Package ‘gbutils’

October 13, 2022
Type Package

Title Utilities for Simulation, Plots, Quantile Functions and
Programming

Version 0.5

Date 2022-05-27

Depends methods

Imports stats, utils, Rdpack (>=0.9)

Suggests testthat (>= 3.0.0), classGraph, graph, Rgraphviz
RdMacros Rdpack

Description Plot density and distribution functions with automatic selection of
suitable regions. Numerically invert (compute quantiles) distribution
functions. Simulate real and complex numbers from distributions of their
magnitude and arguments. Optionally, the magnitudes and/or arguments may
be fixed in almost arbitrary ways. Create polynomials from roots given in
Cartesian or polar form. Small programming utilities: check if an object
is identical to NA, count positional arguments in a call, set
intersection of more than two sets, check if an argument is unnamed,
compute the graph of S4 classes in packages.

URL https://github.com/GeoBosh/gbutils (devel),

https://geobosh.github.io/gbutils/ (website)

BugReports https://github.com/GeoBosh/gbutils/issues
License GPL (>=2)
Encoding UTF-8

Collate parse_text.R sim_numbers.R isSNA.R mintersect.R pad.R args.R
history.R cdf2qf.R S4utils.R pseudolnverse.R rpoly.R

Config/testthat/edition 3

NeedsCompilation no

Author Georgi N. Boshnakov [aut, cre]

Maintainer Georgi N. Boshnakov <georgi.boshnakov@manchester.ac.uk>
Repository CRAN

Date/Publication 2022-05-27 09:30:07 UTC

https://github.com/GeoBosh/gbutils
https://geobosh.github.io/gbutils/
https://github.com/GeoBosh/gbutils/issues

2 adjacencyOfClasses

R topics documented:

adjacencyOfClasses L 2
cdf2quantile 6
isargunnamed e e e 7
ISNA . e 9
MINEEISECT v o e e e e e e e e e e e 10
MISSING_ATZ o o e e e e e e e e e e e 11
000111 12
NPOSATZS « « ¢ v v v v e e e e e e e e e e e e e e e 13
PATSE_teXE . . o . o e e e e e e e e e e e e e e 14
plotpdf e 15
pseudolnverse L e e e e 17
raw_hiStory 17
TPOLY . o o 18
SIM_COMPIEX o o o e e e e e e e e e e 20
SIM_NUMDETS o v et e e e e e e e e e e e e e e e e e 22

Index 25

adjacencyOfClasses Adjacency graph of classes in packages
Description

Get inheritance graph of classes in one or more packages.

Usage

adjacencyOfClasses(packages, externalSubclasses = FALSE,
result = c("default”, "matrixOfPairs”, "adjacencyMatrix"),
Wolfram = FALSE)

Arguments
packages names of one or more packages, a character vector
externalSubclasses
if TRUE, exclude subtrees of classes not defined in any of the packages listed in
argument packages.
result format of the result, can be missing or one of "default”, "matrixOfPairs”,

"adjacencyMatrix”, see Details.

Wolfram if TRUE, print a suitable graph expression to be run by Mathematica, see Details.

adjacencyOfClasses 3

Details

adjacencyOfClasses computes a graph representation of the dependencies of S4 classes defined
in one or more packages (as specified by argument package) and returns a list. The contents of the
list returned by adjacencyOfClasses depend on argument result. Partial matching is used for
the value of argument result, e.g., "adj" is equivalent to "adjacencyMatrix".

If externalSubclasses = FALSE, the default, subclasses defined outside the requested packages
are excluded. This is typically what the user will be looking for. To get a complete tree, set
externalSubclasses to TRUE.

The S4 classes are represented by the vertices of the graph. Component "vertices” of the result
gives them as a character vector. References below to the ith class or vertex correspond to the order
in this vector. No attempt is made to arrange the vertices in a particular order. An empty list is
returned if this vector is empty.

If result is missing or "default”, the edges of the graph are represented by a character vector.
Each edge is represented by a string with an arrow "->" from a superclass to a subclass. Here is an
example that shows that this package defines one class, which is a subclass of "1ist":

adjacencyOfClasses("gbutils”)
##: $vertices
##: [1] "objectPad” "list”

##: $edges
##: [1] "list -> objectPad”

This illustrates the effect of argument "externalSubclasses”:

adjacencyOfClasses("gbutils”, externalSubclasses = TRUE)
##: $vertices
##: [1] "objectPad” "list” "vector”

##:. $edges
##: [1] "list -> objectPad” "vector -> list”

The edge, "vector -> list" was omitted in the previous example since this relationship is defined
elsewhere. This resulted in class "vector” being dropped also from the vertices, since it is not
defined in "gbutils"” and none of the remaining edges contains it.

If result is "matrix0fPairs”, the edges of the graph are represented by a character matrix with
two columns, where each row represents an edge from the element in the first column to the element
in the second. In this example there is one edge, so the matrix contains one row:

adjacencyOfClasses("gbutils”, result = "matrixOfPairs")
##: $vertices
##: [1] "objectPad” "list”

adjacencyOfClasses

##: $edges
##: [,11 [,21]
##: [1,] "list” "objectPad”

If result is "adjacencyMatrix”, the adjacency matrix of the graph is in component "AM" of the
returned list. Element (3, j) of this matrix is equal to one, if the jth class is a superclass to the ith.
In other words, the jth column gives the superclasses of the ith class. Here the element in position
(1,2) is non-zero, so "1list"” is the superclass of "objectPad":

adjacencyOfClasses("gbutils”, result = "adjacencyMatrix”)
##: $vertices
##: [1] "objectPad” "list”

##: $AM

#it: objectPad list
##: objectPad 0 1
##: list 0 0

Note that including the vertices in the result is not redundant, since some may not be in any edge.
This can happen if a class does not have any superclasses and subclasses.

As described above the result is not converted to a graph object but it can be fed to functions
provided by a number of R packages.

An additional option is to use argument Wolfram. If Wolfram is TRUE, a suitable Mathematica com-
mand is printed. It can be evaluated in a Mathematica session (e.g., by copy/paste) to produce a
graphical representation of the graph and/or be manipulated further by it. This feature is a side
effect, the return value of adjacencyOfClasses is as controlled by the other arguments. For ex-
ample, the return value below is as without argument "Wolfram” but, in addition, the printed line
defines a Wolfram language graph in terms of its vertices and edges:

adjacencyOfClasses("gbutils”, Wolfram = TRUE)
##: Graph[{objectPad,list}, {list -> objectPad}, VertexLabels -> Automatic]

##: $vertices
##: [1] "objectPad” "list”

##:. $edges
##: [1] "list -> objectPad”

Setting result = "adjacencyMatrix” in the last R command exports the graph in terms of its
adjacency matrix:

adjacencyOfClasses("gbutils”, Wolfram = TRUE, result = "adjacencyMatrix")
##: AdjacencyGraph[{objectPad,list}, {{0, 03},
##: {1, 0} }

adjacencyOfClasses 5

#i#:

#i:
#i#:

#i:
#i:
#i:
#i:

Value

, VertexLabels -> Automatic]
$vertices
[1] "objectPad” "list"

$AM

objectPad list
objectPad 0 1
list 0 0

a list with some of the following components (as described in Details):

vertices a character vector of S4 class names,

edges the edges of the graph, in the format controlled by argument results (not

AM

present when result is equal to "adjacencyMatrix"),

the adjacency matrix of the graph (present only when result is "adjacencyMatrix").

Author(s)

Georgi N. Boshnakov

References

Gentleman R, Whalen E, Huber W, Falcon S (2017). graph: A package to handle graph data
structures. R package version 1.56.0.

Hansen KD, Gentry J, Long L, Gentleman R, Falcon S, Hahne F, Sarkar D (2017). Rgraphviz:
Provides plotting capabilities for R graph objects. R package version 2.22.0.

Maechler M (2015). classGraph: Construct Graphs of S4 Class Hierarchies. (partly based on code
from Robert Gentleman) R package version 0.7-5, https: //CRAN.R-project.org/package=classGraph.

See Also

?methods: : classesToAM which is used for the main computation here,

Maechler (2015) for a suite of related functions. Gentleman et al. (2017) for creation and manipu-
lation of graphs, and Hansen et al. (2017) for visualisation of graphs.

Examples

adjacencyOfClasses("gbutils")
adjacencyOfClasses("gbutils”, TRUE)

adjacencyOfClasses("gbutils”, FALSE, "matrixOfPairs")
adjacencyOfClasses("gbutils”, TRUE, "matrixOfPairs")

adjacencyOfClasses("gbutils”, FALSE, "adjacencyMatrix")
adjacencyOfClasses("gbutils”, TRUE, "adjacencyMatrix")

https://CRAN.R-project.org/package=classGraph

6 cdf2quantile

as above, also represent the graph using the edges
adjacencyOfClasses("gbutils”, Wolfram = TRUE)
adjacencyOfClasses("gbutils”, TRUE, Wolfram = TRUE)

here the graph is represented by the adjacency matrix:
adjacencyOfClasses("gbutils”, FALSE, "adjacencyMatrix"”, Wolfram = TRUE)
adjacencyOfClasses("gbutils”, TRUE, "adjacencyMatrix"”, Wolfram = TRUE)

if(requireNamespace("graph”, quietly = TRUE) &&
requireNamespace("Rgraphviz”, quietly = TRUE)) withAutoprint({
another package
adjacencyOfClasses("graph”)
acl <- adjacencyOfClasses("graph”, FALSE, "adjacencyMatrix")
note the use of t() below
gr_acl <- graph::graphAM(adjMat = t(ac1$AM), edgemode = "directed”)
if(require("Rgraphviz"”, quietly = TRUE, warn.conflicts = FALSE))
plot(gr_acl)
more than one package
ac2 <- adjacencyOfClasses(c("graph”, "Rgraphviz"), FALSE, "adjacencyMatrix")
gr_ac2 <- graph::graphAM(adjMat = t(ac2$AM), edgemode = "directed”)

if(require("Rgraphviz"”, quietly = TRUE))
plot(gr_ac2)
b
cdf2quantile Calculate a quantile from a distribution function
Description

Numerically calculate a quantile from a distribution function.

Usage
cdf2quantile(p, cdf, interval = c(-3, 3), lower = min(interval),
upper = max(interval), ...)
Arguments
p a number in the interval (0,1).
cdf cumulative distribution function, a function.
interval interval in which to look for the root, see Details.
lower lower end point of the interval.
upper upper end point of the interval.

any further arguments to be passed to the root finding function and the cdf, see
Details.

isargunnamed 7

Details

The quantile, ¢, is computed numerically as the solution of the equation cdf (q) — p = 0.

Function uniroot is used to find the root. To request higher precision, set argument tol. Other
arguments in . . . are passed on to cdf.

uniroot needs an interval where to look for the root. There is a default one, which is extended
automatically if it does not contain the quantile. This assumes that argument cdf is an increasing
function (as it should be).

To override the default interval, use argument interval (a vector of two numbers) or lower and/or
upper. This may be necessary if the support of the distribution is not the whole real line and cdf
does not cope with values outside the support of the distribution.

Value

The computed quantile as a number.

Author(s)

Georgi N. Boshnakov

See Also
plotpdf

Examples

cdf2quantile(0.95, pnorm)
cdf2quantile(0.05, pexp) # support [0,Inf) is no problem for
cdf2quantile(@.05, plnorm) # for built-in distributions.

default predicision is about 4 digits after decimal point
cdf2quantile(@.95, pnorm, mean = 3, sd = 1)
cdf2quantile(@.05, pnorm, mean = 3, sd = 1)

gnorm(c(@.95, ©.05), mean = 3, sd = 1)

request a higher precision:

cdf2quantile(@.05, pnorm, mean = 3, sd = 1, tol = 1e-8)
cdf2quantile(@.05, pnorm, mean = 3, sd = 1, tol = 1e-12)
see also examples for plotpdf()

isargunnamed Is an element of a list named?

Description

Check if a component of a list is not named.

8 isargunnamed

Usage

isargunnamed(x, k)

Arguments

X a list.

k an integer, specifies a position in Xx.
Details

isargunnamed(x, k) returns TRUE if the k-th component of x is not named and FALSE otherwise.

Argument x is typically a list of arguments used in a call to a function, such as the one obtained by
list(...) inthe body of a function definition.

If k is not positive, isargunnamed returns FALSE.

Value

TRUE or FALSE

Author(s)

Georgi N. Boshnakov

See Also

match.call in base package

Examples

1i1 <- list(a=1, 2, 3)
isargunnamed(li1, 1)
isargunnamed(1lil, 2)

wholly unnamed list
li2 <- list(1, 2, 3)
isargunnamed(li2, 1)
isargunnamed(li2, 2)

using in a function definition
f1 <= function(...){
dots <- list(...)
for(i in seq(along=dots))
cat(i, isargunnamed(dots, i), "\n")

f1(1)
fi(a =3, 4, c =5)
FI(x = "a", y = "b")

isNA 9

isNA Check if an object is NA

Description

Check if an object is NA. Always return TRUE of FALSE, a logical vector of length one.

Usage

isNA(x)

Arguments

X any R object.

Details

isNA returns TRUE if the argument is a single NA, i.e. it is atomic, has length one, and represents
an NA value. In any other case isNA returns FALSE.

isNA is suitable for use in conditional constructs since it always returns a single value which is
never NA.

Note that identical() distinguishes different types of NA, i.e. identical(x, NA) is TRUE only
if x is NA (logical).

Value

TRUE or FALSE

Note

The requirement that x is atomic means that isNA(1ist(NA)) gives FALSE.

For comparison, is.na(list(NA)) gives TRUE. The same holds for classed lists, such as is.na(structure(list(NA),
class = "myclass")).

Author(s)

Georgi N. Boshnakov

See Also

isTRUE, is.na, identical

10 mintersect

Examples

v <= c(1, NA, 3)
isNA(v[2]) # TRUE

a vector of two or more Na's is not isNA
isNA(rep(NA,3)) # FALSE

a list containing NA is not isNA
isNA(list(NA)) # FALSE

... but

is.na(list(NA)) # TRUE

identical() distinguishes different types of NA:

"

class(v) # "numeric”, not "integer"”

identical(v[2], NA) # FALSE, NA on its own is "logical”
identical(v[2], NA_integer_) # FALSE
identical(v[2], NA_real.) # TRUE

vi <- c(1L, NA_integer_, 3L)
isNA(vi[2]) # TRUE

class(vi) # "integer”
identical(vi[2], NA_integer_) # TRUE
identical(vi[2], NA_real.) # FALSE

is.na(NULL) would give a warning
iSNA(NULL) # FALSE

a length zero object is not NA, so isNA() returns FALSE:
isNA(logical(@)) # FALSE

is.na() has a different remit and returns a @-length vector:
is.na(logical(@)) # logical(Q)

mintersect Set intersection of arbitrary number of arguments

Description

Set intersection of arbitrary number of arguments.

Usage

mintersect(...)

Arguments

arguments to be intersected, vectors of the same mode, see intersect.

missing_arg 11

Details

The base R function intersect is a binary operation. mintersect works with any positive number
of arguments.

If called with one argument, mintersect returns it. This is unlike intersect which gives an error
in this case.

Calling mintersect with no arguments is an error (as it is for intercect).

Value

a vector representing the intersection of the arguments

Author(s)

Georgi N. Boshnakov

Examples

mintersect(1:20, 3:18, 7:12)
mintersect(letters[1:20], letters[3:18], letters[7:12])
mintersect(1:4)

missing_arg Check if an element of a pairlist is missing

Description

Check if an element of a pairlist is missing.

Usage

missing_arg(arg)

Arguments

arg the object to test.

Details

The argument passed to missing_arg is typically an element of a pairlist or the list produced by
alist(). missing_arg returns TRUE if it is missing and FALSE otherwise.

Objects of type pairlist come up at R level almost exclusively as the formal arguments of func-
tions. missing_arg can be useful when they are manipulated programmatically.

Value

TRUE or FALSE

12 myouter

Author(s)

Georgi N. Boshnakov

Examples

1lmargs <- formals(1lm)

class(lmargs) # pairlist

missing_arg(lmargs$data)

which arguments of 1m() have no (explicit) defaults?
sapply(lmargs, missing_arg)

This gives an error:
pairlist(x =3, y =, z =5)

an example with alist()

pl2 <- alist(a ="", b=, ¢c =3)

class(pl2) # list

this shows that 'b' is missing, 'a' and 'c' are not:
sapply(pl2, missing_arg) # FALSE TRUE FALSE

superficially, 'b' is equal to the empty string:
pl2[[2]1]

sapply(pl2, function(x) x == "") # TRUE TRUE FALSE

with pairlist the results are the same:

g <- function(a = "", b, ¢ = 3) NULL

a.g <- formals(g)

class(a.g) # pairlist

sapply(a.g, missing_arg) # FALSE TRUE FALSE

a.gll21]
sapply(a.g, function(x) x == "") # TRUE TRUE FALSE
myouter Functions for some basic operations
Description

Small utility functions

Usage

myouter(x, y, fun)
shiftleft(x, k = 1)
shiftright(x, k = 1)

Arguments
X a vector.
y a vector.
k a non-negative integer.

fun a function, see ‘Details’.

nposargs 13

Details

myouter(x,y, fun) computes the outer product of x and y using the function fun. The result is a
matrix with (¢, j)th element equal to fun(x[1],y[j1). It is not required for fun to be able to work
with vector arguments. The function does the computations in R using a simple double loop. So, it
is a convenience function, not a speed improving one.

shiftright(x,k) rotates the vector x k positions to the right.
shiftleft(x,k) rotates the vector x k positions to the left.

Value

for myouter, a matrix, as described in ‘Details’

for shiftleft and shiftright, a vector

Author(s)

Georgi N. Boshnakov

nposargs Function to count the number of positional arguments used in a call

Description

Calculates the number of positional arguments used in a call.

Usage

nposargs(x, a = FALSE)

Arguments

X a call object, usually obtained from sys.call().

a if a[1] is TRUE make a correction to distinguish x[] from x[i1], see details.
Details

nposargs is mainly for use in the body of function definitions, paricularly for functions or methods
that wish to mimic the behaviour of "[".

nposargs gives the number of positional arguments used in a call. It also takes into account empty
arguments like those used in expressions like x[1, J.

Optionally, it makes a particular correction that is peculiar for "[" - if there are no named arguments
in the call and the count of the arguments is 2 and a[1]=TRUE, it decreases the count by one, i.e.
returns 1. This is to distinguish between a x[] and x[i] which both would give 2 otherwise. I have
forgotten the details but, roughly speaking, x[i] becomes "["(x,i) while x[] becomes "["(x,), i.e. R
puts the comma after x in any case.

14 parse_text

Value

the number of positional arguments in the call

Note

I wrote this function (a long time ago) for use in methods for "[".

a[1] above is typically obtained by a call missing (i) somewhere at the beginning of the function.
In my application I put the results of several such calls in a vector, hence the check for a[1] rather
than a, For "[", we may set a = c(missing(i), missing(j), missing(k)).

Author(s)

Georgi N. Boshnakov

Examples

f <- function(x,y,z,...){
call <- sys.call()

nposargs(call)

}

f(a,b,c) # 3
fa, ,) #3
f(a,) #2
f(a) # 1
(G,) # 2
f(, a,) #3
O # 0

parse_text Parse expressions residing in character vectors
Description

Parse expressions residing in character vectors. Similar to parse() but keeping or not the source is
controlled by an argument rather than global options.

Usage
parse_text(text, ..., keep = TRUE)
Arguments
text the text to parse, normally a character vector but can be anything that parse

accepts for this artgument.
additional arguments to be passed on to parse.

keep required setting for option keep. source, see details.

plotpdf 15

Details

This is like parse(text=text, ...), except that whether or not the source is kept is controlled by
argument keep, not by options("keep.source”).

parse_text sets options("keep.source”) to keep (if they are different) before calling parse
and restores it afterwards.
Value

an expression representing the parsed text, see parse for details

Note

The usual setting of option "keep.source" in interactive sessions is TRUE. However, in ‘R CMD
check’ it is FALSE.

As a consequence, if the documentation of a package uses functions that depend on option "keep.source"
being TRUE, then some examples may run fine when copied and pasted in an R session but (rightly)
fail ‘R CMD check’.

The oposite may also happen, in that the documentation passes ‘R CMD check’ or Sweave files
successfully build but some examples do not work when copied and pasted in an interactive session.

Author(s)

Georgi N. Boshnakov

See Also

parse

plotpdf Plot a probability denstity function

Description

Plot a probability denstity function with x-axis limits determined by quantiles of the distribution.
Quantiles are computed using a quantile function or cumulative distribution function, whichever is
supplied.

Usage

plotpdf (pdf, qdf, cdf, 1g = 0.01, ug = 0.99, ...)

16 plotpdf

Arguments
pdf probability density to be plotted, a function.
qdf quantile function to be used for computation of quantiles, a function.
cdf cumulative distribution function to be used for computation of quantiles, a func-
tion. This argument is used if qdf is not given, see ‘Details’ section.
1q lower quantile, used in the computation of the left limit.
uq upper quantile, used in the computation of the right limit.
additional arguments to be passed on to the plot function.
Details

The function plots pdf (x) over the interval (xmin,xmax) where xmin and xmax are the 1qth and
ugth quantiles, respectively, of the distribution. The quantile function, qdf, is used, if supplied.
Otherwise the quantiles are computed numerically from the cdf.

Argument pdf is not required to be a pdf, it may be any function. For example, the same way of
choosing the limits may be appropriate for a plot of the cdf, see the examples.

Similarly, qdf and cdf need not be related to pdf.

Author(s)

Georgi N. Boshnakov

See Also

cdf2quantile

Examples

pdf1 <- function(x) dnorm(x, mean = 100, sd = 5)
qdf1 <- function(x) gnorm(x, mean = 100, sd = 5)
cdf1 <- function(x) pnorm(x, mean = 100, sd = 5)

plot(pdf1) # needs to specify 'from' and 'to' args for meaningful plot

plotpdf (pdf1, qdf1) # using quantile function
plotpdf (pdf1, cdf = cdf1) # using cdf

plotpdf (pdf1, cdf = cdf1, 1q = 0.001, ug = 0.999) # ... and non-default quantiles

plotpdf (cdf1, cdf = cdf1, 1q = 0.001, ug = 0.999) # plot a cdf

a mixture distribution:
pf1 <= function(x){
0.25 * pnorm(x, mean = 3, sd = 0.2) + 0.75 * pnorm(x, mean = -1, sd = 0.5)
3
df1 <- function(x){
0.25 * dnorm(x, mean =

1
w
(%]
o

I

0.2) + 0.75 * dnorm(x, mean = -1, sd = 0.5)
3

pseudolnverse 17

plotpdf(df1, cdf = pfl1) # plot the pdf
plotpdf(pf1, cdf = pf1) # plot the cdf

c(cdf2quantile(@.05, pf1), cdf2quantile(@.95, pf1))

pseudolnverse Compute a pseudo-inverse matrix

Description
Compute a pseudo-inverse matrix using singular value decomposition and setting very small singu-
lar values to zero.

Usage

pseudoInverse(a, tol = 1e-07)

Arguments

a a matrix

tol a number, the threshold for non-zero singular values.
Details

The singular value decomposition of a is computed and singular values smaller than tol are set to
zero. The result is formed using the standard formula.

Value

a matrix

Examples

##---- Should be DIRECTLY executable !! ----

raw_history Get the command history

Description

Get the command history.

Usage

raw_history()

18 rpoly

Details
The command history is saved to a temporary file with savehistory and read back into a character
vector.

Value

a character vector

Author(s)
Georgi N. Boshnakov

Examples

Not run:
hist <- raw_history()
length(hist)

End(Not run)

rpoly Polynomials with real coefficients

Description

Compute the coefficients of a polynomial with real coefficients, given its real zeroes (roots) and one
representative for each complex pair. If complex numbers are given in polar form, there is an option
to specify the complex arguments as multiples of 7.

Usage

rpoly(x = numeric(@), arg = numeric(@), real = numeric(@), argpi = FALSE,
monic = TRUE)

Arguments

X if complex, the roots (including the real ones), otherwise the moduli of the com-
plex roots of the polynomial. In both cases only one representative for each
complex pair should be included.

arg the complex arguments corresponding to the moduli in x. This argument is not
needed when x is complex.

real the real roots of the polynomial. This argument is not needed when x is complex.

argpi if TRUE, then arg represents the complex arguments as a multiple of 7, see sec-
tion ‘Details’. The default is FALSE.

monic if TRUE, the default, the coefficient of the highest term of the polynomialis is set

to 1. if FALSE, the constant term is one.

rpoly 19

Details

The complex zeroes of polynomials with real coefficients come in complex conjugated pairs. Only
one representative from each pair should be supplied to rpoly. The other is added automatically.
Of course, all real roots should be supplied, if any.

If x is complex, it should contain all real roots and one representative for each comple pair.

Otherise, if x is not complex, it contains the moduli of the numbers and arg contains the complex

arguments. The two should be of equal length.

With the default FALSE for argpi, the k-th root of the polynomial is x[k]*cos(argl[k]) + ixx[k]*sin(arg[k]).
If argpi is TRUE it is x[kJxcos(pi*arg[k]) + ixx[kJ*sin(pixargl[k]).

By default, a monic polinomial (the coefficient of the highest order term is 1) is created but if monic

is FALSE, the constant term of the polynomial is setto 1 .

The options for argpi = TRUE and/or monic = FALSE are convenient in some applications, e.g., time
series analysis and digital signal processing.

Value

a real vector containing the coefficients of the polynomial.

Note

When argpi is TRUE, cos(ma) is computed using cospi(a). So this may differ slightly from
the equivalent result obtained with argpi = FALSE and b = pixa, which is computed as cos(b)
= cos(pix*a), see the example.

Author(s)

Georgi N. Boshnakov

See Also

sim_numbers

Examples

z-1
rpoly(real = 1)

roots 1, i, -i; p3(z2) = (z-1)(z-1)(z+i)
p3 <- rpoly(c(1, 1i))

p3

polyroot(p3)

using polar for the complex roots (i = e*(i pi/2))

p3a <- rpoly(1, pi/2, real = 1)

p3a

mathematically, p3a is the same as p3

but the numerical calculation here gives a slight discrepancy
p3a == p3

p3a - p3

20 sim_complex

using argpi = TRUE is somewhat more precise:
p3b <- rpoly(1, 1/2, real = 1, argpi = TRUE)

p3b
p3b == p3
p3b - p3

indeed, in this case the results for p3b and p3 are identical:
identical(p3b, p3)

two ways to expand (z - 2xexp(i*pi/4))(z - 2*xexp(-ixpi/4))
rpoly(2, pi/4)
rpoly(2, 1/4, argpi = TRUE)

set the constant term to 1; can be used, say, for AR models
rpoly(2, pi/4, monic = FALSE)
rpoly(2, 1/4, argpi = TRUE, monic = FALSE)

sim_complex Simulate real or complex numbers using polar form

Description

Simulate complex numbers with given distributions for the modulus and the argument and real
numbers with given distributions for the absolute value and the sign. Some of the values may be
partially or fully specified.

Usage
sim_complex(abs, arg, absgen = "runif"”, absarg = list(o, 1),
arggen = runif, argarg = list(-pi, pi), ...)
sim_real(abs, sign, signprob = 0.5, absgen = "runif”,
absarg = list(o, 1), ...)
Arguments
abs vector of absolute values.
sign vector of signs (1 or -1).
signprob probability for a positive sign.
arg vector of arguments (of complex numbers).
absgen generator for the absolute values, a function or a character string naming a func-
tion.
absarg arguments for absgen.
arggen generator for the arguments of the complex numbers, a function or a string nam-
ing a function.
argarg arguments for arggen.

not used, simplifies the call from sim_numbers.

sim_complex 21

Details

sim_real simulates real numbers by simulating separately their absolute values and signs. sim_complex
simulates complex numbers by simulating separately their moduli and arguments.

Both functions replace NA’s in argument abs with values simulated by the function specified by
absgen. Arguments for absgen are specified by the (possibly named) list absarg.

Similarly, sim_complex replaces NA’s in argument arg with values simulated according to arggen
and argarg.

Further, sim_real replaces NA’s in argument sign with a random sample of ones and minus ones,
where the probability for the positive value is signprob.

Only NA entries in abs, arg and sign are filled with simulated values, the remaining entries are left
unchanged. This means that some (and even all) values may be specified partially or completely.

abs is combined with arg or sign to create the result. These arguments are expected to be of
matching shape and length but this is not enforced and the usual recycling rules will apply if this is
not the case (not recommended to rely on this).

The default range for the (complex) argument is (-pi,pi).

Value

for sim_real, a vector of real numbers

for sim_complex, a vector of complex numbers

Note

Currently the shape of the result for sim_real is the same as that of argument abs. But sim_complex
always returns a vector. Probably this inconsistency should be removed.

Author(s)

Georgi N. Boshnakov

See Also

sim_numbers which offers more flexible interface to these functions.

Examples

x[1] is fixed to 1, x[2] is negative with random magnitude:
x <= sim_real(c(1,NA,NA;NA), c(1, -1, NA, NA))

z[1] fixed to 1, the remaining elements of z
have random magnitude and fixed arguments:
z <- sim_complex(c(1,NA,NA,NA), c(@, pi/2, pi, -pi/2))

without restrictions
sim_complex(rep(NA,4))
sim_real(rep(NA,4))

moduli unrestricted; arguments restricted

22 sim_numbers

sim_complex(rep(NA,4), c(0, pi/2, pi, -pi/2))

sim_numbers Simulation based on polar form specifications

Description

Simulate real and complex numbers from polar form specifications. The numbers may be partially
or fully specified. The distributions of absolute values and arguments/signs are specified indepen-
dently.

Usage

sim_numbers(type = rep(as.character(NA), length(abs)),
abs = rep(as.numeric(NA), length(type)),

sign = rep(as.numeric(NA), length(type)), values = NULL, ...)
Arguments
type character vector specifying the types of the eigenvalues, see Details.
abs vector of absolute values (moduli).
sign vector of signs (for reals) and arguments (for complex numbers), see Details for
interpretation.
values values, see details.
additional arguments to be passed to sim_real and sim_complex.
Details

sim_numbers simulates a vector of real and complex numbers with given distributions of their polar
parts. It is possible also to fix some of the numbers or one of their polar parts. The length of the
simulated vector is inferred from the length of type or abs, so one of them must be provided.
sim_numbers is a flexible front-end for sim_real and sim_complex.

sim_numbers generates a vector of values with types specified by argument type and/or inferred
from argument values. The recommended way to use sim_numbers is to provide argument type.

typel[i] specifies the type of the i-th element of the result: real (type[i]=="r"), complex (type[i]l=="c")
or representing a complex conjugate pair (type[i]=="cp"). If values is provided, the imaginary
parts of its non-NA elements are used to fill NA elements of type ("r" if zero, "cp" otherwise).

Some (or even all) values may be fixed or partially fixed with the help of arguments abs, sign
and values. A non-missing value of values[i] fixes the i-th element of the result to that value.
Simlarly abs[i] fixes the modulus and sign[i] fixes the sign/argument of the i-th element. If
values[i] is not NA, then it takes precedence and abs[i] and sign[i] are ignored.

For real numbers sign is the sign with possible values 1 (positive) or -1 (negative). For complex
numbers, sign is the argument and is in the interval (-pi,pi).

n_.n

If values is supplied, then NA entries in type are replaced by "r" or "cp" depending on whether or
not the imaginary parts of the corresponding entries in values are equal to zero. A check is done

sim_numbers 23

for consistency when both type[i] and values[i] are non-missing. Generally, values is meant
to be used for values that are fixed and available directly in Cartesian form, to avoid having to fill
the corresponding entries of abs and sign.

NA entries of abs and sign are filled with simulated values, the remaining entries are considered
fixed and left unchanged. The default generator is uniform (0,1) for abs, uniform (-pi,pi) for the
argument of complex values, and 1 or -1 with p=1/2 for the sign of real values.

To specify a different generator for the moduli and absolute values, use argument absgen, giving it
a function or the name of a function. The arguments for this function can be specified by absarg (as
a list). Similarly, the generator for arguments of complex numbers can be specified by arggen and
argarg. Finally, the probability for the real numbers to be positive is given by signprob. These
arguments are not in the signature of the function since they are passed on directly (via "...") to
the underlying sim_complex and sim_real, see their documentation and the examples below for
further details.

Value

a list with components

values vector of values; it is of type numeric if all values are real and complex other-
wise.
type a character vector of the types as above
Note

Values of type "cp" (complex pairs) are represented by one element, the complex conjugate elements
are NOT generated. (todo: maybe add an argument to control this)

The convention for the sign of a real eigenvalue is 1 and -1, not O and pi.

The checks for consistency between type and values are not complete and only straightforward
use is recommended.

The current defaults for the arguments, see the signature above, require that at least one of type and
abs is not missing.

Author(s)

Georgi N. Boshnakov

See Also

sim_real , sim_complex

Examples

one real number and one complex conjugated pair
(maybe to specify a cubic polynomial through its roots)
sim_numbers(type = c("r", "cp”))

here the real value is fixed to have modulus 1, leaving the sign unspecified
sim_numbers(type = c("r", "cp"), abs = c(1, NA))

24

sim_numbers

now the real value is fixed to 1,
#i the complex pair has argument +-pi/2, and free modulus:
sim_numbers(type = c("r", "cp"), abs = c(1, NA), sign = c(@, pi/2))

using argument 'values' to fix some values;

here the the third value is fixed:

sim_numbers(type = c("r", "cp”, "r"), values = c(NA,NA,3)) # type[3] = "r"
sim_numbers(type = c("r", "cp"”, "cp"), values = c(NA,NA,3i)) # type[3] = "cp”

type[3] can be left NA since it can be inferred from values[3]:
sim_numbers(type = c("r", "cp”, NA), values = c(NA,NA,3)) # type[3] = "r"
sim_numbers(type = c("r", "cp”, NA), values = c(NA,NA,3i)) # type[3] "cp”

it is an error to have a mismatch between args ‘type' and value:
Not run:

sim_numbers(type = c("r", "cp"”, "cp"), values = c(NA,NA,3))
sim_numbers(type = c("r", "cp", "r"), values = c(NA,NA,3i))

"”

End(Not run)

simulate 10 reals with the default generators
sim_numbers(rep("r”, 10))

simulate modulus from Rayleigh distribution

##

rR <- function(n, sigma = 1) sigma * sqrt(-2*log(runif(n)))
sim_numbers(type = c("cp”, "cp"), absgen = rR, absarg = list())

test the the components are N(0,1)

(not run to save time for CRAN check)

\dontrun{

v <- sim_numbers(type = rep(”cp”, 10000), absgen = "rR",
#it absarg = list(sigma = 1))

ks.test(Re(v$values), "pnorm")

ks.test(Im(v$values), "pnorm")

#H }

Index

x NA
isNA, 9

* S4classes
adjacencyOfClasses, 2

* distribution
cdf2quantile, 6
sim_complex, 20
sim_numbers, 22

+ dplot
plotpdf, 15

+ hplot
plotpdf, 15

* logic
isNA, 9

* manip
isNA, 9

+« math
pseudoInverse, 17

* programming
adjacencyOfClasses, 2
isargunnamed, 7
mintersect, 10
missing_arg, 11
myouter, 12
nposargs, 13
parse_text, 14
raw_history, 17

+ simulation
sim_complex, 20
sim_numbers, 22

adjacencyOfClasses, 2
cdf2quantile, 6, 16

identical, 9
is.na, 9
isargunnamed, 7
isNA, 9
isTRUE, 9

25

match.call, 8
mintersect, 10
missing_arg, 11
myouter, 12

nposargs, 13

parse, 15
parse_text, 14
plotpdf, 7, 15
pseudoInverse, 17

raw_history, 17
rpoly, 18

shiftleft (myouter), 12
shiftright (myouter), 12
sim_complex, 20, 23
sim_numbers, 19, 21,22
sim_real, 23

sim_real (sim_complex), 20

	adjacencyOfClasses
	cdf2quantile
	isargunnamed
	isNA
	mintersect
	missing_arg
	myouter
	nposargs
	parse_text
	plotpdf
	pseudoInverse
	raw_history
	rpoly
	sim_complex
	sim_numbers
	Index

