
Getting Started with doMC and foreach

Steve Weston

January 16, 2022

1 Introduction

The doMC package is a “parallel backend” for the foreach package. It provides a mechanism needed
to execute foreach loops in parallel. The foreach package must be used in conjunction with a
package such as doMC in order to execute code in parallel. The user must register a parallel backend
to use, otherwise foreach will execute tasks sequentially, even when the %dopar% operator is used.1

The doMC package acts as an interface between foreach and the multicore functionality of the
parallel package, originally written by Simon Urbanek and incorporated into parallel for R
2.14.0. The multicore functionality currently only works with operating systems that support the
fork system call (which means that Windows isn’t supported). Also, multicore only runs tasks
on a single computer, not a cluster of computers. That means that it is pointless to use doMC and
multicore on a machine with only one processor with a single core. To get a speed improvement,
it must run on a machine with multiple processors, multiple cores, or both.

2 A word of caution

Because the multicore functionality starts its workers using fork without doing a subsequent exec,
it has some limitations. Some operations cannot be performed properly by forked processes. For
example, connection objects very likely won’t work. In some cases, this could cause an object to
become corrupted, and the R session to crash.

In addition, it usually isn’t safe to run doMC and multicore from a GUI environment.

1foreach will issue a warning that it is running sequentially if no parallel backend has been registered. It will
only issue this warning once, however.



Getting Started with doMC and foreach

3 Registering the doMC parallel backend

To register doMC to be used with foreach, you must call the registerDoMC function. This function
takes only one argument, named “cores”. This specifies the number of worker processes that it will
use to execute tasks, which will normally be equal to the total number of cores on the machine.
You don’t need to specify a value for it, however. By default, the multicore package will use the
value of the “cores” option, as specified with the standard “options” function. If that isn’t set, then
multicore will try to detect the number of cores, and use approximately half that many workers.

Remember: unless registerDoMC is called, foreach will not run in parallel. Simply loading the
doMC package is not enough.

4 An example doMC session

Before we go any further, let’s load doMC, register it, and use it with foreach:

> library(doMC)

> registerDoMC(2)

> foreach(i=1:3) %dopar% sqrt(i)

[[1]]

[1] 1

[[2]]

[1] 1.414214

[[3]]

[1] 1.732051

Note well that this is not a practical use of doMC. This is my “Hello, world” program for
parallel computing. It tests that everything is installed and set up properly, but don’t
expect it to run faster than a sequential for loop, because it won’t! sqrt executes far too
quickly to be worth executing in parallel, even with a large number of iterations. With
small tasks, the overhead of scheduling the task and returning the result can be greater
than the time to execute the task itself, resulting in poor performance. In addition, this
example doesn’t make use of the vector capabilities of sqrt, which it must to get decent
performance. This is just a test and a pedagogical example, not a benchmark.

But returning to the point of this example, you can see that it is very simple to load doMC with
all of its dependencies (foreach, iterators, multicore, etc), and to register it. For the rest of

2



Getting Started with doMC and foreach

the R session, whenever you execute foreach with %dopar%, the tasks will be executed using doMC

and multicore. Note that you can register a different parallel backend later, or deregister doMC by
registering the sequential backend by calling the registerDoSEQ function.

5 A more serious example

Now that we’ve gotten our feet wet, let’s do something a bit less trivial. One good example is
bootstrapping. Let’s see how long it takes to run 10,000 bootstrap iterations in parallel on 2 cores:

> x <- iris[which(iris[,5] != "setosa"), c(1,5)]

> trials <- 10000

> ptime <- system.time({

+ r <- foreach(icount(trials), .combine=cbind) %dopar% {

+ ind <- sample(100, 100, replace=TRUE)

+ result1 <- glm(x[ind,2]~x[ind,1], family=binomial(logit))

+ coefficients(result1)

+ }

+ })[3]

> ptime

elapsed

37.346

Using doMC and multicore we were able to perform 10,000 bootstrap iterations in 37.346 seconds
on 2 cores. By changing the %dopar% to %do%, we can run the same code sequentially to determine
the performance improvement:

> stime <- system.time({

+ r <- foreach(icount(trials), .combine=cbind) %do% {

+ ind <- sample(100, 100, replace=TRUE)

+ result1 <- glm(x[ind,2]~x[ind,1], family=binomial(logit))

+ coefficients(result1)

+ }

+ })[3]

> stime

elapsed

34.399

3



Getting Started with doMC and foreach

The sequential version ran in 34.399 seconds, which means the speed up is about 0.9 on 2 workers.2

Ideally, the speed up would be 2, but no multicore CPUs are ideal, and neither are the operating
systems and software that run on them.

At any rate, this is a more realistic example that is worth executing in parallel. I’m not going to
explain what it’s doing or how it works here. I just want to give you something more substantial
than the sqrt example in case you want to run some benchmarks yourself. You can also run this
example on a cluster by simply registering a different parallel backend that supports clusters in
order to take advantage of more processors.

6 Getting information about the parallel backend

To find out how many workers foreach is going to use, you can use the getDoParWorkers function:

> getDoParWorkers()

[1] 2

This is a useful sanity check that you’re actually running in parallel. If you haven’t registered a
parallel backend, or if your machine only has one core, getDoParWorkers will return one. In either
case, don’t expect a speed improvement. foreach is clever, but it isn’t magic.

The getDoParWorkers function is also useful when you want the number of tasks to be equal to
the number of workers. You may want to pass this value to an iterator constructor, for example.

You can also get the name and version of the currently registered backend:

> getDoParName()

[1] "doMC"

> getDoParVersion()

[1] "1.3.8"

This is mostly useful for documentation purposes, or for checking that you have the most recent
version of doMC.

2If you build this vignette yourself, you can see how well this problem runs on your hardware. None of the times
are hardcoded in this document. You can also run the same example which is in the examples directory of the doMC
distribution.

4



Getting Started with doMC and foreach

7 Specifying multicore options

The doMC package allows you to specify various options when running foreach that are supported
by the underlying mclapply function: “preschedule”, “set.seed”, “silent”, and “cores”. You can learn
about these options from the mclapplyman page. They are set using the foreach .options.multicore
argument. Here’s an example of how to do that:

> mcoptions <- list(preschedule=FALSE, set.seed=FALSE)

> foreach(i=1:3, .options.multicore=mcoptions) %dopar% sqrt(i)

[[1]]

[1] 1

[[2]]

[1] 1.414214

[[3]]

[1] 1.732051

The “cores” options allows you to temporarily override the number of workers to use for a single
foreach operation. This is more convenient than having to re-register doMC. Although if no value
of “cores”was specified when doMC was registered, you can also change this value dynamically using
the options function:

> registerDoMC()

> getDoParWorkers()

[1] 3

> options(cores=2)

> getDoParWorkers()

[1] 2

> options(cores=3)

> getDoParWorkers()

[1] 3

If you did specify the number of cores when registering doMC, the “cores” option is ignored:

> registerDoMC(2)

> options(cores=4)

> getDoParWorkers()

5



Getting Started with doMC and foreach

[1] 2

As you can see, there are a number of options for controlling the number of workers to use with
multicore, but the default behaviour usually does what you want.

8 Conclusion

The doMC and multicore packages provide a nice, efficient parallel programming platform for
multiprocessor/multicore computers running operating systems such as Linux and Mac OS X. It
is very easy to install, and very easy to use. In short order, an average R programmer can start
executing parallel programs, without any previous experience in parallel computing.

6


	Introduction
	A word of caution
	Registering the doMC parallel backend
	An example doMC session
	A more serious example
	Getting information about the parallel backend
	Specifying multicore options
	Conclusion

