
Package ‘fastVoteR’
November 27, 2024

Title Efficient Voting Methods for Committee Selection

Version 0.0.1

Description A fast 'Rcpp'-based implementation of polynomially-computable
voting theory methods for committee ranking and scoring. The package
includes methods such as Approval Voting (AV), Satisfaction Approval
Voting (SAV), sequential Proportional Approval Voting (PAV), and
sequential Phragmen's Rule. Weighted variants of these methods are
also provided, allowing for differential voter influence.

License LGPL (>= 3)

URL https://bblodfon.github.io/fastVoteR/

Imports checkmate, data.table, Rcpp

Suggests mlr3misc (>= 0.15.1), testthat (>= 3.0.0)

LinkingTo Rcpp

Config/testthat/edition 3

Encoding UTF-8

RoxygenNote 7.3.2

NeedsCompilation yes

Author John Zobolas [cre, aut] (<https://orcid.org/0000-0002-3609-8674>),
Anne-Marie George [ctb] (<https://orcid.org/0000-0001-9232-8211>)

Maintainer John Zobolas <bblodfon@gmail.com>

Repository CRAN

Date/Publication 2024-11-27 12:40:02 UTC

Contents
rank_candidates . 2

Index 5

1

https://bblodfon.github.io/fastVoteR/
https://orcid.org/0000-0002-3609-8674
https://orcid.org/0000-0001-9232-8211

2 rank_candidates

rank_candidates Rank candidates based on voter preferences

Description

Calculates a ranking of candidates based on voters’ preferences. Approval-Based Committe (ABC)
rules are based on Lackner et al. (2023).

Usage

rank_candidates(
voters,
candidates,
weights = NULL,
committee_size = NULL,
method = "av",
borda_score = TRUE,
shuffle_candidates = TRUE

)

Arguments

voters (list)
A list of subsets, where each subset contains the candidates approved or selected
by a voter.

candidates (character)
A vector of all candidates to be ranked.

weights (numeric)
A numeric vector of weights representing each voter’s influence. Larger weight,
higher influence. Must have the same length as voters. If NULL (default), all
voters are assigned equal weights of 1, representing equal influence.

committee_size (integer(1))
Number of top candidates to include in the ranking. Default (NULL) includes all
candidates. For sequential methods such as "seq_pav" and "seq_phragmen",
this parameter can speed up computation by limiting the selection process to
only the top N candidates, instead of generating a complete ranking. In other
methods (e.g., "sav" or "av"), this parameter simply filters the final output to
include only the top N candidates from the complete ranking.

method (character(1))
The ranking voting method to use. Must be one of: "av", "sav", "seq_pav",
"seq_phragmen". See Details.

borda_score (logical(1))
Whether to calculate and include Borda scores in the output. See Details. De-
fault is TRUE.

rank_candidates 3

shuffle_candidates

(logical(1))
Whether to shuffle the candidates randomly before computing the ranking. Shuf-
fling ensures consistent random tie-breaking across methods and prevents deter-
ministic biases when candidates with equal scores are encountered. Default is
TRUE. Set to FALSE if deterministic ordering of candidates is preferred.

Details

This method implements several consensus-based ranking methods, where voters express prefer-
ences for candidates. The input framework considers:

• Voters: A list where each element represents the preferences (subsets of candidates) of a
single voter.

• Candidates: A vector of all possible candidates. This vector is shuffled before processing to
enforce random tie-breaking across methods.

• Weights: A numeric vector specifying the influence of each voter. Equal weights indicate all
voters contribute equally; different weights can reflect varying voter importance.

The following methods are supported for ranking candidates:

• "av": Approval Voting (AV) ranks candidates based on the number of voters approving them.

• "sav": Satisfaction Approval Voting (SAV) ranks candidates by normalizing approval scores
based on the size of each voter’s approval set. Voters who approve more candidates contribute
a lesser score to the individual approved candidates.

• "seq_pav": Sequential Proportional Approval Voting (PAV) builds a committee by itera-
tively maximizing a proportionality-based satisfaction score. The PAV score is a metric that
calculates the weighted sum of harmonic numbers corresponding to the number of elected
candidates supported by each voter, reflecting the overall satisfaction of voters in a committee
selection process.

• "seq_phragmen": Sequential Phragmen’s Rule selects candidates to balance voter repre-
sentation by distributing "loads" evenly. The rule iteratively selects the candidate that results
in the smallest increase in voter load. This approach is suitable for scenarios where a balanced
representation is desired, as it seeks to evenly distribute the "burden" of representation among
all voters.

All methods have weighted versions which consider voter weights.

To allow for method-agnostic comparisons of rankings, we calculate the borda scores for each
method as:

sborda = (p− i)/(p− 1)

where p is the total number of candidates, and i is the candidate’s rank.

Value

A data.table::data.table with columns:

• "candidate": Candidate names.

• "score": Scores assigned to each candidate based on the selected method (if applicable).

4 rank_candidates

• "norm_score": Normalized scores (if applicable), scaled to the range [0, 1], which can be
loosely interpreted as selection probabilities (see Meinshausen et al. (2010) for an example
in Machine Learning research where the goal is to perform stable feature selection).

• "borda_score": Borda scores for method-agnostic comparison, ranging in [0, 1], where the
top candidate receives a score of 1 and the lowest-ranked candidate receives a score of 0.

Candidates are ordered by decreasing "score", or by "borda_score" if the method returns only
rankings.

References

Meinshausen, Nicolai, Buhlmann, Peter (2010). “Stability Selection.” Journal of the Royal Sta-
tistical Society Series B: Statistical Methodology, 72(4), 417–473. ISSN 1369-7412, doi:10.1111/
J.14679868.2010.00740.X, 0809.2932.

Lackner, Martin, Skowron, Piotr (2023). Multi-Winner Voting with Approval Preferences. Springer
Nature. ISBN 9783031090165, doi:10.1007/9783031090165, 2007.01795. “

Examples

5 candidates
candidates = paste0("V", seq_len(5))

4 voters
voters = list(

c("V3", "V1", "V4"),
c("V3", "V1"),
c("V3", "V2"),
c("V2", "V4")

)

voter weights
weights = c(1.1, 2.5, 0.8, 0.9)

Approval voting (all voters equal)
rank_candidates(voters, candidates)

Approval voting (voters unequal)
rank_candidates(voters, candidates, weights)

Satisfaction Approval voting (voters unequal, no borda score)
rank_candidates(voters, candidates, weights, method = "sav", borda_score = FALSE)

Sequential Proportional Approval voting (voters equal, no borda score)
rank_candidates(voters, candidates, method = "seq_pav", borda_score = FALSE)

Sequential Phragmen's Rule (voters equal)
rank_candidates(voters, candidates, method = "seq_phragmen", borda_score = FALSE)

https://doi.org/10.1111/J.1467-9868.2010.00740.X
https://doi.org/10.1111/J.1467-9868.2010.00740.X
https://doi.org/10.1007/978-3-031-09016-5

Index

data.table::data.table, 3

rank_candidates, 2

5

	rank_candidates
	Index

