
Debugging foreach and doRedis programs

Debugging parallel programs is hard. R's foreach and doRedis packages include
a few options outlined in this document to help.

Error handling

The .errorhandling parameter of the foreach() function takes a character
value among �stop�, �remove�, or �pass�, defaulting to �stop.� That means that
as soon as an error is detected in any loop iteration, the entire foreach loop
stops with that error.

Setting .errorhandling = "pass" is very useful for debugging your pro-
grams since all errors encountered in the loop are returned verbatim in your
solution. Start experimenting with this option without using the .combine pa-
rameter to return all results in a list. Consider the following example program
that is rigged to explicitly return an error in one of the loop iterations. We use
the `doSEQ` back end below, but this example works exactly the same using
any foreach back end.

library(foreach)

registerDoSEQ()

foreach(j=1:3, .errorhandling="pass") %dopar%

{

if(j==2) j + undefined_variable else j

}

[[1]]

[1] 1

#

[[2]]

<simpleError in eval(expr, envir, enclos):

object 'undefined_variable' not found>

#

[[3]]

[1] 3

The example shows the error when j=2.

doRedis logging

Use the log and loglevel options in the doRedis redisWorker() and
startLocalWorkers() functions to direct output to a �le. Use the logger()

function inside your foreach loop to write messages to the log. The logger
function appends process ID and time stamps to your message. Alternatively

1

use the plain old R message() function instead. These options together provide
a kind of "printf"-style debug facility�crude but sometimes e�ective. Here is an
example:

library(doRedis)

registerDoRedis("cazart")

startLocalWorkers(n=1, timeout=1, queue="cazart",

log="/tmp/cazart.log", loglevel=1)

x <- foreach(j=1:3) %dopar%

{

logger(paste("hello from loop iteration ", j))

j

}

Remove the work queue (terminating the worker process)

removeQueue("cazart")

Sys.sleep(2) # wait for the worker to terminate

Display the log file

file.show("/tmp/cazart.log")

Processing task(s) 1...1 from queue cazart ID 9ba32925bee...

@ 2016-04-23 20:17:26 hostname 3406 hello from loop iteration 1

Processing task(s) 2...2 from queue cazart ID 9ba32925bee...

@ 2016-04-23 20:17:26 hostname 3406 hello from loop iteration 2

Processing task(s) 3...3 from queue cazart ID 9ba32925bee...

@ 2016-04-23 20:17:26 hostname 3406 hello from loop iteration 3

Normal worker exit.

Note that log �les from workers running on di�erent hosts are stored on the
corresponding host �le systems.

doRedis job and task accounting

The doRedis package includes setProgress(), jobs() and tasks() functions
that list detailed information about all processes working for doRedis.

The function

setProgress(TRUE)

enables an R progress meter during foreach execution. While a foreach loop is
running, open a separate R terminal session and use the jobs() and tasks()

functions to list details about running operations. See the help pages for those
functions for complete details.

2

Interactive debugging

A very low-level but e�ective debugging approach works as follows:

1. Start a single R worker process running in an R terminal using the
redisWorker() function.

2. Start, in a separate terminal, a master R process running a foreach job.

You can monitor the worker R process as the work progresses in its terminal,
even including interactive function debugging. With the loglevel=1 argument,
loop task information is printed to standard output in the R worker process
terminal window as it occurs, as well as any message output from the logger()
function.

Here is an example split into two R sessions, one for the worker and one for
the master (it's assumed that you run these in separate R terminal windows).
All standard R debugging options are available in each R session, for example
use option(error=recover) to explore the call stack after encountering an
error condition.

library(doRedis)

registerDoRedis("cazart")

x <- foreach(j=1:3) %dopar%

{

logger(paste(" log message from iteration", j))

j

}

removeQueue("cazart") # remove the work queue

library(doRedis)

redisWorker(queue="cazart", loglevel=1, timeout=1)

Waiting for doRedis jobs.

Processing task(s) 1...1 from queue cazart ID 9ba77ba191c...

@ 2016-04-23 21:09:04 homer 3882 log message from iteration 1

Processing task(s) 2...2 from queue cazart ID 9ba77ba191c...

@ 2016-04-23 21:09:04 homer 3882 log message from iteration 2

Processing task(s) 3...3 from queue cazart ID 9ba77ba191c...

@ 2016-04-23 21:09:04 homer 3882 log message from iteration 3

Normal worker exit.

3

