Debugging foreach and doRedis programs

Debugging parallel programs is hard. R’s foreach and doRedis packages include
a few options outlined in this document to help.

Error handling

The .errorhandling parameter of the foreach() function takes a character
value among “stop”; “remove”, or “pass’, defaulting to “stop.” That means that
as soon as an error is detected in any loop iteration, the entire foreach loop
stops with that error.

Setting .errorhandling = "pass" is very useful for debugging your pro-
grams since all errors encountered in the loop are returned verbatim in your
solution. Start experimenting with this option without using the .combine pa-
rameter to return all results in a list. Consider the following example program
that is rigged to explicitly return an error in one of the loop iterations. We use
the ‘doSEQ‘ back end below, but this example works exactly the same using
any foreach back end.

library(foreach)
registerDoSEQQ)

foreach(j=1:3, .errorhandling="pass") Ydoparj,
{

if(j==2) j + undefined_variable else j

-

[[11]
[11 1

[[21]
<simpleError in eval(expr, envir, enclos):
object 'undefined_variable' not found>

[[31]
[11 3

H oH O OH H H H HEH

The example shows the error when j=2.

doRedis logging

Use the log and loglevel options in the doRedis redisWorker () and

startLocalWorkers() functions to direct output to a file. Use the logger ()
function inside your foreach loop to write messages to the log. The logger
function appends process ID and time stamps to your message. Alternatively

use the plain old R message () function instead. These options together provide
a kind of "printf"-style debug facility—crude but sometimes effective. Here is an
example:

library(doRedis)
registerDoRedis("cazart")

startLocalWorkers(n=1, timeout=1, queue="cazart",
log="/tmp/cazart.log", loglevel=1)

x <- foreach(j=1:3) Jdopar,
{
logger(paste("hello from loop iteration ", j))

J
}

Remove the work queue (terminating the worker process)
removeQueue("cazart")
Sys.sleep(2) # wait for the worker to terminate

Display the log file
file.show("/tmp/cazart.log")

Processing task(s) 1...1 from queue cazart ID 9ba32925bee. ..

@ 2016-04-23 20:17:26 hostname 3406 hello from loop iteration
Processing task(s) 2...2 from queue cazart ID 9ba32925bee...

@ 2016-04-23 20:17:26 hostname 3406 hello from loop iteration
Processing task(s) 3...3 from queue cazart ID 9ba32925bee...

0 2016-04-23 20:17:26 hostname 3406 hello from loop iteration
Normal worker exit.

HOoH O OH H HH

Note that log files from workers running on different hosts are stored on the
corresponding host file systems.

doRedis job and task accounting

The doRedis package includes setProgress(), jobs() and tasks() functions
that list detailed information about all processes working for doRedis.
The function

setProgress (TRUE)

enables an R progress meter during foreach execution. While a foreach loop is
running, open a separate R terminal session and use the jobs() and tasks()
functions to list details about running operations. See the help pages for those
functions for complete details.

Interactive debugging
A very low-level but effective debugging approach works as follows:

1. Start a single R worker process running in an R terminal using the
redisWorker () function.

2. Start, in a separate terminal, a master R process running a foreach job.

You can monitor the worker R process as the work progresses in its terminal,
even including interactive function debugging. With the loglevel=1 argument,
loop task information is printed to standard output in the R worker process
terminal window as it occurs, as well as any message output from the logger ()
function.

Here is an example split into two R sessions, one for the worker and one for
the master (it’s assumed that you run these in separate R terminal windows).
All standard R debugging options are available in each R session, for example
use option(error=recover) to explore the call stack after encountering an
error condition.

library(doRedis)
registerDoRedis("cazart")

x <- foreach(j=1:3) Jdopar’
{

logger(paste(" log message from iteration", j))

J
}

removeQueue ("cazart") # remove the work queue

library(doRedis)
redisWorker (queue="cazart", loglevel=1, timeout=1)

Waiting for doRedis jobs.

Processing task(s) 1...1 from queue cazart ID 9ba77bal9lc...

@ 2016-04-23 21:09:04 homer 3882 log message from iteration 1
Processing task(s) 2...2 from queue cazart ID 9ba77bal9lc...

@ 2016-04-23 21:09:04 homer 3882 log message from iteration 2
Processing task(s) 3...3 from queue cazart ID 9ba77bal9lc...

0 2016-04-23 21:09:04 homer 3882 log message from iteration 3
Normal worker exit.

HOoH H H O H HEH

