
Package ‘dspline’
May 14, 2025

Title Tools for Computations with Discrete Splines

Version 1.0.2

Description Discrete splines are a class of univariate piecewise polynomial
functions which are analogous to splines, but whose smoothness is defined
via divided differences rather than derivatives. Tools for efficient
computations relating to discrete splines are provided here. These tools
include discrete differentiation and integration, various matrix
computations with discrete derivative or discrete spline bases matrices, and
interpolation within discrete spline spaces. These techniques are described
in Tibshirani (2020) <doi:10.48550/arXiv.2003.03886>.

License MIT + file LICENSE

URL https://github.com/glmgen/dspline,

https://glmgen.github.io/dspline/

BugReports https://github.com/glmgen/dspline/issues

Imports Matrix, Rcpp, rlang

Suggests testthat (>= 3.0.0)

LinkingTo Rcpp, RcppEigen

Config/testthat/edition 3

Encoding UTF-8

RoxygenNote 7.3.2

NeedsCompilation yes

Author Logan Brooks [ctb],
Addison Hu [aut],
Daniel McDonald [ctb],
Ryan Tibshirani [aut, cre, cph]

Maintainer Ryan Tibshirani <ryantibs@gmail.com>

Repository CRAN

Date/Publication 2025-05-14 08:50:04 UTC

1

https://doi.org/10.48550/arXiv.2003.03886
https://github.com/glmgen/dspline
https://glmgen.github.io/dspline/
https://github.com/glmgen/dspline/issues

2 b_mat

Contents

b_mat . 2
b_mat_mult . 4
discrete_deriv . 5
discrete_integ . 6
divided_diff . 8
dot_functions . 9
dspline_interp . 10
dspline_solve . 12
d_mat . 14
d_mat_mult . 15
h_eval . 17
h_mat . 18
h_mat_mult . 20
n_eval . 21
n_mat . 23

Index 25

b_mat Construct B matrix

Description

Constructs the extended discrete derivative matrix of a given order, with respect to given design
points.

Usage

b_mat(k, xd, tf_weighting = FALSE, row_idx = NULL)

Arguments

k Order for the extended discrete derivative matrix. Must be >= 0.

xd Design points. Must be sorted in increasing order, and have length at least k+1.

tf_weighting Should "trend filtering weighting" be used? This is a weighting of the discrete
derivatives that is implicit in trend filtering; see details for more information.
The default is FALSE.

row_idx Vector of indices, a subset of 1:n where n = length(xd), that indicates which
rows of the constructed matrix should be returned. The default is NULL, which
is taken to mean 1:n.

b_mat 3

Details

The extended discrete derivative matrix of order k, with respect to design points x1 < . . . < xn, is
denoted Bk

n. It has dimension n × n, and is banded with bandwidth k + 1. It can be constructed
recursively, as follows. For k ≥ 1, we first define the n× n extended difference matrix B̄n,k:

B̄n,k =



1 0 . . . 0
0 1 . . . 0
...
0 0 . . . 1

−1 1 0 . . . 0 0
0 −1 1 . . . 0 0
...
0 0 0 . . . −1 1



 k rows

 n− k rows

.

We also define the n× n extended diagonal weight matrix Zk
n to have first k diagonal entries equal

to 1 and last n−k diagonal entries equal to (xi+k−xi)/k, i = 1, . . . , n−k. The kth order extended
discrete derivative matrix Bk

n is then given by the recursion:

B1
n = (Z1

n)
−1B̄n,1,

Bk
n = (Zk

n)
−1B̄n,k B

k−1
n , for k ≥ 2.

We note that the discrete derivative matrix Dk
n from d_mat() is simply given by the last n− k rows

of the extended matrix Bk
n.

The option tf_weighting = TRUE returns Zk
nB

k
n where Zk

n is the n×n diagonal matrix as described
above. This weighting is implicit in trend filtering, as explained in the help file for d_mat_mult().
See also Sections 6.1 and 6.2 of Tibshirani (2020) for further discussion.

Note: For multiplication of a given vector by Bk
n, instead of forming Bk

n with the current function
and then carrying out the multiplication, one should instead use b_mat_mult(), as this will be
more efficient (both will be linear time, but the latter saves the cost of forming any matrix in the
first place).

Value

Sparse matrix of dimension length(row_idx) by length(xd).

References

Tibshirani (2020), "Divided differences, falling factorials, and discrete splines: Another look at
trend filtering and related problems", Section 6.2.

See Also

d_mat() for constructing the discrete derivative matrix, and b_mat_mult() for multiplying by the
extended discrete derivative matrix.

4 b_mat_mult

Examples

b_mat(2, 1:10)
b_mat(2, 1:10 / 10)
b_mat(2, 1:10, row_idx = 4:7)

b_mat_mult Multiply by B matrix

Description

Multiplies a given vector by B, the extended discrete derivative matrix of a given order, with respect
to given design points.

Usage

b_mat_mult(v, k, xd, tf_weighting = FALSE, transpose = FALSE, inverse = FALSE)

Arguments

v Vector to be multiplied by B, the extended discrete derivative matrix.

k Order for the extended discrete derivative matrix. Must be >= 0.

xd Design points. Must be sorted in increasing order, and have length at least k+1.

tf_weighting Should "trend filtering weighting" be used? This is a weighting of the discrete
derivatives that is implicit in trend filtering; see details for more information.
The default is FALSE.

transpose Multiply by the transpose of B? The default is FALSE.

inverse Multiply by the inverse of B? The default is FALSE.

Details

The extended discrete derivative matrix of order k, with respect to design points x1 < . . . < xn, is
denoted Bk

n. It is square, having dimension n × n. Acting on a vector v of function evaluations at
the design points, denoted v = f(x1:n), it gives the discrete derivatives of f at the points x1:n:

Bk
nv = (∆k

nf)(x1:n).

The matrix Bk
n can be constructed recursively as the product of a diagonally-weighted first differ-

ence matrix and Bk−1
n ; see the help file for b_mat(), or Section 6.2 of Tibshirani (2020). Therefore,

multiplication by Bk
n or by its transpose can be performed in O(nk) operations based on iterated

weighted differences. See Appendix D of Tibshirani (2020) for details.

The option tf_weighting = TRUE performs multiplication by Zk
nB

k
n where Zk

n is an n×n diagonal
matrix whose top left k×k block equals the identity matrix and bottom right (n−k)×(n−k) block
equals W k

n , the latter being a diagonal weight matrix that is implicit in trend filtering, as explained
in the help file for d_mat_mult().

discrete_deriv 5

Lastly, the matrix Bk
n has a special inverse relationship to the falling factorial basis matrix Hk−1

n

of degree k − 1 with knots in xk:(n−1); it satisfies:

Zk
nB

k
nH

k−1
n = In,

where Zk
n is the n×n diagonal matrix as described above, and In is the n×n identity matrix. This,

combined with the fact that the falling factorial basis matrix has an efficient recursive representation
in terms of weighted cumulative sums, means that multiplying by (Bk

n)
−1 or its transpose can be

performed in O(nk) operations. See Section 6.3 and Appendix D of Tibshirani (2020) for details.

Value

Product of the extended discrete derivative matrix B and the input vector v.

References

Tibshirani (2020), "Divided differences, falling factorials, and discrete splines: Another look at
trend filtering and related problems", Section 6.2.

See Also

discrete_deriv() for discrete differentiation at arbitrary query points, d_mat_mult() for multi-
plying by the discrete derivative matrix, and b_mat() for constructing the extended discrete deriva-
tive matrix.

Examples

v = sort(runif(10))
as.vector(b_mat(2, 1:10) %*% v)
b_mat_mult(v, 2, 1:10)

discrete_deriv Discrete differentiation

Description

Computes the discrete derivative of a function (or vector of function evaluations) of a given order,
with respect to given design points, and evaluated at a given query point.

Usage

discrete_deriv(f, k, xd, x)

Arguments

f Function, or vector of function evaluations at c(xd, x), the design points xd
adjoined with the query point(s) x.

k Order for the discrete derivative calculation. Must be >= 0.
xd Design points. Must be sorted in increasing order, and have length at least k+1.
x Query point(s).

6 discrete_integ

Details

The discrete derivative operator of order k, with respect design points x1 < . . . < xn, is denoted
∆k

n. Acting on a function f , and evaluated at a query point x, it yields:

(∆k
nf)(x) =


k! · f [xi−k+1, . . . , xi, x] if x ∈ (xi, xi+1], i ≥ k

i! · f [x1, . . . , xi, x] if x ∈ (xi, xi+1], i < k

f(x) if x ≤ x1,

where we take xn+1 = ∞ for convenience. In other words, for "most" points x > xk, we define
(∆k

nf)(x) in terms of a (scaled) divided difference of f of order k, where the centers are the k
points immediately to the left of x, and x itself. Meanwhile, for "boundary" points x ≤ xk, we
define (∆k

nf)(x) to be a (scaled) divided difference of f of the highest possible order, where the
centers are the points to the left of x, and x itself. For more discussion, including alternative
representations for the discrete differentiation, see Section 3.1 of Tibshirani (2020).

Note: for calculating discrete derivatives at the design points themselves, which could be achieved
by taking x = xd in the current function, one should instead use b_mat_mult() or d_mat_mult(),
as these will be more efficient (both will be linear-time, but the latter functions will be faster).

Value

Discrete derivative of f of order k, with respect to design points xd, evaluated at the query point(s)
x.

References

Tibshirani (2020), "Divided differences, falling factorials, and discrete splines: Another look at
trend filtering and related problems", Section 3.1.

See Also

b_mat_mult(), d_mat_mult() for multiplication by the extended and non-extended discrete deriva-
tive matrices, giving discrete derivatives at design points.

Examples

xd = 1:10 / 10
discrete_deriv(function(x) x^2, 1, xd, xd)

discrete_integ Discrete integration

Description

Computes the discrete integral of a function (or vector of function evaluations) of a given order,
with respect to given design points, and evaluated at a given query point.

discrete_integ 7

Usage

discrete_integ(f, k, xd, x)

Arguments

f Function, or vector of function evaluations at c(xd, x), the design points xd
adjoined with the query point(s) x.

k Order for the discrete integral calculation. Must be >= 0.

xd Design points. Must be sorted in increasing order, and have length at least k+1.

x Query point(s).

Details

The discrete integral operator of order k, with respect to design points x1 < . . . < xn, is denoted
Sk
n. It is the inverse operator to the discrete derivative operator ∆k

n, so that:

Sk
n∆

k
n = ∆k

nS
k
n = Id,

where Id denotes the identity operator. It can also be represented in a more explicit form, as follows.
Acting on a function f of order k, and evaluated at a query point x, it yields:

(Sk
nf)(x) =



k∑
j=1

hk−1
j (x) · f(xj) +

i∑
j=k+1

hk−1
j (x) · xj − xj−k

k
· f(xj) + hk−1

i+1 (x) ·
x− xi−k+1

k
· f(x)

if x ∈ (xi, xi+1], i ≥ k
i∑

j=1

hk−1
j (x) · f(xj) + hk−1

i+1 (x) · f(x) if x ∈ (xi, xi+1], i < k

f(x) if x ≤ x1,

where hk−1
1 , . . . , hk−1

n denote the falling factorial basis functions of degree k − 1, with knots in
xk:(n−1). The help file for h_mat() gives a definition of the falling factorial basis. It can be seen
(due to the one-sided support of the falling factorial basis functions) that discrete integration at x =
xi, i = 1, . . . , n is equivalent to multiplication by a weighted version of the falling factorial basis
matrix. For more details, including an alternative recursive representation for discrete integration
(that elucidates its relationship to discrete differentiation), see Section 3.2 of Tibshirani (2020).

Note: for calculating discrete integrals at the design points themselves, which could be achieved by
taking x = xd in the current function, one should instead use h_mat_mult() with di_weighting =
TRUE, as this will be much more efficient (quadratic-time versus linear-time).

Value

Discrete integral of f of order k, with respect to design points xd, evaluated at the query point(s) x.

References

Tibshirani (2020), "Divided differences, falling factorials, and discrete splines: Another look at
trend filtering and related problems", Section 3.2.

8 divided_diff

See Also

h_mat_mult() for multiplication by the falling factorial basis matrix, giving a weighted analog of
discrete integration at the design points.

Examples

xd = 1:10 / 10
discrete_integ(function(x) 1, 1, xd, xd)

divided_diff Divided differencing

Description

Computes the divided difference of a function (or vector of function evaluations) with respect to
given centers.

Usage

divided_diff(f, z)

Arguments

f Function, or vector of function evaluations at the centers.

z Centers for the divided difference calculation.

Details

The divided difference of a function f with respect to centers z1, . . . , zk+1 is defined recursively
as:

f [z1, . . . , zk+1] =
f [z2, . . . , zk+1]− f [z1, . . . , zk]

zk+1 − z1
,

with base case f [z1] = f(z1) (that is, divided differencing with respect to a single point reduces to
function evaluation).

A notable special case is when the centers are evenly-spaced, say, zi = z + ih, i = 0, . . . , k for
some spacing h > 0, in which case the divided difference becomes a (scaled) forward difference,
or equivalently a (scaled) backward difference,

k! · f [z, . . . , z + kh] =
1

hk
(F k

h f)(z) =
1

hk
(Bk

hf)(z + kh),

where we use F k
h and Bk

v to denote the forward and backward difference operators, respectively, of
order k and with spacing h.

Value

Divided difference of f with respect to centers z.

dot_functions 9

Examples

f = runif(4)
z = runif(4)
divided_diff(f[1], z[1])
f[1]
divided_diff(f[1:2], z[1:2])
(f[1]-f[2])/(z[1]-z[2])
divided_diff(f[1:3], z[1:3])
((f[1]-f[2])/(z[1]-z[2]) - (f[2]-f[3])/(z[2]-z[3])) / (z[1]-z[3])
divided_diff(f, 1:4)
diff(f, diff = 3) / factorial(3)

dot_functions In-place computations

Description

Each "dot" function accepts arguments as in its "non-dot" counterpart, but peforms computations in
place, overwriting the first input argument (which must be a vector of the appropriate length) with
the desired output.

Usage

.divided_diff(f, z)

.b_mat_mult(v, k, xd, tf_weighting, transpose, inverse)

.h_mat_mult(v, k, xd, di_weighting, transpose, inverse)

Arguments

f Function, or vector of function evaluations at the centers.

z Centers for the divided difference calculation.

v Vector to be multiplied by B, the extended discrete derivative matrix.

k Order for the extended discrete derivative matrix. Must be >= 0.

xd Design points. Must be sorted in increasing order, and have length at least k+1.

tf_weighting Should "trend filtering weighting" be used? This is a weighting of the discrete
derivatives that is implicit in trend filtering; see details for more information.
The default is FALSE.

transpose Multiply by the transpose of B? The default is FALSE.

inverse Multiply by the inverse of B? The default is FALSE.

di_weighting Should "discrete integration weighting" be used? Multiplication by such a weighted
H gives discrete integrals at the design points; see details for more information.
The default is FALSE.

10 dspline_interp

Details

These functions should not be used unless you are intentionally doing so for memory considerations
and are nonetheless being very careful.

An important warning: each "dot" function only works as expected if its first argument is passed
in as a vector of numeric type. If the first argument is passed in as an integer vector, then since the
output must (in general) be a numeric vector, it cannot be computed in place (Rcpp performs an
implicit cast and copy when it converts this to NumericVector type for use in C++).

Also, each "dot" function does not perform any error checking on its input arguments. Use with
care. More details on the computations performed by individual functions are provided below.

Value

None. These functions overwrite their input.

.divided_diff()

Overwrites f with all lower-order divided differences: each element f[i] becomes the divided
difference with respect to centers z[1:i]. See also divided_diff().

.b_mat_mult()

Overwrites v with B %*% v, where B is the extended discrete derivative matrix as returned by b_mat().
See also b_mat_mult().

.h_mat_mult()

Overwrites v with H %*% v, where H is the falling factorial basis matrix as returned by h_mat(). See
also h_mat_mult().

Examples

v = as.numeric(1:10) # Note: must be of numeric type
b_mat_mult(v, 1, 1:10)
v
.b_mat_mult(v, 1, 1:10, FALSE, FALSE, FALSE)
v

dspline_interp Discrete spline interpolation

Description

Interpolates a sequence of values within the "canonical" space of discrete splines of a given order,
with respect to given design points.

Usage

dspline_interp(v, k, xd, x, implicit = TRUE)

dspline_interp 11

Arguments

v Vector to be values to be interpolated, one value per design point.

k Order for the discrete spline space. Must be >= 0.

xd Design points. Must be sorted in increasing order, and have length at least k+1.

x Query point(s), at which to perform interpolation.

implicit Should implicit form interpolation be used? See details for what this means.
The default is TRUE.

Details

The "canonical" space of discrete splines of degree k, with respect to design points x1:n, is spanned
by the falling factorial basis functions hk

1 , . . . , h
k
n, which are defined as:

hk
j (x) =

1

(j − 1)!

j−1∏
ℓ=1

(x− xℓ), j = 1, . . . , k + 1,

hk
j (x) =

1

k!

j−1∏
ℓ=j−k

(x− xℓ) · 1{x > xj−1}, j = k + 2, . . . , n.

Their span is a space of piecewise polynomials of degree k with knots in x(k+1):(n−1)—in fact, not
just any piecewise polynomials, but special ones that have continuous discrete derivatives (defined
in terms of divided differences; see the help file for discrete_deriv() for the definition) of all
orders 0, . . . , k − 1 at the knot points. This is precisely analogous to splines but with derivatives
replaced by discrete derivatves, hence the name discrete splines. See Section 4.1 of Tibshirani
(2020) for more details.

As the space of discrete splines of degree k with knots in x(k+1):(n−1) has linear dimension n, any
sequence of n values (one at each of the design points x1:n) has a unique discrete spline interpolant.
Evaluating this interpolant at any query point x can be done via its falling factorial basis expansion,
where the coefficients in this expansion can be computed efficiently (in O(nk) operations) due to
the fact that the inverse falling factorial basis matrix can be represented in terms of extended discrete
derivatives (see the help file for h_mat_mult() for details).

When implicit = FALSE, the interpolation is carried out as described in the above paragraph. It is
worth noting this is a strict generalization of Newton’s divided difference interpolation, which is
given by the special case when n = k + 1 (in this case the knot set is empty, and the "canonical"
space of degree k discrete splines is nothing more than the space of degree k polynomials). See
Section 5.3 of Tibshirani (2020) for more details.

When implicit = TRUE, an implicit form is used to evaluate the interpolant at an arbitrary query
point x, which locates x among the design points x1:n (a O(log n) computational cost), and solves
for the of value of f(x) that results in a local order k + 1 discrete derivative being equal to zero (a
O(k) computational cost). This is generally a more efficient and stable scheme for interpolation.
See Section 5.4 of Tibshirani (2020) for more details.

Value

Value(s) of the unique discrete spline interpolant (defined by the values v at design points xd) at
query point(s) x.

12 dspline_solve

References

Tibshirani (2020), "Divided differences, falling factorials, and discrete splines: Another look at
trend filtering and related problems", Section 5.

See Also

dspline_solve() for the least squares projection onto a "custom" space of discrete splines (defined
by a custom knot set T ⊆ x(k+1):(n−1)).

Examples

xd = 1:100 / 100
knot_idx = 1:9 * 10
y = sin(2 * pi * xd) + rnorm(100, 0, 0.2)
yhat = dspline_solve(y, 2, xd, knot_idx)$fit
x = seq(0, 1, length = 1000)
fhat = dspline_interp(yhat, 2, xd, x)
plot(xd, y, pch = 16, col = "gray65")
lines(x, fhat, col = "firebrick", lwd = 2)
abline(v = xd[knot_idx], lty = 2)

dspline_solve Discrete spline projection

Description

Projects a sequence of values onto the space of discrete splines a given order, with respect to given
design points, and given knot points.

Usage

dspline_solve(v, k, xd, knot_idx, basis = c("N", "B", "H"), mat)

Arguments

v Vector to be values to be projected, one value per design point.

k Order for the discrete spline space. Must be >= 0.

xd Design points. Must be sorted in increasing order, and have length at least k+1.

knot_idx Vector of indices, a subset of (k+1):(n-1) where n = length(xd), that indi-
cates which design points should be used as knot points for the discrete spline
space. Must be sorted in increasing order.

basis String, one of "N", "B", or "H", indicating which basis representation is to be
used for the least squares computation. The default is "N", the discrete B-spline
basis. See details for more information.

mat Matrix to use for the least squares computation. If missing, the default, then the
matrix will be formed according to the basis argument. See details for more
information.

dspline_solve 13

Details

This function minimizes the least squares criterion

∥v −Mβ∥22

over coefficient vectors β; that is, it computes

β̂ = (MTM)−1MT v

for a vector v and basis matrix M . The basis matrix M is specified via the basis argument, which
allows for three options. The default is "N", in which case the discrete B-spline basis matrix from
n_mat() is used, with the knot_idx argument set accordingly. This is generally the most stable
and efficient option: it leads to a banded, well-conditioned linear system. Bandedness means that
the least squares projection can be computed in O(nk2) operations. See Section 8.4 of Tibshirani
(2020) for numerical experiments investigating conditioning.

The option "H" means that the falling factorial basis matrix from h_mat() is used, with the col_idx
argument set appropriately. This option should be avoided in general since it leads to a linear
system that is neither sparse nor well-conditioned.

The option "B" means that the extended discrete derivative matrix from b_mat(), with tf_weighting
= TRUE, is used to compute the least squares solution from projecting onto the falling factorial basis.
The fact this is possible stems from a special inverse relationship between the discrete derivative
matrix and the falling factorial basis matrix. While this option leads to a banded linear system,
this system tends to have worse conditioning than that using the discrete B-spline representation.
However, it is essentially always preferable to the "H" option, and it produces the same solution
(coefficients in the falling factorial basis expansion).

Note 1: the basis matrix to be used in the least squares problem can be passed in directly via the mat
argument (which saves on the cost of computing it in the first place). Even when mat not missing,
the basis argument must still be used to specify which type of basis matrix is being passed in, as
the downstream computations differ depending on the type.

Note 2: when mat is not missing and basis = "B", the matrix being passed in must be the entire
extended discrete derivative matrix, as returned by b_mat() with row_idx = NULL (the default), and
not some row-subsetted version. This is because both the rows corresponding to the knots in the
discrete spline space and the complementary set of roles play a role in computing the solution. See
Section 8.1 of Tibshirani (2020).

Value

List with components sol: the least squares solution; fit: the least squares fit; and mat: the basis
matrix used for the least squares problem (only present if the input argument mat is missing).

References

Tibshirani (2020), "Divided differences, falling factorials, and discrete splines: Another look at
trend filtering and related problems", Sections 8.1 and 8.4.

See Also

dspline_interp() for interpolation within the "canonical" space of discrete splines.

14 d_mat

Examples

xd = 1:100 / 100
knot_idx = 1:9 * 10
y = sin(2 * pi * xd) + rnorm(100, 0, 0.2)
yhat = res = dspline_solve(y, 2, xd, knot_idx)$fit
plot(xd, y, pch = 16, col = "gray60")
points(xd, yhat, col = "firebrick")
abline(v = xd[knot_idx], lty = 2)

d_mat Construct D matrix

Description

Constructs the discrete derivative matrix of a given order, with respect to given design points.

Usage

d_mat(k, xd, tf_weighting = FALSE, row_idx = NULL)

Arguments

k Order for the discrete derivative matrix. Must be >= 0.

xd Design points. Must be sorted in increasing order, and have length at least k+1.

tf_weighting Should "trend filtering weighting" be used? This is a weighting of the discrete
derivatives that is implicit in trend filtering; see details for more information.
The default is FALSE.

row_idx Vector of indices, a subset of 1:(n-k) where n = length(xd), that indicates
which rows of the constructed matrix should be returned. The default is NULL,
which is taken to mean 1:(n-k).

Details

The discrete derivative matrix of order k, with respect to design points x1 < . . . < xn, is denoted
Dk

n. It has dimension (n − k) × n, and is banded with bandwidth k + 1. It can be constructed
recursively, as follows. We first define the (n− 1)× n first difference matrix D̄n:

D̄n =


−1 1 0 . . . 0 0
0 −1 1 . . . 0 0
...
0 0 0 . . . −1 1

 ,

and for k ≥ 1, define the (n − k) × (n − k) diagonal weight matrix W k
n to have diagonal entries

(xi+k − xi)/k, i = 1, . . . , n− k. The kth order discrete derivative matrix Dk
n is then given by the

recursion:
D1

n = (W 1
n)

−1D̄n,

Dk
n = (W k

n)
−1D̄n−k+1 D

k−1
n , for k ≥ 2.

d_mat_mult 15

We note that D̄n−k+1 above denotes the (n−k)× (n−k+1) version of the first difference matrix
that is defined in the second-to-last display.

The option tf_weighting = TRUE returns W k
nD

k
n where W k

n is the (n − k) × (n − k) diagonal
matrix as described above. This weighting is implicit in trend filtering, as explained in the help file
for d_mat_mult(). See also Section 6.1 of Tibshirani (2020) for further discussion.

Note: For multiplication of a given vector by Dk
n, instead of forming Dk

n with the current function
and then carrying out the multiplication, one should instead use d_mat_mult(), as this will be
more efficient (both will be linear time, but the latter saves the cost of forming any matrix in the
first place).

Value

Sparse matrix of dimension length(row_idx) by length(xd).

References

Tibshirani (2020), "Divided differences, falling factorials, and discrete splines: Another look at
trend filtering and related problems", Section 6.1.

See Also

b_mat() for constructing the extended discrete derivative matrix, and d_mat_mult() for multiply-
ing by the discrete derivative matrix.

Examples

d_mat(2, 1:10)
d_mat(2, 1:10 / 10)
d_mat(2, 1:10, row_idx = 2:5)

d_mat_mult Multiply by D matrix

Description

Multiplies a given vector by D, the discrete derivative matrix of a given order, with respect to given
design points.

Usage

d_mat_mult(v, k, xd, tf_weighting = FALSE, transpose = FALSE)

16 d_mat_mult

Arguments

v Vector to be multiplied by D, the discrete derivative matrix.

k Order for the discrete derivative matrix. Must be >= 0.

xd Design points. Must be sorted in increasing order, and have length at least k+1.

tf_weighting Should "trend filtering weighting" be used? This is a weighting of the discrete
derivatives that is implicit in trend filtering; see details for more information.
The default is FALSE.

transpose Multiply by the transpose of D? The default is FALSE.

Details

The discrete derivative matrix of order k, with respect to design points x1 < . . . < xn, is denoted
Dk

n. It has dimension (n−k)×n. Acting on a vector v of function evaluations at the design points,
denoted v = f(x1:n), it gives the discrete derivatives of f at the points x(k+1):n:

Dk
nv = (∆k

nf)(x(k+1):n).

The matrix Dk
n can be constructed recursively as the product of a diagonally-weighted first differ-

ence matrix and Dk−1
n ; see the help file for d_mat(), or Section 6.1 of Tibshirani (2020). Therefore,

multiplication by Dk
n or by its transpose can be performed in O(nk) operations based on iterated

weighted differences. See Appendix D of Tibshirani (2020) for details.

The option tf_weighting = TRUE performs multiplication by W k
nD

k
n where W k

n is a (n−k)×(n−
k) diagonal matrix with entries (xi+k−xi)/k, i = 1, . . . , n−k. This weighting is implicit in trend
filtering, as the penalty in the kth order trend filtering optimization problem (with optimization
parameter θ) is ∥W k+1

n Dk+1
n θ∥1. Moreover, this is precisely the kth order total variation of the

kth degree discrete spline interpolant f to θ, with knots in x(k+1):(n−1); that is, such an interpolant
satisfies:

TV(Dkf) = ∥W k+1
n Dk+1

n θ∥1,

where Dkf is the kth derivative of f . See Section 9.1. of Tibshirani (2020) for more details.

Value

Product of the discrete derivative matrix D and the input vector v.

References

Tibshirani (2020), "Divided differences, falling factorials, and discrete splines: Another look at
trend filtering and related problems", Section 6.1.

See Also

discrete_deriv() for discrete differentiation at arbitrary query points, b_mat_mult() for multi-
plying by the extended discrete derivative matrix, and d_mat() for constructing the discrete deriva-
tive matrix.

h_eval 17

Examples

v = sort(runif(10))
as.vector(d_mat(2, 1:10) %*% v)
d_mat_mult(v, 2, 1:10)

h_eval Evaluate H basis

Description

Evaluates the falling factorial basis of a given order, with respect to given design points, at arbitrary
query points.

Usage

h_eval(k, xd, x, col_idx = NULL)

Arguments

k Order for the falling factorial basis. Must be >= 0.
xd Design points. Must be sorted in increasing order, and have length at least k+1.
x Query points. Must be sorted in increasing order.
col_idx Vector of indices, a subset of 1:n where n = length(xd), that indicates which

columns of the constructed matrix should be returned. The default is NULL,
which is taken to mean 1:n.

Details

The falling factorial basis functions of order k, defined with respect to design points x1 < . . . < xn,
are denoted hk

1 , . . . , h
k
n. For their precise definition and further references, see the help file for

h_mat(). The current function produces a matrix of evaluations of the falling factorial basis at an
arbitrary sequence of query points. For each query point x, this matrix has a corresponding row
with entries:

hk
j (x), j = 1, . . . , n.

Value

Sparse matrix of dimension length(x) by length(col_idx).

See Also

h_mat() for constructing evaluations of the falling factorial basis at the design points.

Examples

xd = 1:10 / 10
x = 1:9 / 10 + 0.05
h_mat(2, xd)
h_eval(2, xd, x)

18 h_mat

h_mat Construct H matrix

Description

Constructs the falling factorial basis matrix of a given order, with respect to given design points.

Usage

h_mat(k, xd, di_weighting = FALSE, col_idx = NULL)

Arguments

k Order for the falling factorial basis matrix. Must be >= 0.

xd Design points. Must be sorted in increasing order, and have length at least k+1.

di_weighting Should "discrete integration weighting" be used? Multiplication by such a weighted
H gives discrete integrals at the design points; see details for more information.
The default is FALSE.

col_idx Vector of indices, a subset of 1:n where n = length(xd), that indicates which
columns of the constructed matrix should be returned. The default is NULL,
which is taken to mean 1:n.

Details

The falling factorial basis matrix of order k, with respect to design points x1 < . . . < xn, is denoted
Hk

n . It has dimension n× n, and its entries are defined as:

(Hk
n)ij = hk

j (xi),

where hk
1 , . . . , h

k
n are the falling factorial basis functions, defined as:

hk
j (x) =

1

(j − 1)!

j−1∏
ℓ=1

(x− xℓ), j = 1, . . . , k + 1,

hk
j (x) =

1

k!

j−1∏
ℓ=j−k

(x− xℓ) · 1{x > xj−1}, j = k + 2, . . . , n.

The matrix Hk
n can also be constructed recursively, as follows. We first define the n × n lower

triangular matrix of 1s:

Ln =


1 0 . . . 0
1 1 . . . 0
...
1 1 . . . 1

 ,

h_mat 19

and for k ≥ 1, define the n×n extended diagonal weight matrix Zk
n to have first k diagonal entries

equal to 1 and last n− k diagonal entries equal to (xi+k − xi)/k, i = 1, . . . , n− k. The kth order
falling factorial basis matrix is then given by the recursion:

H0
n = Ln,

Hk
n = Hk−1

n Zk
n

[
Ik 0
0 Ln−k

]
, for k ≥ 1,

where Ik denotes the k×k identity matrix, and Ln−k denotes the (n−k)×(n−k) lower triangular
matrix of 1s. For further details about this recursive representation, see Sections 3.3 and 6.3 of
Tibshirani (2020).

The option di_weighting = TRUE returns Hk
nZ

k+1
n where Zk+1

n is the n×n diagonal matrix as de-
fined above. This is connected to discrete integration as explained in the help file for h_mat_mult().
See also Section 3.3 of Tibshirani (2020) for more details.

Each basis function hk
j , for j ≥ k + 2, has a single knot at xj−1. The falling factorial basis thus

spans kth degree piecewise polynomials—discrete splines, in fact—with knots in x(k+1):(n−1).
The dimension of this space is n− k − 1 (number of knots) + k + 1 (polynomial dimension) = n.
Setting the argument col_idx appropriately allow one to form a basis matrix for a discrete spline
space corresponding to an arbitrary knot set T ⊆ x(k+1):(n−1). For more information, see Sections
4.1 and 8 of Tibshirani (2020).

Note 1: For computing the least squares projection onto a discrete spline space defined by an
arbitrary knot set T ⊆ x(k+1):(n−1), one should not use the falling factorial basis, but instead use
the discrete natural spline basis from n_mat(), as the latter has much better numerical properties in
general. The help file for dspline_solve() gives more information.

Note 2: For multiplication of a given vector by Hk
n , one should not form Hk

n with the current
function and then carry out the multiplication, but instead use h_mat_mult(), as the latter will be
much more efficient (quadratic-time versus linear-time).

Value

Sparse matrix of dimension length(xd) by length(col_idx).

References

Tibshirani (2020), "Divided differences, falling factorials, and discrete splines: Another look at
trend filtering and related problems", Section 6.3.

See Also

h_mat_mult() for multiplying by the falling factorial basis matrix and h_eval() for constructing
evaluations of the falling factorial basis at arbitrary query points.

Examples

h_mat(2, 1:10)
h_mat(2, 1:10 / 10)
h_mat(2, 1:10, col_idx = 4:7)

20 h_mat_mult

h_mat_mult Multiply by H matrix

Description

Multiplies a given vector by H, the falling factorial basis matrix of a given order, with respect to
given design points.

Usage

h_mat_mult(v, k, xd, di_weighting = FALSE, transpose = FALSE, inverse = FALSE)

Arguments

v Vector to be multiplied by H, the falling factorial basis matrix.

k Order for the falling factorial basis matrix. Must be >= 0.

xd Design points. Must be sorted in increasing order, and have length at least k+1.

di_weighting Should "discrete integration weighting" be used? Multiplication by such a weighted
H gives discrete integrals at the design points; see details for more information.
The default is FALSE.

transpose Multiply by the transpose of H? The default is FALSE.

inverse Multiply by the inverse of H? The default is FALSE.

Details

The falling factorial basis matrix of order k, with respect to design points x1 < . . . < xn, is denoted
Hk

n . Its entries are defined as:
(Hk

n)ij = hk
j (xi),

where hk
j is the jth falling factorial basis function, as defined in the help file for h_mat(). The

matrix Hk
n can be constructed recursively as the product of Hk−1

n and a diagonally-weighted cu-
mulative sum matrix; see the help file for h_mat(), or Section 6.3 of Tibshirani (2020). Therefore,
multiplication by Hk

n or by its transpose can be performed in O(nk) operations based on iterated
weighted cumulative sums. See Appendix D of Tibshirani (2020) for details.

The option di_weighting = TRUE performs multiplication by Hk
nZ

k+1
n where Zk+1

n is an n × n
diagonal matrix whose first k+1 diagonal entries of Zk+1

n are 1 and last n− k− 1 diagonal entries
are (xi+k+1 − xi)/(k + 1), i = 1, . . . , n − k − 1. The connection to discrete integration is as
follows: multiplication of v = f(x1:n) by Hk

nZ
k+1
n gives order k + 1 discrete integrals (note the

increment in order of integration here) of f at the points x1:n:

Hk
nZ

k+1
n v = (Sk+1

n f)(x1:n).

Lastly, the matrix Hk
n has a special inverse relationship to the extended discrete derivative matrix

Bk+1
n of degree k + 1; it satisfies:

Hk
nZ

k+1
n Bk+1

n = In,

n_eval 21

where Zk+1
n is the n × n diagonal matrix as described above, and In is the n × n identity matrix.

This, combined with the fact that the extended discrete derivative matrix has an efficient recursive
representation in terms of weighted differences, means that multiplying by (Hk

n)
−1 or its transpose

can be performed in O(nk) operations. See Section 6.2 and Appendix D of Tibshirani (2020) for
details.

Value

Product of falling factorial basis matrix H and the input vector v.

References

Tibshirani (2020), "Divided differences, falling factorials, and discrete splines: Another look at
trend filtering and related problems", Section 6.2.

See Also

discrete_integ() for discrete integration at arbitrary query points, and h_mat() for constructing
the falling factorial basis matrix.

Examples

v = sort(runif(10))
as.vector(h_mat(2, 1:10) %*% v)
h_mat_mult(v, 2, 1:10)

n_eval Evaluate N basis

Description

Evaluates the discrete B-spline basis of a given order, with respect to given design points, evaluated
at arbitrary query points.

Usage

n_eval(k, xd, x, normalized = TRUE, knot_idx = NULL, N = NULL)

Arguments

k Order for the discrete B-spline basis. Must be >= 0.

xd Design points. Must be sorted in increasing order, and have length at least k+1.

x Query points. Must be sorted in increasing order.

normalized Should the discrete B-spline basis vectors be normalized to attain a maximum
value of 1 over the design points? The default is TRUE.

22 n_eval

knot_idx Vector of indices, a subset of (k+1):(n-1) where n = length(xd), that indi-
cates which design points should be used as knot points for the discrete B-
splines. Must be sorted in increasing order. The default is NULL, which is taken
to mean (k+1):(n-1).

N Matrix of discrete B-spline evaluations at the design points. The default is NULL,
which means that this is precomputed before constructing the matrix of discrete
B-spline evaluations at the query points. If N is non-NULL, then the argument
normalized will be ignored (as this would have only been used to construct N
at the design points).

Details

The discrete B-spline basis functions of order k, defined with respect to design points x1 < . . . <
xn, are denoted ηk1 , . . . , η

k
n. For a discussion of their properties and further references, see the help

file for n_mat(). The current function produces a matrix of evaluations of the discrete B-spline basis
at an arbitrary sequence of query points. For each query point x, this matrix has a corresponding
row with entries:

ηkj (x), j = 1, . . . , n.

Unlike the falling factorial basis, the discrete B-spline basis is not generally available in closed-
form. Therefore, the current function (unlike h_eval()) will first check if it should precompute the
evaluations of the discrete B-spline basis at the design points. If the argument N is non-NULL, then it
will use this as the matrix of evaluations at the design points; if N is NULL, then it will call n_mat()
to produce such a matrix, and will pass to this function the arguments normalized and knot_idx
accordingly.

After obtaining the matrix of discrete B-spline evaluations at the design points, the fast interpolation
scheme from dspline_interp() is used to produce evaluations at the query points.

Value

Sparse matrix of dimension length(x) by length(knot_idx) + k + 1.

See Also

n_mat() for constructing evaluations of the discrete B-spline basis at the design points.

Examples

xd = 1:10 / 10
x = 1:9 / 10 + 0.05
n_mat(2, xd, knot_idx = c(3, 5, 7))
n_eval(2, xd, x, knot_idx = c(3, 5, 7))

n_mat 23

n_mat Construct N matrix

Description

Constructs the discrete B-spline basis matrix of a given order, with respect to given design points
and given knot points.

Usage

n_mat(k, xd, normalized = TRUE, knot_idx = NULL)

Arguments

k Order for the discrete B-spline basis matrix. Must be >= 0.
xd Design points. Must be sorted in increasing order, and have length at least k+1.
normalized Should the discrete B-spline basis vectors be normalized to attain a maximum

value of 1 over the design points? The default is TRUE.
knot_idx Vector of indices, a subset of (k+1):(n-1) where n = length(xd), that indi-

cates which design points should be used as knot points for the discrete B-
splines. Must be sorted in increasing order. The default is NULL, which is taken
to mean (k+1):(n-1) as in the "canonical" discrete spline space (though in this
case the returned N matrix will be trivial: it will be the identity matrix). See
details.

Details

The discrete B-spline basis matrix of order k, with respect to design points x1 < . . . < xn, and
knot set T ⊆ x(k+1):(n−1) is denoted Nk

T . It has dimension (|T | + k + 1) × n, and its entries are
given by:

(Nk
T)ij = ηkj (xi),

where ηk1 , . . . , η
k
m are discrete B-spline (DB-spline) basis functions and m = |T | + k + 1. As is

suggested by their name, the DB-spline functions are linearly independent and span the space of
discrete splines with knots at T . Each DB-spline ηkj has a key local support property: it is supported
on an interval containing at most k + 2 adjacent knots.

The functions ηk1 , . . . , η
k
m are, in general, not available in closed-form, and are defined by setting

up and solving a sequence of locally-defined linear systems. For any knot set T , computation of the
evaluations of all DB-splines at the design points can be done in O(nk2) operations; see Sections 7,
8.2, and 8.3 of Tibshirani (2020) for details. The current function uses a sparse QR decomposition
from the Eigen::SparseQR module in C++ in order to solve the local linear systems.

When T = x(k+1):(n−1), the knot set corresponding to the "canonical" discrete spline space
(spanned by the falling factorial basis functions hk

1 , . . . , h
k
n whose evaluations make up Hk

n; see
the help file for h_mat()), the DB-spline basis matrix, which we denote by Nk

n , is trivial: it equals
the n × n identity matrix, Nk

n = In. Therefore DB-splines are really only useful for knot sets T
that are proper subsets of x(k+1):(n−1). Specification of the knot set T is done via the argument
knot_idx.

24 n_mat

Value

Sparse matrix of dimension length(xd) by length(knot_idx) + k + 1.

References

Tibshirani (2020), "Divided differences, falling factorials, and discrete splines: Another look at
trend filtering and related problems", Sections 7, 8.2, and 8.3.

See Also

h_eval() for constructing evaluations of the discrete B-spline basis at arbitrary query points.

Examples

n_mat(2, 1:10, knot_idx = c(3, 5, 7))
n_mat(2, 1:10, knot_idx = c(4, 6, 8))

Index

.b_mat_mult (dot_functions), 9

.divided_diff (dot_functions), 9

.h_mat_mult (dot_functions), 9

b_mat, 2
b_mat(), 4, 5, 13, 15
b_mat_mult, 4
b_mat_mult(), 3, 6, 10, 16

d_mat, 14
d_mat(), 3, 16
d_mat_mult, 15
d_mat_mult(), 3–6, 15
discrete_deriv, 5
discrete_deriv(), 5, 11, 16
discrete_integ, 6
discrete_integ(), 21
divided_diff, 8
divided_diff(), 10
dot_functions, 9
dspline_interp, 10
dspline_interp(), 13, 22
dspline_solve, 12
dspline_solve(), 12, 19

h_eval, 17
h_eval(), 19, 22, 24
h_mat, 18
h_mat(), 7, 13, 17, 20, 21, 23
h_mat_mult, 20
h_mat_mult(), 7, 8, 10, 11, 19

n_eval, 21
n_mat, 23
n_mat(), 13, 19, 22

25

	b_mat
	b_mat_mult
	discrete_deriv
	discrete_integ
	divided_diff
	dot_functions
	dspline_interp
	dspline_solve
	d_mat
	d_mat_mult
	h_eval
	h_mat
	h_mat_mult
	n_eval
	n_mat
	Index

