FALSE,
cores = 1,
...

)

Arguments

object can be one of the following:
• the S3 class gp.
• the S3 class dgp.
• the S3 class lgp.

x_test OOS testing input data:
• if object is an instance of the gp or dgp class, x_test is a matrix where

each row is a new input location to be used for validating the emulator and
each column is an input dimension.

• [Deprecated] if object is an instance of the lgp class, x_test can be a
matrix or a list:

– if x_test is a matrix, it is the global testing input data that feed into the
emulators in the first layer of a system. The rows of x_test represent
different input data points and the columns represent input dimensions
across all emulators in the first layer of the system. In this case, it
is assumed that the only global input to the system is the input to the
emulators in the first layer and there is no global input to emulators in
other layers.

– if x_test is a list, it should have L (the number of layers in an emula-
tor system) elements. The first element is a matrix that represents the
global testing input data that feed into the emulators in the first layer
of the system. The remaining L-1 elements are L-1 sub-lists, each of
which contains a number (the same number of emulators in the corre-
sponding layer) of matrices (rows being testing input data points and
columns being input dimensions) that represent the global testing input
data to the emulators in the corresponding layer. The matrices must be
placed in the sub-lists based on how their corresponding emulators are
placed in struc argument of lgp(). If there is no global input data to
a certain emulator, set NULL in the corresponding sub-list of x_test.

validate 71

This option for linked (D)GP emulators is deprecated and will be re-
moved in the next release.

• [New] If object is an instance of the lgp class created by lgp() with
argument struc in data frame form, x_test must be a matrix represent-
ing the global input, where each row corresponds to a test data point and
each column represents a global input dimension. The column indices in
x_test must align with the indices specified in the From_Output column
of the struc data frame (used in lgp()), corresponding to rows where the
From_Emulator column is "Global".

x_test must be provided if object is an instance of the lgp. x_test must
also be provided if y_test is provided. Defaults to NULL, in which case LOO
validation is performed.

y_test the OOS output data corresponding to x_test:

• if object is an instance of the gp class, y_test is a matrix with only one
column where each row represents the output corresponding to the match-
ing row of x_test.

• if object is an instance of the dgp class, y_test is a matrix where each
row represents the output corresponding to the matching row of x_test
and with columns representing output dimensions.

• if object is an instance of the lgp class, y_test can be a single matrix or
a list of matrices:

– if y_test is a single matrix, then there should be only one emulator in
the final layer of the linked emulator system and y_test represents the
emulator’s output with rows being testing positions and columns being
output dimensions.

– if y_test is a list, then y_test should have L matrices, where L is the
number of emulators in the final layer of the system. Each matrix has
its rows corresponding to testing positions and columns corresponding
to output dimensions of the associated emulator in the final layer.

y_test must be provided if object is an instance of the lgp. y_test must
also be provided if x_test is provided. Defaults to NULL, in which case LOO
validation is performed.

method [Updated] the prediction approach to use for validation: either the mean-variance
approach ("mean_var") or the sampling approach ("sampling"). For details
see predict(). For DGP emulators with a categorical likelihood (likelihood
= "Categorical" in dgp()), only the sampling approach is supported. By de-
fault, the method is set to "sampling" for DGP emulators with Poisson, Nega-
tive Binomial, and Categorical likelihoods and "mean_var" otherwise.

sample_size the number of samples to draw for each given imputation if method = "sampling".
Defaults to 50.

verb a bool indicating if trace information for validation should be printed during
function execution. Defaults to TRUE.

M [New] the size of the conditioning set for the Vecchia approximation in emulator
validation. This argument is only used if the emulator object was constructed
under the Vecchia approximation. Defaults to 50.

72 validate

force a bool indicating whether to force LOO or OOS re-evaluation when the loo
or oos slot already exists in object. When force = FALSE, validate() will
only re-evaluate the emulators if the x_test and y_test are not identical to the
values in the oos slot. If the existing loo or oos validation used a different M
in a Vecchia approximation or a different method to the one prescribed in this
call, the emulator will be re-evaluated. Set force to TRUE when LOO or OOS
re-evaluation is required. Defaults to FALSE.

cores the number of processes to be used for validation. If set to NULL, the number of
processes is set to max physical cores available %/% 2. Defaults to 1.

... N/A.

Details

See further examples and tutorials at https://mingdeyu.github.io/dgpsi-R/.

Value

• If object is an instance of the gp class, an updated object is returned with an additional slot
called loo (for LOO cross validation) or oos (for OOS validation) that contains:

– two slots called x_train (or x_test) and y_train (or y_test) that contain the validation
data points for LOO (or OOS).

– a column matrix called mean, if method = "mean_var", or median, if method = "sampling",
that contains the predictive means or medians of the GP emulator at validation positions.

– three column matrices called std, lower, and upper that contain the predictive standard
deviations and credible intervals of the GP emulator at validation positions. If method
= "mean_var", the upper and lower bounds of a credible interval are two standard de-
viations above and below the predictive mean. If method = "sampling", the upper and
lower bounds of a credible interval are 2.5th and 97.5th percentiles.

– a numeric value called rmse that contains the root mean/median squared error of the GP
emulator.

– a numeric value called nrmse that contains the (max-min) normalized root mean/median
squared error of the GP emulator. The max-min normalization uses the maximum and
minimum values of the validation outputs contained in y_train (or y_test).

– [New] an integer called M that contains the size of the conditioning set used for the Vecchia
approximation, if used, for emulator validation.

– an integer called sample_size that contains the number of samples used for validation if
method = "sampling".

The rows of matrices (mean, median, std, lower, and upper) correspond to the validation
positions.

• If object is an instance of the dgp class, an updated object is returned with an additional
slot called loo (for LOO cross validation) or oos (for OOS validation) that contains:

– two slots called x_train (or x_test) and y_train (or y_test) that contain the validation
data points for LOO (or OOS).

– a matrix called mean, if method = "mean_var", or median, if method = "sampling", that
contains the predictive means or medians of the DGP emulator at validation positions.

https://mingdeyu.github.io/dgpsi-R/

validate 73

– three matrices called std, lower, and upper that contain the predictive standard devi-
ations and credible intervals of the DGP emulator at validation positions. If method =
"mean_var", the upper and lower bounds of a credible interval are two standard devia-
tions above and below the predictive mean. If method = "sampling", the upper and lower
bounds of a credible interval are 2.5th and 97.5th percentiles.

– a vector called rmse that contains the root mean/median squared errors of the DGP emu-
lator across different output dimensions.

– a vector called nrmse that contains the (max-min) normalized root mean/median squared
errors of the DGP emulator across different output dimensions. The max-min normal-
ization uses the maximum and minimum values of the validation outputs contained in
y_train (or y_test).

– [New] an integer called M that contains size of the conditioning set used for the Vecchia
approximation, if used, for emulator validation.

– an integer called sample_size that contains the number of samples used for validation if
method = "sampling".

The rows and columns of matrices (mean, median, std, lower, and upper) correspond to the
validation positions and DGP emulator output dimensions, respectively.

• [New] If object is an instance of the dgp class with a categorical likelihood, an updated
object is returned with an additional slot called loo (for LOO cross validation) or oos (for
OOS validation) that contains:

– two slots called x_train (or x_test) and y_train (or y_test) that contain the validation
data points for LOO (or OOS).

– a matrix called label that contains predictive samples of labels from the DGP emulator
at validation positions. The matrix has its rows corresponding to validation positions and
columns corresponding to samples of labels.

– a list called probability that contains predictive samples of probabilities for each class
from the DGP emulator at validation positions. The element in the list is a matrix that has
its rows corresponding to validation positions and columns corresponding to samples of
probabilities.

– a scalar called log_loss that represents the average log loss of the predicted labels in
the DGP emulator across all validation positions. Log loss measures the accuracy of
probabilistic predictions, with lower values indicating better classification performance.
log_loss ranges from 0 to positive infinity, where a value closer to 0 suggests more
confident and accurate predictions.

– an integer called M that contains size of the conditioning set used for the Vecchia approx-
imation, if used, in emulator validation.

– an integer called sample_size that contains the number of samples used for validation.

• If object is an instance of the lgp class, an updated object is returned with an additional
slot called oos (for OOS validation) that contains:

– two slots called x_test and y_test that contain the validation data points for OOS.
– a list called mean, if method = "mean_var", or median, if method = "sampling", that

contains the predictive means or medians of the linked (D)GP emulator at validation
positions.

– three lists called std, lower, and upper that contain the predictive standard deviations
and credible intervals of the linked (D)GP emulator at validation positions. If method

74 vigf

= "mean_var", the upper and lower bounds of a credible interval are two standard de-
viations above and below the predictive mean. If method = "sampling", the upper and
lower bounds of a credible interval are 2.5th and 97.5th percentiles.

– a list called rmse that contains the root mean/median squared errors of the linked (D)GP
emulator.

– a list called nrmse that contains the (max-min) normalized root mean/median squared
errors of the linked (D)GP emulator. The max-min normalization uses the maximum and
minimum values of the validation outputs contained in y_test.

– [New] an integer called M that contains size of the conditioning set used for the Vecchia
approximation, if used, in emulator validation.

– an integer called sample_size that contains the number of samples used for validation if
method = "sampling".

Each element in mean, median, std, lower, upper, rmse, and nrmse corresponds to a (D)GP
emulator in the final layer of the linked (D)GP emulator.

Note

• When both x_test and y_test are NULL, LOO cross validation will be implemented. Other-
wise, OOS validation will be implemented. LOO validation is only applicable to a GP or DGP
emulator (i.e., object is an instance of the gp or dgp class). If a linked (D)GP emulator (i.e.,
object is an instance of the lgp class) is provided, x_test and y_test must also be provided
for OOS validation.

Examples

Not run:

See gp(), dgp(), or lgp() for an example.

End(Not run)

vigf Locate the next design point for a (D)GP emulator or a bundle of
(D)GP emulators using VIGF

Description

[Updated]

This function searches from a candidate set to locate the next design point(s) to be added to a (D)GP
emulator or a bundle of (D)GP emulators using the Variance of Improvement for Global Fit (VIGF).
For VIGF on GP emulators, see the reference below.

vigf 75

Usage

vigf(object, ...)

S3 method for class 'gp'
vigf(
object,
x_cand = NULL,
n_start = 10,
batch_size = 1,
M = 50,
workers = 1,
limits = NULL,
int = FALSE,
...

)

S3 method for class 'dgp'
vigf(
object,
x_cand = NULL,
n_start = 10,
batch_size = 1,
M = 50,
workers = 1,
limits = NULL,
int = FALSE,
aggregate = NULL,
...

)

S3 method for class 'bundle'
vigf(
object,
x_cand = NULL,
n_start = 10,
batch_size = 1,
M = 50,
workers = 1,
limits = NULL,
int = FALSE,
aggregate = NULL,
...

)

Arguments

object can be one of the following:

• the S3 class gp.

76 vigf

• the S3 class dgp.
• the S3 class bundle.

... any arguments (with names different from those of arguments used in vigf())
that are used by aggregate can be passed here.

x_cand a matrix (with each row being a design point and column being an input di-
mension) that gives a candidate set from which the next design point(s) are de-
termined. If object is an instance of the bundle class and aggregate is not
supplied, x_cand can also be a list. The list must have a length equal to the
number of emulators in object, with each element being a matrix representing
the candidate set for a corresponding emulator in the bundle. Defaults to NULL.

n_start [New] an integer that gives the number of initial design points to be used to
determine next design point(s). This argument is only used when x_cand is
NULL. Defaults to 10.

batch_size an integer that gives the number of design points to be chosen. Defaults to 1.

M [New] the size of the conditioning set for the Vecchia approximation in the cri-
terion calculation. This argument is only used if the emulator object was con-
structed under the Vecchia approximation. Defaults to 50.

workers the number of processes to be used for design point selection. If set to NULL,
the number of processes is set to max physical cores available %/% 2.
Defaults to 1. The argument does not currently support Windows machines
when the aggregate function is provided, due to the significant overhead caused
by initializing the Python environment for each worker under spawning.

limits [New] a two-column matrix that gives the ranges of each input dimension, or a
vector of length two if there is only one input dimension. If a vector is provided,
it will be converted to a two-column row matrix. The rows of the matrix corre-
spond to input dimensions, and its first and second columns correspond to the
minimum and maximum values of the input dimensions. This argument is only
used when x_cand = NULL. Defaults to NULL.

int [New] a bool or a vector of bools that indicates if an input dimension is an
integer type. If a single bool is given, it will be applied to all input dimensions.
If a vector is provided, it should have a length equal to the input dimensions and
will be applied to individual input dimensions. This argument is only used when
x_cand = NULL. Defaults to FALSE.

aggregate an R function that aggregates scores of the VIGF across different output dimen-
sions (if object is an instance of the dgp class) or across different emulators (if
object is an instance of the bundle class). The function should be specified in
the following basic form:

• the first argument is a matrix representing scores. The rows of the matrix
correspond to different design points. The number of columns of the matrix
equals to:

– the emulator output dimension if object is an instance of the dgp class;
or

– the number of emulators contained in object if object is an instance
of the bundle class.

vigf 77

• the output should be a vector that gives aggregate scores at different design
points.

Set to NULL to disable aggregation. Defaults to NULL.

Details

See further examples and tutorials at https://mingdeyu.github.io/dgpsi-R/.

Value

1. If x_cand is not NULL:

• When object is an instance of the gp class, a vector of length batch_size is returned,
containing the positions (row numbers) of the next design points from x_cand.

• When object is an instance of the dgp class, a vector of length batch_size * D is re-
turned, containing the positions (row numbers) of the next design points from x_cand to
be added to the DGP emulator.

– D is the number of output dimensions of the DGP emulator if no likelihood layer is
included.

– For a DGP emulator with a Hetero or NegBin likelihood layer, D = 2.
– For a DGP emulator with a Categorical likelihood layer, D = 1 for binary output or

D = K for multi-class output with K classes.
• When object is an instance of the bundle class, a matrix is returned with batch_size

rows and a column for each emulator in the bundle, containing the positions (row num-
bers) of the next design points from x_cand for individual emulators.

2. If x_cand is NULL:

• When object is an instance of the gp class, a matrix with batch_size rows is returned,
giving the next design points to be evaluated.

• When object is an instance of the dgp class, a matrix with batch_size * D rows is
returned, where:

– D is the number of output dimensions of the DGP emulator if no likelihood layer is
included.

– For a DGP emulator with a Hetero or NegBin likelihood layer, D = 2.
– For a DGP emulator with a Categorical likelihood layer, D = 1 for binary output or

D = K for multi-class output with K classes.
• When object is an instance of the bundle class, a list is returned with a length equal

to the number of emulators in the bundle. Each element of the list is a matrix with
batch_size rows, where each row represents a design point to be added to the corre-
sponding emulator.

Note

The first column of the matrix supplied to the first argument of aggregate must correspond to the
first output dimension of the DGP emulator if object is an instance of the dgp class, and so on
for subsequent columns and dimensions. If object is an instance of the bundle class, the first
column must correspond to the first emulator in the bundle, and so on for subsequent columns and
emulators.

https://mingdeyu.github.io/dgpsi-R/

78 window

References

Mohammadi, H., & Challenor, P. (2022). Sequential adaptive design for emulating costly computer
codes. arXiv:2206.12113.

Examples

Not run:

load packages and the Python env
library(lhs)
library(dgpsi)

construct a 1D non-stationary function
f <- function(x) {
sin(30*((2*x-1)/2-0.4)^5)*cos(20*((2*x-1)/2-0.4))

}

generate the initial design
X <- maximinLHS(10,1)
Y <- f(X)

training a 2-layered DGP emulator with the global connection off
m <- dgp(X, Y, connect = F)

specify the input range
lim <- c(0,1)

locate the next design point using VIGF
X_new <- vigf(m, limits = lim)

obtain the corresponding output at the located design point
Y_new <- f(X_new)

combine the new input-output pair to the existing data
X <- rbind(X, X_new)
Y <- rbind(Y, Y_new)

update the DGP emulator with the new input and output data and refit
m <- update(m, X, Y, refit = TRUE)

plot the LOO validation
plot(m)

End(Not run)

window Trim the sequence of hyperparameter estimates within a DGP emula-
tor

window 79

Description

This function trims the sequence of hyperparameter estimates within a DGP emulator generated
during training.

Usage

window(object, start, end = NULL, thin = 1)

Arguments

object an instance of the S3 class dgp.

start the first iteration before which all iterations are trimmed from the sequence.

end the last iteration after which all iterations are trimmed from the sequence. Set to
NULL to keep all iterations after (including) start. Defaults to NULL.

thin the interval between the start and end iterations to thin out the sequence. De-
faults to 1.

Details

See further examples and tutorials at https://mingdeyu.github.io/dgpsi-R/.

Value

An updated object with a trimmed sequence of hyperparameters.

Note

• This function is useful when a DGP emulator has been trained and one wants to trim the
sequence of hyperparameters estimated and to use the trimmed sequence to generate point
estimates of the DGP model parameters for prediction.

• The following slots:

– loo and oos created by validate(); and
– results created by predict() in object will be removed and not contained in the re-

turned object.

Examples

Not run:

See dgp() for an example.

End(Not run)

https://mingdeyu.github.io/dgpsi-R/

80 write

write Save the constructed emulator

Description

This function saves the constructed emulator to a .pkl file.

Usage

write(object, pkl_file, light = TRUE)

Arguments

object an instance of the S3 class gp, dgp, lgp, or bundle.

pkl_file the path to and the name of the .pkl file to which the emulator object is saved.

light a bool indicating if a light version of the constructed emulator (that requires less
disk space to store) will be saved. Defaults to TRUE.

Details

See further examples and tutorials at https://mingdeyu.github.io/dgpsi-R/.

Value

No return value. object will be saved to a local .pkl file specified by pkl_file.

Note

Since emulators built from the package are ’python’ objects, save() from R will not work as it
would for R objects. If object was processed by set_vecchia() to add or remove the Vecchia
approximation, light should be set to FALSE to ensure reproducibility after the saved emulator is
reloaded by read().

Examples

Not run:

See gp(), dgp(), lgp(), or pack() for an example.

End(Not run)

https://mingdeyu.github.io/dgpsi-R/

Index

alm, 2
alm(), 4, 14, 15, 26, 33

continue, 6
continue(), 26

deserialize, 8
deserialize(), 58
design, 9
design(), 15, 16, 18, 26, 33, 45, 68
dgp, 20
dgp(), 7, 8, 14, 15, 23, 36, 44, 45, 52–54, 62,

71
draw, 28
draw(), 15, 16, 18, 19

get_thread_num, 29
ggplot2::ggplot2, 50
gp, 30
gp(), 14, 15, 31, 36, 45, 62

init_py, 35

kableExtra::kableExtra, 65
kableExtra::kbl(), 64

lgp, 36
lgp(), 24, 26, 32, 33, 36, 37, 48, 51, 54, 55,

62–64, 70, 71

mice, 39
mice(), 14, 15, 26, 33, 41

nllik, 44

pack, 45
pack(), 14, 15
patchwork::patchwork, 50
plot, 46
plot(), 26, 33, 38, 49
predict, 50

predict(), 8, 23, 26, 31, 33, 37, 38, 56, 60,
68, 71, 79

prune, 55

read, 57
read(), 26, 38, 80

save(), 80
serialize, 58
serialize(), 8
set_id, 59
set_id(), 36, 37
set_imp, 60
set_imp(), 26
set_linked_idx(), 25, 32
set_seed, 61
set_thread_num, 62
set_vecchia, 62
set_vecchia(), 80
summary, 64
summary(), 23, 26, 31, 33, 37, 38

trace_plot, 65

unpack, 66
update, 66
update(), 26, 33

validate, 69
validate(), 8, 17, 18, 26, 33, 37, 38, 48, 49,

56, 60, 68, 72, 79
vigf, 74
vigf(), 14, 15, 26, 33, 76
visNetwork::visNetwork, 65
visNetwork::visSave(), 65

window, 78
window(), 26
write, 80
write(), 26, 33, 38

81

	alm
	continue
	deserialize
	design
	dgp
	draw
	get_thread_num
	gp
	init_py
	lgp
	mice
	nllik
	pack
	plot
	predict
	prune
	read
	serialize
	set_id
	set_imp
	set_seed
	set_thread_num
	set_vecchia
	summary
	trace_plot
	unpack
	update
	validate
	vigf
	window
	write
	Index

