Package ‘geocmeans’

September 12, 2023

Type Package

Title Implementing Methods for Spatial Fuzzy Unsupervised
Classification

Version 0.3.4
Maintainer Jeremy Gelb <jeremy.gelb@ucs.inrs.ca>

Imports ggplot2 (>=3.2.1), tmap (>= 3.3-1), spdep (>= 1.1.2), reldist
(>=1.6.6), dplyr (>= 0.8.3), fclust (>=2.1.1), fmsb (>=
0.7.0), future.apply (>= 1.4.0), progressr (>= 0.4.0), reshape2
(>=1.4.4), stats (>=3.5), grDevices (>= 3.5), shiny (>=
1.6.0), st (>=1.0-6), leaflet (>=2.1.1), plotly (>=4.9.3),
Rdpack (>=2.1.1), matrixStats (>= 0.58.0), methods (>= 3.5),
terra (>= 1.6-47), Repp (>=1.0.6)

Depends R (>=3.5)

Suggests knitr (>= 1.28), rmarkdown (>=2.1), markdown (>= 1.1),
future (>= 1.16.0), ppclust (>= 1.1.0), ClustGeo (>=2.0), car
(>=3.0-7), rgl (>=0.100), ggpubr (>= 0.2.5), RColorBrewer (>=
1.1-2), kableExtra (>= 1.1.0), viridis (>= 0.5.1), testthat (>=
3.0.0), bslib (>= 0.2.5), shinyWidgets (>= 0.6), shinyhelper
(>=0.3.2), waiter (>= 0.2.2), classInt(>= 0.4-3), covr

License GPL-2
Encoding UTF-8
LazyData true
RoxygenNote 7.2.3
VignetteBuilder knitr

Description Provides functions to apply spatial fuzzy unsupervised classification, visualize and inter-
pret results. This method is well suited when the user wants to analyze data with a fuzzy cluster-
ing algorithm and to account for the spatial dimension of the dataset. In addition, indexes for es-
timating the spatial consistency and classification quality are proposed.
The methods were originally proposed in the field of brain im-
agery (seed Cai and al. 2007 <doi:10.1016/j.patcog.2006.07.01 1> and Zaho and al. 2013 <doi:10.1016/j.dsp.2012.09.016>)
cently applied in geography (see Gelb and Apparicio <doi:10.4000/cybergeo.36414>).

URL https://github.com/JeremyGelb/geocmeans

1

https://doi.org/10.1016/j.patcog.2006.07.011
https://doi.org/10.1016/j.dsp.2012.09.016
https://doi.org/10.4000/cybergeo.36414
https://github.com/JeremyGelb/geocmeans

2 R topics documented:

BugReports https://github.com/JeremyGelb/geocmeans/issues
RdMacros Rdpack

LinkingTo Rcpp, ReppArmadillo

SystemRequirements C++17

Language en-CA

NeedsCompilation yes

Author Jeremy Gelb [aut, cre] (<https://orcid.org/0000-0002-7114-2714>),
Philippe Apparicio [ctb] (<https://orcid.org/0000-0001-6466-9342>)

Repository CRAN
Date/Publication 2023-09-12 03:10:02 UTC

R topics documented:

adjustSpatialWeights 3
Arcachon L e 4
barPlots e e e e 5
boot_group_validation 5
boot_group_validation.mc e 7
calcCalinskiHarabasz e 9
calcDaviesBouldin e 10
calcELSA e 11
calcexplainedInertia 12
calcFukuyamaSugeno 13
calcFuzzyELSA e 14
calcGD43 . . . e 15
calcGDS53 e e 16
calcNegentropyl L 17
calcqualityIndexes e 18
calcSilhouetteldx 19
calcUncertaintyIndex L o 20
calc_local_moran_raster e e e e e e 21
calc_MOran_Taster v v e e e e e e e e 21
cat_to_belongings L 22
circular_ window e e 22
CMeans e e 23
GCMeans v o e e e e e e e e 25
groups_matching L e 27
IS FCMres o e 28
Lyonlris 29
mapClusters e e e e e 30
PlotFCMres o e 31
predict FCMres 32
predict_membership oL oo 33
print FCMres e e e e e e 34

select_parameters oL e e e e 35

https://github.com/JeremyGelb/geocmeans/issues
https://orcid.org/0000-0002-7114-2714
https://orcid.org/0000-0001-6466-9342

adjustSpatial Weights 3
select_parameters.mCo e e e e e e e e e e e e e e e e e 38
SFCMeans e e 41
SGFCMeans o e e e e e e 44
spatialDiag e e e 47
SPCONSISENCY . .« . v v v vt et e e e 48
spiderPlots 50
sp_clust_explorer L e e e 51
standardizer L L e e e e e e e 52
summarizeClusters e e e 52
summary.FCMres e e 53
uncertaintyMap L e e 54
undecidedUnits L 55
violinPIots e e e 56

Index 57

adjustSpatialWeights Semantic adjusted spatial weights

Description

Function to adjust the spatial weights so that they represent semantic distances between neighbours

Usage

adjustSpatialWeights(data, listw, style, mindist = 1e-11)

Arguments
data
listw
style

mindist

Value

A dataframe with numeric columns
A nb object from spdep
A letter indicating the weighting scheme (see spdep doc)

A minimum value for distance between two observations. If two neighbours
have exactly the same values, then the euclidean distance between them is O,
leading to an infinite spatial weight. In that case, the minimum distance is used
instead of 0.

A listw object (spdep like)

4 Arcachon

Examples

data(LyonIris)

AnalysisFields <-c("”Lden",”N02","PM25","VegHautPrt”, "Pct@_14","Pct_65","Pct_Img",
"TxChom1564","Pct_brevet"”,”"NivVieMed")

dataset <- sf::st_drop_geometry(LyonIris[AnalysisFields])

queen <- spdep::poly2nb(LyonIris,queen=TRUE)

Wqueen <- spdep::nb2listw(queen,style="W")

Wqueen2 <- adjustSpatialWeights(dataset,queen,style="C")

Arcachon SpatRaster of the bay of Arcachon

Description

A Landsat 8 image of the bay of Arcachon (France), with a resolution of 30mx30m and 6 bands:
blue, green, red, near infrared, shortwave infrared 1 and shortwave infrared 2. The dataset is saved as
a Large RasterBrick with the package raster and has the following crs: EPSG:32630. It is provided
as a tiff file.

Usage

load_arcachon()

Format
A spaRast with 6 bands
blue wavelength: 0.45-0.51
green wavelength: 0.53-0.59
red wavelength: 0.64-0.67
near infrared wavelength: 0.85-0.88
shortwave infrared wavelength: 1.57-1.65

shortwave infrared wavelength: 2.11-2.29

Source

https://earthexplorer.usgs.gov/

Examples

loading directly from file
Arcachon <- terra::rast(system.file("extdata/Littoral4_2154.tif", package = "geocmeans"))
names(Arcachon) <- c("blue”, "green”, "red", "infrared”, "SWIR1", "SWIR2")

loading with the provided function
Arcachon <- load_arcachon()

https://earthexplorer.usgs.gov/

barPlots

barPlots Bar plots

Description

Return bar plots to compare groups

Usage

barPlots(data, belongmatrix, ncol = 3, what = "mean”)
Arguments

data A dataframe with numeric columns

belongmatrix A membership matrix

ncol An integer indicating the number of columns for the bar plot
what Can be "mean" (default) or "median"
Value

a barplot created with ggplot2

Examples

Not run:

data(LyonIris)

AnalysisFields <-c("”Lden”,"NO2","PM25","VegHautPrt”,"Pct@_14","Pct_65","Pct_Img",
"TxChom1564","Pct_brevet"”,"NivVieMed")

dataset <- sf::st_drop_geometry(LyonIris[AnalysisFields])

queen <- spdep::poly2nb(LyonIris,queen=TRUE)

Wgueen <- spdep::nb2listw(queen,style="W")

result <- SFCMeans(dataset, Wqueen,k = 5, m = 1.5, alpha = 1.5, standardize = TRUE)
barPlots(dataset, result$Belongings)

End(Not run)

boot_group_validation Check the robustness of a classification by Bootstrap

Description

Check that the obtained groups are stable by bootstrap

6 boot_group_validation

Usage
boot_group_validation(
object,
nsim = 1000,
maxiter = 1000,
tol = @.01,
init = "random”,
verbose = TRUE,
seed = NULL
)
Arguments
object A FCMres object, typically obtained from functions CMeans, GCMeans, SFCMeans,
SGFCMeans
nsim The number of replications to do for the bootstrap evaluation
maxiter An integer for the maximum number of iterations
tol The tolerance criterion used in the evaluateMatrices function for convergence
assessment
init A string indicating how the initial centres must be selected. "random" indicates
that random observations are used as centres "kpp" use a distance-based method
resulting in more dispersed centres at the beginning. Both of them are heuristic.
verbose A boolean to specify if the progress bar should be displayed.
seed An integer used for random number generation. It ensures that the starting cen-
tres will be the same if the same value is selected.
Details

Considering that the classification produced by a FCM like algorithm depends on its initial state, it
is important to check if the groups obtained are stable. This function uses a bootstrap method to do
so. During a selected number of iterations (at least 1000), a sample of size n (with replacement) is
drawn from the original dataset. For each sample, the same classification algorithm is applied and
the results are compared with the reference results. For each original group, the most similar group
is identified by calculating the Jaccard similarity index between the columns of the two membership
matrices. This index is comprised between 0 (exact difference) and 1 (perfect similarity) and a value
is calculated for each group at each iteration. One can investigate the values obtained to determine
if the groups are stable. Values under 0.5 are a concern and indicate that the group is dissolving.
Values between 0.6 and 0.75 indicate a pattern in the data, but a significant uncertainty. Values
above 0.8 indicate strong groups. The values of the centres obtained at each iteration are also
returned, it is important to ensure that they approximately follow a normal distribution (or are at
least unimodal).

Value

A list of two values: group_consistency: a dataframe indicating the consistency across simulations
each cluster ; group_centres: a list with a dataframe for each cluster. The values in the dataframes
are the centres of the clusters at each simulation.

boot_group_validation.mc

Examples

Not run:
data(LyonIris)

#tselecting the columns for the analysis
AnalysisFields <-c("”Lden","”N02","PM25","VegHautPrt”, "Pcto_14",
"Pct_65","Pct_Img","TxChom1564","Pct_brevet"”, "NivVieMed")

#rescaling the columns
Data <- sf::st_drop_geometry(LyonIris[AnalysisFields])
for (Col in names(Data)){
Data[[Col]] <- as.numeric(scale(Data[[Col]l]))
}

Cmean <- CMeans(Data,4,1.5,500,standardize = FALSE, seed = 456,
tol = 0.00001, verbose = FALSE)

validation <- boot_group_validation(Cmean, nsim = 1000, maxiter = 1000,
tol = 0.01, init = "random")

End(Not run)

boot_group_validation.mc
Check that the obtained groups are stable by bootstrap (multicore)

Description

Check that the obtained groups are stable by bootstrap with multicore support

Usage
boot_group_validation.mc(
object,
nsim = 1000,
maxiter = 1000,
tol = 0.01,
init = "random"”,
verbose = TRUE,
seed = NULL
)
Arguments
object A FCMres object, typically obtained from functions CMeans, GCMeans, SFCMeans,
SGFCMeans
nsim The number of replications to do for the bootstrap evaluation

maxiter An integer for the maximum number of iterations

8 boot_group_validation.mc

tol The tolerance criterion used in the evaluateMatrices function for convergence
assessment
init A string indicating how the initial centres must be selected. "random" indicates

that random observations are used as centres. "kpp" use a distance based method
resulting in more dispersed centres at the beginning. Both of them are heuristic.

verbose A boolean to specify if the progress bar should be displayed.
seed An integer to control randomness, default is NULL
Details

For more details, see the documentation of the function boot_group_validation

Value

A list of two values: group_consistency: a dataframe indicating the consistency across simulations
each cluster ; group_centres: a list with a dataframe for each cluster. The values in the dataframes
are the centres of the clusters at each simulation.

Examples

Not run:
data(LyonIris)

#selecting the columns for the analysis
AnalysisFields <-c("”Lden”,"NO2","PM25","VegHautPrt", "Pct0_14",
"Pct_65","Pct_Img","TxChom1564","Pct_brevet”,"NivVieMed")

#rescaling the columns
Data <- sf::st_drop_geometry(LyonIris[AnalysisFields])
for (Col in names(Data)){
Data[[Col]] <- as.numeric(scale(Data[[Col]l]))
3

Cmean <- CMeans(Data,4,1.5,500,standardize = FALSE, seed = 456,
tol = 0.00001, verbose = FALSE)

future: :plan(future::multisession(workers=2))

validation <- boot_group_validation.mc(Cmean, nsim = 1000, maxiter = 1000,
tol = 0.01, init = "random")

make sure any open connections are closed afterward

if (!'inherits(future::plan(), "sequential”)) future::plan(future::sequential)

End(Not run)

calcCalinskiHarabasz 9

calcCalinskiHarabasz Calinski-Harabasz index

Description

Calculate the Calinski-Harabasz index of clustering quality.

Usage

calcCalinskiHarabasz(data, belongmatrix, centers)

Arguments

data The original dataframe used for the clustering (n*p)
belongmatrix A membership matrix (n*k)

centers The centres of the clusters

Details

The Calinski-Harabasz index (Da Silva et al. 2020) is the ratio between the clusters separation
(between groups sum of squares) and the clusters cohesion (within groups sum of squares). A
greater value indicates either more separated clusters or more cohesive clusters.

Value

A float: the Calinski-Harabasz index

References

Da Silva LEB, Melton NM, Wunsch DC (2020). “Incremental cluster validity indices for online
learning of hard partitions: Extensions and comparative study.” IEEE Access, 8, 22025-22047.

Examples

data(LyonIris)

AnalysisFields <-c("”Lden",”N02","PM25","VegHautPrt"”, "Pct@_14","Pct_65","Pct_Img",
"TxChom1564","Pct_brevet”, "NivVieMed")

dataset <- sf::st_drop_geometry(LyonIris[AnalysisFields])

queen <- spdep::poly2nb(LyonIris,queen=TRUE)

Wgueen <- spdep::nb2listw(queen,style="W")

result <- SFCMeans(dataset, Wqueen,k = 5, m = 1.5, alpha = 1.5, standardize = TRUE)
calcCalinskiHarabasz(result$Data, result$Belongings, result$Centers)

10 calcDaviesBouldin

calcDaviesBouldin Davies-Bouldin index

Description

Calculate the Davies-Bouldin index of clustering quality.

Usage

calcDaviesBouldin(data, belongmatrix, centers)

Arguments

data The original dataframe used for the clustering (n*p)
belongmatrix A membership matrix (n*k)

centers The centres of the clusters

Details

The Davies-Bouldin index (Da Silva et al. 2020) can be seen as the ratio of the within cluster
dispersion and the between cluster separation. A lower value indicates a higher cluster compacity
or a higher cluster separation. The formula is:

DB =

=

k
>n
i=1
with:

R; = max (M>

i#] i3

SIS

S =

1 n
- Z ller — ¢l = ull

=1

Miy =Y llei — ¢

So, the value of the index is an average of R; values. For each cluster, they represent its worst
comparison with all the other clusters, calculated as the ratio between the compactness of the two
clusters and the separation of the two clusters.

Value

A float: the Davies-Bouldin index

calcELSA 11

References

Da Silva LEB, Melton NM, Wunsch DC (2020). “Incremental cluster validity indices for online
learning of hard partitions: Extensions and comparative study.” IEEE Access, 8, 22025-22047.

Examples

data(LyonIris)

AnalysisFields <-c("”Lden”,"NO2","PM25","VegHautPrt","Pct@_14","Pct_65","Pct_Img",
"TxChom1564","Pct_brevet”,"NivVieMed")

dataset <- sf::st_drop_geometry(LyonIris[AnalysisFields])

queen <- spdep::poly2nb(LyonIris,queen=TRUE)

Wqueen <- spdep::nb2listw(queen,style="W")

result <- SFCMeans(dataset, Wqueen,k = 5, m = 1.5, alpha = 1.5, standardize = TRUE)
calcDaviesBouldin(result$Data, result$Belongings, result$Centers)

calcELSA calculate ELSA statistic for a hard partition

Description
Calculate ELSA statistic for a hard partition. This local indicator of spatial autocorrelation can be
used to determine where observations belong to different clusters.

Usage
calcELSA(object, nblistw = NULL, window = NULL, matdist = NULL)

Arguments
object A FCMres object, typically obtained from functions CMeans, GCMeans, SFCMeans,
SGFCMeans. Can also be a vector of categories. This vector must be filled with
integers starting from 1. -1 can be used to indicate missing categories.
nblistw A list.w object describing the neighbours typically produced by the spdep pack-
age. Required if data is a dataframe, see the parameter window if you use a list
of rasters as input.
window A binary (0,1) matrix representing the neighbours spatial weights when working
with rasters. The matrix must have odd dimensions.
matdist A matrix representing the dissimilarity between the clusters. The matrix must
be squared and the diagonal must be filled with zeros.
Details

The ELSA index (Naimi et al. 2019) can be used to measure local autocorrelation for a categorical
variable. It varies between 0 and 1, O indicating a perfect positive spatial autocorrelation and 1 a
perfect heterogeneity. It is based on the Shanon entropy index, and uses a measure of difference
between categories. Thus it can reflect that proximity of two similar categories is still a form
of positive autocorelation. The authors suggest to calculate the mean of the index at several lag
distance to create an entrogram which quantifies global spatial structure and can be represented as
a variogram-like graph.

12 calcexplainedInertia

Value

A depending of the input, a vector of ELSA values or a raster with the ELSA values.

Examples

data(LyonIris)

AnalysisFields <-c("Lden","NO2","PM25","VegHautPrt","Pct@_14","Pct_65","Pct_Img",
"TxChom1564","Pct_brevet”,"NivVieMed")

dataset <- sf::st_drop_geometry(LyonIris[AnalysisFields])

queen <- spdep::poly2nb(LyonIris,queen=TRUE)

Wqueen <- spdep::nb2listw(queen,style="W")

result <- SFCMeans(dataset, Wqueen,k = 5, m = 1.5, alpha = 1.5, standardize = TRUE)
elsa_valus <- calcELSA(result)

calcexplainedInertia Explained inertia index

Description

Calculate the explained inertia by a classification

Usage

calcexplainedInertia(data, belongmatrix)

Arguments

data The original dataframe used for the classification (n*p)

belongmatrix A membership matrix (n*k)

Value

A float: the percentage of the total inertia explained

Examples

data(LyonIris)

AnalysisFields <-c("”Lden","”N02","PM25","VegHautPrt”, "Pct@_14","Pct_65","Pct_Img",
"TxChom1564","Pct_brevet"”,”NivVieMed")

dataset <- sf::st_drop_geometry(LyonIris[AnalysisFields])

queen <- spdep::poly2nb(LyonIris,queen=TRUE)

Wqueen <- spdep::nb2listw(queen,style="W")

result <- SFCMeans(dataset, Wqueen,k = 5, m = 1.5, alpha = 1.5, standardize = TRUE)
calcexplainedInertia(result$Data,result$Belongings)

calcFukuyamaSugeno 13

calcFukuyamaSugeno Fukuyama and Sugeno index

Description

Calculate Fukuyama and Sugeno index of clustering quality

Usage

calcFukuyamaSugeno(data, belongmatrix, centers, m)

Arguments

data The original dataframe used for the clustering (n*p)

belongmatrix A membership matrix (n*k)

centers The centres of the clusters
m The fuzziness parameter
Details

The Fukuyama and Sugeno index (Fukuyama 1989) is the difference between the compacity of
clusters and the separation of clusters. A smaller value indicates a better clustering. The formula is:

S = 303 W)™ (s — will* — oy — 7% 2

k=11=1

with n the number of observations, k£ the number of clusters and Z the mean of the dataset.

Value

A float: the Fukuyama and Sugeno index

References

Fukuyama Y (1989). “A new method of choosing the number of clusters for the fuzzy c-mean
method.” In Proc. 5th Fuzzy Syst. Symp., 1989, 247-250.

Examples

data(LyonIris)

AnalysisFields <-c("”Lden”,"NO2","PM25","VegHautPrt”, "Pct@_14","Pct_65","Pct_Img",
"TxChom1564","Pct_brevet"”, "NivVieMed")

dataset <- sf::st_drop_geometry(LyonIris[AnalysisFields])

queen <- spdep::poly2nb(LyonIris,queen=TRUE)

Wgueen <- spdep::nb2listw(queen,style="W")

result <- SFCMeans(dataset, Wqueen,k = 5, m = 1.5, alpha = 1.5, standardize = TRUE)
calcFukuyamaSugeno(result$Data,result$Belongings, result$Centers, 1.5)

14 calcFuzzyELSA

calcFuzzyELSA calculate ELSA statistic for a fuzzy partition

Description
Calculate ELSA statistic for a fuzzy partition. This local indicator of spatial autocorrelation can be
used to identify areas where close observations tend to belong to different clusters.

Usage
calcFuzzyELSA(object, nblistw = NULL, window = NULL, matdist = NULL)

Arguments
object A FCMres object, typically obtained from functions CMeans, GCMeans, SFCMeans,
SGFCMeans. Can also be a membership matrix. Each row of this matrix must
sum up to 1. Can also be a list of rasters, in which case each raster must repre-
sent the membership values for one cluster and the sum of all the rasters must
be a raster filled with ones.
nblistw A list.w object describing the neighbours typically produced by the spdep pack-
age. Required if data is a dataframe, see the parameter window if you use a list
of rasters as input.
window A binary (0,1) matrix representing the neighbours spatial weights when working
with rasters. The matrix must have odd dimensions.
matdist A matrix representing the dissimilarity between the clusters. The matrix must
be squared and the diagonal must be filled with zeros.
Details

The fuzzy ELSA index is a generalization of the ELSA index (Naimi et al. 2019). It can be used
to measure local autocorrelation for a membership matrix. It varies between 0 and 1, O indicating
a perfect positive spatial autocorrelation and 1 a perfect heterogeneity. It is based on the Shannon
entropy index, and uses a measure of dissimilarity between categories.

Value

either a vector or a raster with the ELSA values.

Examples

data(LyonIris)

AnalysisFields <-c("”Lden”,"NO2","PM25","VegHautPrt", "Pct@_14","Pct_65","Pct_Img",
"TxChom1564","Pct_brevet"”, "NivVieMed")

dataset <- sf::st_drop_geometry(LyonIris[AnalysisFields])

queen <- spdep::poly2nb(LyonIris,queen=TRUE)

Wgueen <- spdep::nb2listw(queen,style="W")

result <- SFCMeans(dataset, Wqueen,k = 5, m = 1.5, alpha = 1.5, standardize = TRUE)
elsa_valus <- calcFuzzyELSA(result)

calcGD43 15

calcGD43 Generalized Dunn’s index (43)

Description

Calculate the Generalized Dunn’s index (v43) of clustering quality.

Usage

calcGD43(data, belongmatrix, centers)

Arguments

data The original dataframe used for the clustering (n*p)
belongmatrix A membership matrix (n*k)

centers The centres of the clusters

Details

The Generalized Dunn’s index (Da Silva et al. 2020) is a ratio of the worst pair-wise separation of
clusters and the worst compactness of clusters. A higher value indicates a better clustering. The
formula is:

min#j [57” (wia wj)}
maxy, [As (wg)]

GD'!‘S =

The numerator is a measure of the minimal separation between all the clusters i and j given by the
formula:

Or (wi,wj) = llei — ¢
which is basically the Euclidean distance between the centres of clusters ¢; and ¢;

The denominator is a measure of the maximal dispersion of all clusters, given by the formula:

n 1
25 & — i ?
> U

Value

A float: the Generalized Dunn’s index (43)

References

Da Silva LEB, Melton NM, Wunsch DC (2020). “Incremental cluster validity indices for online
learning of hard partitions: Extensions and comparative study.” IEEE Access, 8, 22025-22047.

16 calcGD53

Examples

data(LyonIris)

AnalysisFields <-c("”Lden",”N02","PM25","VegHautPrt”, "Pct@_14","Pct_65","Pct_Img",
"TxChom1564","Pct_brevet"”,”"NivVieMed")

dataset <- sf::st_drop_geometry(LyonIris[AnalysisFields])

queen <- spdep::poly2nb(LyonIris,queen=TRUE)

Wqueen <- spdep::nb2listw(queen,style="W")

result <- SFCMeans(dataset, Wqueen,k = 5, m = 1.5, alpha = 1.5, standardize = TRUE)
calcGD43(result$Data, result$Belongings, result$Centers)

calcGD53 Generalized Dunn’s index (53)

Description

Calculate the Generalized Dunn’s index (v53) of clustering quality.

Usage

calcGD53(data, belongmatrix, centers)

Arguments

data The original dataframe used for the clustering (n*p)
belongmatrix A membership matrix (n*k)

centers The centres of the clusters

Details

The Generalized Dunn’s index (Da Silva et al. 2020) is a ratio of the worst pair-wise separation of
clusters and the worst compactness of clusters. A higher value indicates a better clustering. The
formula is:

min#j [67' (Wi7 wj)]
maxy [Ag (wr)]

GD’I"S =

The numerator is a measure of the minimal separation between all the clusters i and j given by the
formula:

1 1
Sy e = eal|® i + 3000 e — 5% up
O (Wiij) =
doui Do uj

where u is the membership matrix and u; is the column of u describing the membership of the n
observations to cluster i. ¢; is the center of the cluster i.

The denominator is a measure of the maximal dispersion of all clusters, given by the formula:

n 1
2% ||z —ci|®
Zui

calcNegentropyl 17

Value

A float: the Generalized Dunn’s index (53)

References

Da Silva LEB, Melton NM, Wunsch DC (2020). “Incremental cluster validity indices for online
learning of hard partitions: Extensions and comparative study.” IEEE Access, 8, 22025-22047.

Examples

data(LyonlIris)

AnalysisFields <-c("Lden","”N02","PM25","VegHautPrt”, "Pct@_14","Pct_65","Pct_Img",
"TxChom1564","Pct_brevet"”,"NivVieMed")

dataset <- sf::st_drop_geometry(LyonIris[AnalysisFields])

queen <- spdep::poly2nb(LyonIris,queen=TRUE)

Wqueen <- spdep::nb2listw(queen,style="W")

result <- SFCMeans(dataset, Wqueen,k = 5, m = 1.5, alpha = 1.5, standardize = TRUE)
calcGD53(result$Data, result$Belongings, result$Centers)

calcNegentropyl Negentropy Increment index

Description

Calculate the Negentropy Increment index of clustering quality.

Usage

calcNegentropyI(data, belongmatrix, centers)

Arguments

data The original dataframe used for the clustering (n*p)
belongmatrix A membership matrix (n*k)

centers The centres of the clusters

Details

The Negentropy Increment index (Da Silva et al. 2020) is based on the assumption that a normally
shaped cluster is more desirable. It uses the difference between the average negentropy of all the
clusters in the partition, and that of the whole partition. A smaller value indicates a better partition.
The formula is:

k k
1 1
NI = 5}21% In|%;] - §1H|Edata| - E pjInp;

Jj=1

with a cluster, |.| the determinant of a matrix,

18 calcqualityIndexes

* jacluster

¢ |.| the determinant of a matrix

|X,| the covariance matrix of the dataset weighted by the membership values to cluster j

|3 data| the covariance matrix of the dataset

* p; the sum of the membership values to cluster j divided by the number of observations.

Value

A float: the Negentropy Increment index

References

Da Silva LEB, Melton NM, Wunsch DC (2020). “Incremental cluster validity indices for online
learning of hard partitions: Extensions and comparative study.” IEEE Access, 8, 22025-22047.

Examples

data(LyonlIris)

AnalysisFields <-c("Lden",”N02","PM25","VegHautPrt”,6 "Pct@_14","Pct_65","Pct_Img",
"TxChom1564","Pct_brevet"”,"NivVieMed")

dataset <- sf::st_drop_geometry(LyonIris[AnalysisFields])

queen <- spdep::poly2nb(LyonIris,queen=TRUE)

Wqueen <- spdep::nb2listw(queen,style="W")

result <- SFCMeans(dataset, Wqueen,k = 5, m = 1.5, alpha = 1.5, standardize = TRUE)
calcNegentropyI(result$Data, result$Belongings, result$Centers)

calcqualityIndexes Quality indexes

Description

calculate several clustering quality indexes (some of them come from fclust package)

Usage

calcqualityIndexes(
data,
belongmatrix,
m,
indices = c("Silhouette.index"”, "Partition.entropy”, "Partition.coeff",
"XieBeni.index", "FukuyamaSugeno.index", "Explained.inertia”)

calcSilhouetteldx

Arguments

data
belongmatrix
m

indices

Value

19

The original dataframe used for the classification (n*p)
A membership matrix (n*k)
The fuzziness parameter used for the classification

A character vector with the names of the indices to calculate, default is : ¢("Silhouette.index",
"Partition.entropy", "Partition.coeff", "XieBeni.index", "FukuyamaSugeno.index",
"Explained.inertia"). Other available indices are : "DaviesBoulin.index", "Calin-
skiHarabasz.index", "GD43.index", "GD53.index" and "Negentropy.index"

A named list with with the values of the required indices

Examples

data(LyonIris)
AnalysisFields <-
"TxChom1564","Pct

c("Lden","N0O2","PM25" "VegHautPrt"”, "Pct@_14","Pct_65","Pct_Img",
_brevet”,"NivVieMed")

dataset <- sf::st_drop_geometry(LyonIris[AnalysisFields])
queen <- spdep::poly2nb(LyonIris,queen=TRUE)

Wqueen <- spdep::
result <- SFCMean
calcqualityIndexe

nb2listw(queen,style="W")
s(dataset, Wqueen,k = 5, m = 1.5, alpha = 1.5, standardize = TRUE)
s(result$Data,result$Belongings, m=1.5)

calcSilhouettelIdx

Fuzzy Silhouette index

Description

Calculate the Silhouette index of clustering quality.

Usage

calcSilhouetteldx(data, belongings)

Arguments
data
belongings

Details

The index is calcul

The original dataframe used for the clustering (n*p)

A membership matrix (n*k)

ated with the function SIL.F from the package fclust. When the dataset is too

large, an approach by subsampling is used to avoid crash.

Value

A float, the fuzzy S

ilhouette index

20 calcUncertaintyIndex

calcUncertaintyIndex Diversity index

Description

Calculate the diversity (or entropy) index.

Usage

calcUncertaintyIndex(belongmatrix)

Arguments

belongmatrix A membership matrix

Details

The diversity (or entropy) index (Theil 1972) is calculated for each observation an varies between
0 and 1. When the value is close to O, the observation belong to only one cluster (as in hard
clustering). When the value is close to 1, the observation is undecided and tends to belong to each
cluster. Values above 0.9 should be investigated. The formula is:

_ = > [ugy In(ugy)]
T

with i and observation, j a cluster, k the number of clusters and u the membership matrix.

It is a simplified formula because the sum of each row of a membership matrix is 1.

Value

A vector with the values of the diversity (entropy) index

References

Theil H (1972). Statistical decomposition analysis; with applications in the social and administra-
tive sciences. North-Holland.

Examples

data(LyonIris)

AnalysisFields <-c("Lden"”,"”N02","PM25","VegHautPrt","Pcto_14","Pct_65","Pct_Img",
"TxChom1564","Pct_brevet"”,"NivVieMed")

dataset <- sf::st_drop_geometry(LyonIris[AnalysisFields])

queen <- spdep::poly2nb(LyonIris,queen=TRUE)

Wgueen <- spdep::nb2listw(queen,style="W")

result <- SFCMeans(dataset, Wqueen,k = 5, m = 1.5, alpha = 1.5, standardize = TRUE)
calcUncertaintyIndex(result$Belongings)

calc_local moran_raster 21

calc_local_moran_raster
Local Moran I for raster

Description

Calculate the Local Moran I for a numeric raster

Usage

calc_local_moran_raster(rast, window)

Arguments

rast A SpatRaster or a matrix

window The window defining the neighbour weights
Value

A SpatRaster or a matrix depending on the input with the local Moran I values

Examples

Arcachon <- terra::rast(system.file("extdata/Littoral4_2154.tif", package = "geocmeans"))
names(Arcachon) <- c(”blue”, "green”, "red"”, "infrared”, "SWIR1", "SWIR2")

rast <- Arcachon[[1]]

w <- matrix(1, nrow = 3, ncol = 3)

calc_local_moran_raster(rast, w)

calc_moran_raster Global Moran I for raster

Description

Calculate the global Moran I for a numeric raster

Usage

calc_moran_raster(rast, window)

Arguments

rast A SpatRaster or a matrix

window The window defining the neighbour weights

22 circular_ window

Value

A float: the global Moran I

Examples

Arcachon <- terra::rast(system.file("extdata/Littoral4_2154.tif", package = "geocmeans"))
names(Arcachon) <- c("blue”, "green”, "red", "infrared”, "SWIR1", "SWIR2")

rast <- Arcachon[[1]]

w <- matrix(1, nrow = 3, ncol = 3)

calc_moran_raster(rast, w)

cat_to_belongings Convert categories to membership matrix

Description

Function to convert a character vector to a membership matrix (binary matrix). The columns of the
matrix are ordered with the order function.

Usage
cat_to_belongings(categories)
catToBelongings(categories)

Arguments

categories A vector with the categories of each observation

Value

A binary matrix

circular_window Circular window

Description
Create a matrix that can be used as a window when working with rasters. It uses a radius to set to O
the weights of pixels that are farther than this distance. This is helpful to create circular focals.
Usage

circular_window(radius, res)

CMeans

Arguments

radius The size in metres of the radius of the circular focal

res The width in metres of a pixel. It is assumed that pixels are squares.

Details

23

The original function comes from here: https://scrogster.wordpress.com/2012/10/05/applying-a-
circular-moving-window-filter-to-raster-data-in-r/ but we reworked it to make it faster and to ensure

that the result is a matrix with odd dimensions.

Value

A binary weight matrix

Examples

wide of 100 metres for pixels of 2 metres
window <- circular_window(100, 2)

row standardisation

window_row_std <- window / sum(window)

CMeans

C-means

Description

The classical c-mean algorithm

Usage

CMeans(
data,
k,
m,
maxiter = 500,
tol = 0.01,

standardize = TRUE,

robust = FALSE,

noise_cluster = FALSE,

delta = NULL,
verbose = TRUE,
init = "random”,
seed = NULL

24 CMeans

Arguments

data A dataframe with only numerical variables. Can also be a list of rasters (pro-
duced by the package raster). In that case, each raster is considered as a variable
and each pixel is an observation. Pixels with NA values are not used during the
classification.

k An integer describing the number of cluster to find

m A float for the fuzziness degree

maxiter An integer for the maximum number of iterations

tol The tolerance criterion used in the evaluateMatrices function for convergence
assessment

standardize A boolean to specify if the variables must be centred and reduced (default =
True)

robust A boolean indicating if the "robust" version of the algorithm must be used (see
details)

noise_cluster A boolean indicatong if a noise cluster must be added to the solution (see details)

delta A float giving the distance of the noise cluster to each observation

verbose A boolean to specify if the progress should be printed

init A string indicating how the initial centres must be selected. "random" indicates

that random observations are used as centres. "kpp" use a distance-based method
resulting in more dispersed centres at the beginning. Both of them are heuristic.

seed An integer used for random number generation. It ensures that the starting cen-
tres will be the same if the same value is selected.

Value
An S3 object of class FCMres with the following slots

 Centers: a dataframe describing the final centers of the groups

* Belongings: the final membership matrix

* Groups: a vector with the names of the most likely group for each observation
 Data: the dataset used to perform the clustering (might be standardized)

* isRaster: TRUE if rasters were used as input data, FALSE otherwise

* k: the number of groups

* m: the fuzyness degree

* alpha: the spatial weighting parameter (if SFCM or SGFCM)

* beta: beta parameter for generalized version of FCM (GFCM or SGFCM)

* algo: the name of the algorithm used

e rasters: a list of rasters with membership values and the most likely group (if rasters were
used)

* missing: a boolean vector indicating raster cell with data (TRUE) and with NA (FALSE) (if
rasters were used)

GCMeans 25

* maxiter: the maximum number of iterations used

* tol: the convergence criterio

 lag_method: the lag function used (if SFCM or SGFCM)

* nblistw: the neighbours list used (if vector data were used for SFCM or SGFCM)
¢ window: the window used (if raster data were used for SFCM or SGFCM)

Examples

data(LyonIris)

AnalysisFields <-c("Lden",”N02","PM25","VegHautPrt"”, "Pct@_14","Pct_65","Pct_Img",
"TxChom1564","Pct_brevet"”, "NivVieMed")

dataset <- sf::st_drop_geometry(LyonIris[AnalysisFields])

result <- CMeans(dataset,k = 5, m = 1.5, standardize = TRUE)

GCMeans Generalized C-means

Description

The generalized c-mean algorithm

Usage

GCMeans(
data,
k,
m,
beta,
maxiter = 500,
tol = 0.01,
standardize = TRUE,
robust = FALSE,
noise_cluster = FALSE,

delta = NULL,
verbose = TRUE,
init = "random”,
seed = NULL
)
Arguments
data A dataframe with only numerical variables. Can also be a list of rasters (pro-

duced by the package raster). In that case, each raster is considered as a variable
and each pixel is an observation. Pixels with NA values are not used during the
classification.

k An integer describing the number of cluster to find

26 GCMeans

m A float for the fuzziness degree

beta A float for the beta parameter (control speed convergence and classification
crispness)

maxiter An integer for the maximum number of iterations

tol The tolerance criterion used in the evaluateMatrices function for convergence
assessment

standardize A boolean to specify if the variables must be centred and reduced (default =
True)

robust A boolean indicating if the "robust" version of the algorithm must be used (see
details)

noise_cluster A boolean indicatong if a noise cluster must be added to the solution (see details)

delta A float giving the distance of the noise cluster to each observation

verbose A boolean to specify if the progress should be printed

init A string indicating how the initial centres must be selected. "random" indicates

that random observations are used as centres. "kpp" use a distance-based method
resulting in more dispersed centres at the beginning. Both of them are heuristic.

seed An integer used for random number generation. It ensures that the starting cen-
tres will be the same if the same value is selected.

Value
An S3 object of class FCMres with the following slots

* Centers: a dataframe describing the final centers of the groups

* Belongings: the final membership matrix

* Groups: a vector with the names of the most likely group for each observation
 Data: the dataset used to perform the clustering (might be standardized)

* isRaster: TRUE if rasters were used as input data, FALSE otherwise

* k: the number of groups

* m: the fuzyness degree

* alpha: the spatial weighting parameter (if SFCM or SGFCM)

* beta: beta parameter for generalized version of FCM (GFCM or SGFCM)

* algo: the name of the algorithm used

* rasters: a list of rasters with membership values and the most likely group (if rasters were
used)

* missing: a boolean vector indicating raster cell with data (TRUE) and with NA (FALSE) (if
rasters were used)

* maxiter: the maximum number of iterations used

* tol: the convergence criterio

* lag_method: the lag function used (if SFCM or SGFCM)

* nblistw: the neighbours list used (if vector data were used for SFCM or SGFCM)
¢ window: the window used (if raster data were used for SFCM or SGFCM)

groups_matching 27

Examples

data(LyonIris)

AnalysisFields <-c("”Lden","”NO2","PM25","VegHautPrt"”, "Pct@_14","Pct_65","Pct_Img",
"TxChom1564","Pct_brevet"”,"NivVieMed")

dataset <- sf::st_drop_geometry(LyonIris[AnalysisFields])

result <- GCMeans(dataset,k = 5, m = 1.5, beta = 0.5, standardize = TRUE)

groups_matching Match the groups obtained from two classifications

Description
Match the groups obtained from two classifications based on the Jaccard index calculated on the
membership matrices.

Usage

groups_matching(object.x, object.y)

Arguments
object.x A FCMres object, or a simple membership matrix. It is used as the reference for
the ordering of the groups
object.y A FCMTres object, or a simple membership matrix. The order of its groups will
be updated to match with the groups of object.x
Details

We can not expect to obtain the groups in the same order in each run of a classification algorithm.
This function can be used match the clusters of a first classification with the most similar clusters
in a second classification. Thus it might be easier to compare the results of two algorithms or two
runs of the same algorithm.

Value
The FCMres object or the membership matrix provided for the parameter object.y with the order of
the groups updated.

Examples
data(LyonIris)
#selecting the columns for the analysis

AnalysisFields <-c("”Lden”,"”NO2","PM25","VegHautPrt", "Pcto_14",
"Pct_65","Pct_Img","TxChom1564","Pct_brevet”,"NivVieMed")

#rescaling the columns
Data <- sf::st_drop_geometry(LyonIris[AnalysisFields])

28 is.FCMres

for (Col in names(Data)){
Data[[Col]] <- as.numeric(scale(Data[[Col]l]))
3

Cmean <- CMeans(Data,4,1.5,500,standardize = FALSE, seed = 456, tol = 0.00001, verbose = FALSE)
Cmean2 <- CMeans(Data,4,1.5,500,standardize = FALSE, seed = 789, tol = 0.00001, verbose = FALSE)
ordered_Cmean2 <- groups_matching(Cmean,Cmean2)

is.FCMres is method for FCMres

Description

Check if an object can be considered as a FCMres object

Usage

S3 method for class 'FCMres'
is(object, class2 = "FCMres")

Arguments
object A FCMres object, typically obtained from functions CMeans, GCMeans, SFCMeans,
SGFCMeans
class2 Character string giving the names of the classe to test (usually "FCMres")
Value

A boolean, TRUE if x can be considered as a FCMres object, FALSE otherwise group

Examples

data(LyonIris)

AnalysisFields <-c("”Lden”,"NO2","PM25","VegHautPrt”,"Pct@_14","Pct_65","Pct_Img",
"TxChom1564","Pct_brevet"”,"NivVieMed")

dataset <- sf::st_drop_geometry(LyonIris[AnalysisFields])

queen <- spdep::poly2nb(LyonIris,queen=TRUE)

Wgueen <- spdep::nb2listw(queen,style="W")

result <- SFCMeans(dataset, Wqueen,k = 5, m = 1.5, alpha = 1.5, standardize = TRUE)
is(result, "FCMres")

Lyonlris

LyonIris social and environmental indicators for the Iris of the metropolitan
region of Lyon (France)

Description

A dataset containing social and environmental data for the Iris of Lyon (France)

Usage

LyonIris

Format

A SpatialPolygonsDataFrame with 506 rows and 32 variables:

OBJECTID a simple OID (integer)

INSEE_COM the code of each commune (factor)

CODE_IRIS the code of each unit area : iris (factor)

Lden the annual daily mean noise exposure values in dB (numeric)

NO2 the annual mean of NO2 concentration in ug/m3 (numeric)

PM25 the annual mean of PM25 concentration in ug/m3 (numeric)
PM10 the annual mean of PM25 concentration in ug/m3 (numeric)
Pct0_14 the percentage of people that are O to 14 year old (numeric)
Pct_65 the percentage of people older than 64 (numeric)

Pct_Img the percentage immigrants (numeric)

TxChom1564 the unemployment rate (numeric)

Pct_brevet the percentage of people that obtained the college diploma (numeric)
NivVieMed the median standard of living in euros (numeric)
VegHautPrt the percentage of the iris surface covered by trees (numeric)
X the X coordinate of the center of the Iris (numeric)

Y the Y coordinate of the center of the Iris (numeric) ...

Source

https://data.grandlyon.com/portail/fr/accueil

https://data.grandlyon.com/portail/fr/accueil

30 mapClusters

mapClusters Mapping the clusters

Description

Build some maps to visualize the results of the clustering

Usage

mapClusters(geodata = NULL, object, undecided = NULL)

Arguments
geodata An object of class features collection from sf / ordered like the original data used
for the clustering. Can be Null if object is a FCMres and has been created with
rasters.
object A FCMres object, typically obtained from functions CMeans, GCMeans, SFCMeans,
SGFCMeans. Can also be a simple membership matrix.
undecided A float between 0 and 1 giving the minimum value that an observation must get
in the membership matrix to not be considered as uncertain (default = NULL)
Value

A named list with :

* ProbaMaps : a list of tmap maps showing for each group the probability of the observations
to belong to that group

e ClusterMap : a tmap map showing the most likely group for observation

Examples

Not run:

data(LyonIris)

AnalysisFields <-c("”Lden","”N02","PM25","VegHautPrt"”, "Pct@_14","Pct_65","Pct_Img",
"TxChom1564","Pct_brevet”, "NivVieMed")

dataset <- sf::st_drop_geometry(LyonIris[AnalysisFields])

queen <- spdep::poly2nb(LyonIris,queen=TRUE)

Wgueen <- spdep::nb2listw(queen,style="W")

result <- SFCMeans(dataset, Wqueen,k = 5, m = 1.5, alpha = 1.5, standardize = TRUE)
MyMaps <- mapClusters(LyonIris, result$Belongings)

End(Not run)

plot. FCMres 31

plot.FCMres Plot method for FCMres object

Description

Method to plot the results of a FCM.res object

Usage
S3 method for class 'FCMres'
plot(x, type = "spider”, ...)
Arguments
X A FCMres object, typically obtained from functions CMeans, GCMeans, SFCMeans,

SGFCMeans. Can also be a simple membership matrix.

type A string indicating the type of plot to show. Can be one of "bar", "violin", or
"spider". Default is spider.

not used

Details

This S3 method is a simple dispatcher for the functions barPlots, violinPlots and spiderPlots. To be
able to use all their specific parameters, one can use them directly.

Value

a ggplot2 object, a list, or NULL, depending on the type of plot requested

Examples

data(LyonIris)
AnalysisFields <-c("”Lden",”N02","PM25","VegHautPrt”, "Pct@_14","Pct_65","Pct_Img",
"TxChom1564","Pct_brevet”,”"NivVieMed")

rescaling all the variables used in the analysis
for (field in AnalysisFields) {

LyonIris[[field]] <- scale(LyonIris[[field]])
3

doing the initial clustering

dataset <- sf::st_drop_geometry(LyonIris[AnalysisFields])

queen <- spdep::poly2nb(LyonIris,queen=TRUE)

Wgueen <- spdep::nb2listw(queen,style="W")

result <- SGFCMeans(dataset, Wqueen,k =5, m= 1.5, alpha =1.5, beta =0.5, standardize = FALSE)

plot(result, type = "spider"”)

predict. FCMres

predict.FCMres Predict method for FCMres object

Description

Function to predict the membership matrix of a new set of observations

Usage

S3 method for class 'FCMres'
predict(

object,

new_data,

nblistw = NULL,

window = NULL,

standardize = TRUE,

)
Arguments
object A FCMres object, typically obtained from functions CMeans, GCMeans, SFCMeans,
SGFCMeans. Can also be a simple membership matrix.
new_data A DataFrame with the new observations
nblistw A list.w object describing the neighbours typically produced by the spdep pack-
age. Required if data is a dataframe, see the parameter window if you use a list
of rasters as input.
window If data is a list of rasters, then a window must be specified instead of a list.w
object. It will be used to calculate a focal function on each raster. The window
must be a square numeric matrix with odd dimensions (such 3x3). The values in
the matrix indicate the weight to give to each pixel and the centre of the matrix
is the centre of the focal function.
standardize A boolean to specify if the variable must be centred and reduced (default = True)
not used
Value

A numeric matrix with the membership values for each new observation

Examples

data(LyonIris)
AnalysisFields <-c("”Lden",”N02","PM25","VegHautPrt"”, "Pct@_14","Pct_65","Pct_Img",
"TxChom1564","Pct_brevet”,”"NivVieMed")

rescaling all the variables used in the analysis

predict_membership 33

for (field in AnalysisFields) {
LyonIris[[field]] <- scale(LyonIris[[field]])
3

doing the initial clustering

dataset <- sf::st_drop_geometry(LyonIris[AnalysisFields])
queen <- spdep::poly2nb(LyonIris,queen=TRUE)

Wqueen <- spdep::nb2listw(queen,style="W")

result <- SGFCMeans(dataset, Wqueen,k =5, m= 1.5, alpha =1.5, beta =0.5, standardize = FALSE)

using a subset of the original dataframe as "new data”
new_data <- LyonIris[c(1, 27, 36, 44, 73),]

new_dataset <- sf::st_drop_geometry(new_datal[AnalysisFields])
new_nb <- spdep: :poly2nb(new_data,queen=TRUE)

new_Wqueen <- spdep::nb2listw(new_nb,style="W")

doing the prediction
predictions <- predict(result, new_dataset, new_Wqueen, standardize = FALSE)

predict_membership Predict matrix membership for new observations

Description

Function to predict the membership matrix of a new set of observations

Usage

predict_membership(
object,
new_data,
nblistw = NULL,
window = NULL,
standardize = TRUE,

)
Arguments
object A FCMres object, typically obtained from functions CMeans, GCMeans, SFCMeans,
SGFCMeans. Can also be a simple membership matrix.
new_data A DataFrame with the new observations or a list of rasters if object$isRaster is
TRUE
nblistw A list.w object describing the neighbours typically produced by the spdep pack-

age. Required if data is a dataframe, see the parameter window if you use a list
of rasters as input.

34 print. FCMres

window If data is a list of rasters, then a window must be specified instead of a list.w
object. It will be used to calculate a focal function on each raster. The window
must be a square numeric matrix with odd dimensions (such 3x3). The values in
the matrix indicate the weight to give to each pixel and the centre of the matrix
is the centre of the focal function.

standardize A boolean to specify if the variable must be centered and reduced (default =
True)
not used
Value

A numeric matrix with the membership values for each new observation. If rasters were used, return
a list of rasters with the membership values.

Examples

data(LyonIris)
AnalysisFields <-c("”Lden",”N02","PM25","VegHautPrt”, "Pct@_14","Pct_65","Pct_Img",
"TxChom1564","Pct_brevet"”,"NivVieMed")

rescaling all the variables used in the analysis
for (field in AnalysisFields) {

LyonIris[[field]] <- scale(LyonIris[[field]])
3

doing the initial clustering

dataset <- sf::st_drop_geometry(LyonIris[AnalysisFields])

queen <- spdep::poly2nb(LyonIris,queen=TRUE)

Wqueen <- spdep::nb2listw(queen,style="W")

result <- SGFCMeans(dataset, Wqueen,k =5, m= 1.5, alpha = 1.5, beta =0.5, standardize = FALSE)

using a subset of the original dataframe as "new data”
new_data <- LyonIris[c(1, 27, 36, 44, 73),]

new_dataset <- sf::st_drop_geometry(new_data[AnalysisFields])
new_nb <- spdep::poly2nb(new_data, queen=TRUE)

new_Wqueen <- spdep::nb2listw(new_nb,style="W")

doing the prediction
predictions <- predict_membership(result, new_dataset, new_Wqueen, standardize = FALSE)

print.FCMres print method for FCMres

Description

print a FCMres object

select_parameters 35

Usage
S3 method for class 'FCMres'
print(x, ...)
Arguments
X A FCMres object, typically obtained from functions CMeans, GCMeans, SFCMeans,
SGFCMeans
not used
Value

A boolean, TRUE if x can be considered as a FCMres object, FALSE otherwise group

Examples

data(LyonIris)

AnalysisFields <-c("”Lden",”N02","PM25","VegHautPrt"”, "Pct@_14","Pct_65","Pct_Img",
"TxChom1564","Pct_brevet"”,"NivVieMed")

dataset <- sf::st_drop_geometry(LyonIris[AnalysisFields])

result <- CMeans(dataset, k = 5, m = 1.5, standardize = TRUE)

print(result, "FCMres")

select_parameters Select parameters for a clustering algorithm

Description

Function to select the parameters for a clustering algorithm.

Usage

select_parameters(
algo,
data,
kr
m,
alpha = NA,
beta = NA,
nblistw = NULL,
lag_method = "mean”,
window = NULL,
spconsist = TRUE,
classidx = TRUE,
nrep = 30,
indices = NULL,
standardize = TRUE,

36

)

robust = FALSE,
noise_cluster = FALSE,
delta = NA,

maxiter = 500,

tol = 0.01,

seed = NULL,

init = "random”,
verbose = TRUE

selectParameters(

algo,

data,

k,

m,

alpha = NA,

beta = NA,

nblistw = NULL,
lag_method = "mean”,
window = NULL,
spconsist = TRUE,
classidx = TRUE,
nrep = 30,

indices = NULL,
standardize = TRUE,
robust = FALSE,
noise_cluster = FALSE,
delta = NA,

maxiter = 500,

tol = 0.01,

seed = NULL,

init = "random”,
verbose = TRUE

Arguments

algo
data
k

m
alpha
beta

nblistw

lag_method

A sequence of values for k to test (>=2)

A sequence of values for m to test

A sequence of values for alpha to test (NULL if not required)
A sequence of values for beta to test (NULL if not required)

select_parameters

A string indicating which method to use (FCM, GFCM, SFCM, SGFCM)

A dataframe with numeric columns or a list of rasters.

A list of list.w objects describing the neighbours typically produced by the spdep
package (NULL if not required)

A string indicating if a classical lag must be used ("mean") or if a weighted

median must be used ("median"). Both can be tested by specifying a vector :

select_parameters 37

"non

c("mean","median"). When working with rasters, the string must be parsable
to a function like mean, min, max, sum, etc. and will be applied to all the
pixels values in the window designated by the parameter window and weighted
according to the values of this matrix.

window A list of windows to use to calculate neighbouring values if rasters are used.
spconsist A boolean indicating if the spatial consistency must be calculated

classidx A boolean indicating if the quality of classification indices must be calculated
nrep An integer indicating the number of permutation to do to simulate the random

distribution of the spatial inconsistency. Only used if spconsist is TRUE.

indices A character vector with the names of the indices to calculate, to evaluate cluster-
ing quality. default is :c("Silhouette.index", "Partition.entropy", "Partition.coeff",
"XieBeni.index", "FukuyamaSugeno.index", "Explained.inertia"). Other avail-
able indices are : "DaviesBoulin.index", "CalinskiHarabasz.index", "GD43.index",
"GD53.index" and "Negentropy.index".

standardize A boolean to specify if the variable must be centered and reduce (default = True)
robust A boolean indicating if the "robust" version of the algorithm must be used (see
details)

noise_cluster A boolean indicatong if a noise cluster must be added to the solution (see details)

delta A float giving the distance of the noise cluster to each observation

maxiter An integer for the maximum number of iteration

tol The tolerance criterion used in the evaluateMatrices function for convergence
assessment

seed An integer used for random number generation. It ensures that the start centers

will be the same if the same integer is selected.

init A string indicating how the initial centers must be selected. "random" indicates
that random observations are used as centers. "kpp" use a distance based method
resulting in more dispersed centers at the beginning. Both of them are heuristic.

verbose A boolean indicating if a progressbar should be displayed

Value

A dataframe with indicators assessing the quality of classifications

Examples

data(LyonIris)

AnalysisFields <-c("”Lden”,"NO2","PM25","VegHautPrt”, "Pct@_14","Pct_65","Pct_Img",
"TxChom1564","Pct_brevet"”,"NivVieMed")

dataset <- sf::st_drop_geometry(LyonIris[AnalysisFields])

queen <- spdep::poly2nb(LyonIris,queen=TRUE)

Wgueen <- spdep::nb2listw(queen,style="W")

#set spconsist to TRUE to calculate the spatial consistency indicator

#FALSE here to reduce the time during package check

values <- select_parameters(algo = "SFCM", dataset, k = 5, m = seq(2,3,0.1),

38 select_parameters.mc

alpha = seq(0,2,0.1), nblistw = Wqueen, spconsist=FALSE)

data(LyonIris)
AnalysisFields <-c("Lden","”N02","PM25","VegHautPrt","Pcto_14","Pct_65","Pct_Img",
"TxChom1564","Pct_brevet"”,"NivVieMed")
dataset <- sf::st_drop_geometry(LyonIris[AnalysisFields])
queen <- spdep::poly2nb(LyonIris,queen=TRUE)
Wgueen <- spdep::nb2listw(queen,style="W")
#set spconsist to TRUE to calculate the spatial consistency indicator
#FALSE here to reduce the time during package check
values <- selectParameters(algo = "SFCM", dataset, k = 5, m = seq(2,3,0.1),
alpha = seq(0,2,0.1), nblistw = Wqueen, spconsist=FALSE)

select_parameters.mc Select parameters for clustering algorithm (multicore)

Description

Function to select the parameters for a clustering algorithm. This version of the function allows to
use a plan defined with the package future to reduce calculation time.

Usage

select_parameters.mc(
algo,
data,
K,
m,
alpha = NA,
beta = NA,
nblistw = NULL,
lag_method = "mean”,
window = NULL,
spconsist = TRUE,
classidx = TRUE,
nrep = 30,
indices = NULL,
standardize = TRUE,
robust = FALSE,
noise_cluster = FALSE,
delta = NA,
maxiter = 500,
tol = 0.01,
chunk_size = 5,
seed = NULL,
init = "random”,

select_parameters.mc 39

verbose = TRUE
)

selectParameters.mc(
algo,
data,
K,
m,
alpha = NA,
beta = NA,
nblistw = NULL,
lag_method = "mean”,
window = NULL,
spconsist = TRUE,
classidx = TRUE,
nrep = 30,
indices = NULL,
standardize = TRUE,
robust = FALSE,
noise_cluster = FALSE,

delta = NA,
maxiter = 500,
tol = 0.01,
chunk_size = 5,
seed = NULL,
init = "random”,
verbose = TRUE
)
Arguments
algo A string indicating which method to use (FCM, GFCM, SFCM, SGFCM)
data A dataframe with numeric columns
k A sequence of values for k to test (>=2)
m A sequence of values for m to test
alpha A sequence of values for alpha to test (NULL if not required)
beta A sequence of values for beta to test (NULL if not required)
nblistw A list of list.w objects describing the neighbours typically produced by the spdep
package (NULL if not required)
lag_method A string indicating if a classical lag must be used ("mean") or if a weighted

median must be used ("median"). Both can be tested by specifying a vector :
c("mean","median"). When working with rasters, the string must be parsable
to a function like mean, min, max, sum, etc. and will be applied to all the
pixels values in the window designated by the parameter window and weighted

according to the values of this matrix.

window A list of windows to use to calculate neighbouring values if rasters are used.

40

spconsist
classidx

nrep

indices

standardize

robust

noise_cluster
delta

maxiter

tol

chunk_size

seed

init

verbose

Value

select_parameters.mc

A boolean indicating if the spatial consistency must be calculated
A boolean indicating if the quality of classification indices must be calculated

An integer indicating the number of permutation to do to simulate the random
distribution of the spatial inconsistency. Only used if spconsist is TRUE.

A character vector with the names of the indices to calculate, to evaluate cluster-
ing quality. default is :c("Silhouette.index", "Partition.entropy", "Partition.coeff",
"XieBeni.index", "FukuyamaSugeno.index", "Explained.inertia"). Other avail-
able indices are : "DaviesBoulin.index", "CalinskiHarabasz.index", "GD43.index",
"GD53.index" and "Negentropy.index".

A boolean to specify if the variable must be centered and reduce (default = True)

A boolean indicating if the "robust" version of the algorithm must be used (see
details)

A boolean indicatong if a noise cluster must be added to the solution (see details)
A float giving the distance of the noise cluster to each observation
An integer for the maximum number of iteration

The tolerance criterion used in the evaluateMatrices function for convergence
assessment

The size of a chunk used for multiprocessing. Default is 100.

An integer used for random number generation. It ensures that the start centers
will be the same if the same integer is selected.

A string indicating how the initial centers must be selected. "random" indicates
that random observations are used as centers. "kpp" use a distance based method
resulting in more dispersed centers at the beginning. Both of them are heuristic.

A boolean indicating if a progressbar should be displayed

A dataframe with indicators assessing the quality of classifications

Examples

data(LyonIris)

AnalysisFields <-c("”Lden",”N02","PM25","VegHautPrt”, "Pct@_14","Pct_65","Pct_Img",

"TxChom1564","Pct_brevet”,”"NivVieMed")

dataset <- sf::st_drop_geometry(LyonIris[AnalysisFields])

queen <- spdep::poly2nb(LyonIris,queen=TRUE)

Wqueen <- spdep::nb2listw(queen,style="W")

future: :plan(future::multisession(workers=2))

#set spconsist to TRUE to calculate the spatial consistency indicator

#FALSE here to reduce the time during package check

values <- select_parameters.mc("SFCM", dataset, k = 5, m = seq(1,2.5,0.1),
alpha = seq(0,2,0.1), nblistw = Wqueen, spconsist=FALSE)

make sure any open connections are closed afterward

if (!inherits(future::plan(), "sequential”)) future::plan(future::sequential)

SFCMeans 41

data(LyonIris)

AnalysisFields <-c("”Lden",”N02","PM25","VegHautPrt"”, "Pct@_14","Pct_65","Pct_Img",

"TxChom1564","Pct_brevet”,”"NivVieMed")

dataset <- sf::st_drop_geometry(LyonIris[AnalysisFields])

queen <- spdep::poly2nb(LyonIris,queen=TRUE)

Wqueen <- spdep::nb2listw(queen,style="W")

future::plan(future::multisession(workers=2))

#set spconsist to TRUE to calculate the spatial consistency indicator

#FALSE here to reduce the time during package check

values <- select_parameters.mc("SFCM", dataset, k = 5, m = seq(1,2.5,0.1),
alpha = seq(0,2,0.1), nblistw = Wqueen, spconsist=FALSE)

SFCMeans SFCMeans

Description

spatial version of the c-mean algorithm (SFCMeans, FCM_S1)

Usage

SFCMeans(
data,
nblistw = NULL,
K,
m,
alpha,
lag_method = "mean”,
window = NULL,
noise_cluster = FALSE,
delta = NULL,
maxiter = 500,
tol = 0.01,
standardize = TRUE,
robust = FALSE,
verbose = TRUE,

init = "random”,
seed = NULL
)
Arguments
data A dataframe with only numerical variables. Can also be a list of rasters (pro-

duced by the package raster). In that case, each raster is considered as a variable
and each pixel is an observation. Pixels with NA values are not used during the
classification.

42

nblistw

k
m

alpha

lag_method

window

noise_cluster
delta
maxiter

tol
standardize
robust
verbose

init

seed

Details

SFCMeans

A list.w object describing the neighbours typically produced by the spdep pack-
age. Required if data is a dataframe, see the parameter window if you use a list
of rasters as input.

An integer describing the number of cluster to find
A float for the fuzziness degree

A float representing the weight of the space in the analysis (0 is a typical fuzzy-
c-mean algorithm, 1 is balanced between the two dimensions, 2 is twice the
weight for space)

A string indicating if a classical lag must be used ("mean") or if a weighted
median must be used ("median"). When working with rasters, a function can be
given (or a string which will be parsed). It will be applied to all the pixels values
in the matrix designated by the parameter window and weighted according to the
values of this matrix. Typically, to obtain an average of the pixels in a 3x3 matrix
one could use the function sum (or "sum") and set the window as: window <-
matrix(1/9,nrow = 3, ncol = 3). There is one special case when working with
rasters: one can specify "nl" (standing for non-local) which calculated a lagged
version of the input rasters, using the inverse of the euclidean distance as spatial
weights (see the section Advanced examples in the vignette introduction for
more details).

If data is a list of rasters, then a window must be specified instead of a list.w
object. It will be used to calculate a focal function on each raster. The window
must be a square numeric matrix with odd dimensions (such 3x3). The values in
the matrix indicate the weight to give to each pixel and the centre of the matrix
is the centre of the focal function.

A boolean indicatong if a noise cluster must be added to the solution (see details)
A float giving the distance of the noise cluster to each observation
An integer for the maximum number of iterations

The tolerance criterion used in the evaluateMatrices function for convergence
assessment

A boolean to specify if the variables must be centred and reduced (default =
True)

A boolean indicating if the "robust" version of the algorithm must be used (see
details)

A boolean to specify if the progress should be printed

A string indicating how the initial centres must be selected. "random" indicates
that random observations are used as centres. "kpp" use a distance-based method
resulting in more dispersed centres at the beginning. Both of them are heuristic.

An integer used for random number generation. It ensures that the starting cen-
tres will be the same if the same value is selected.

The implementation is based on the following article : doi:10.1016/j.patcog.2006.07.011.

https://doi.org/10.1016/j.patcog.2006.07.011

SFCMeans 43

the membership matrix (u) is calculated as follow

(o = vill> + all = vilP) /o)
51l — 03112 + alli — e[F) 17010

Uik =

the centers of the groups are updated with the following formula

with

Value

N _
o Y opeg Uitk + ady)
= N
(I +a)d> oy ull

vi the center of the group vi
xk the data point k

xk_bar the spatially lagged data point k

An S3 object of class FCMres with the following slots

Centers: a dataframe describing the final centers of the groups

Belongings: the final membership matrix

Groups: a vector with the names of the most likely group for each observation
Data: the dataset used to perform the clustering (might be standardized)
isRaster: TRUE if rasters were used as input data, FALSE otherwise

k: the number of groups

m: the fuzyness degree

alpha: the spatial weighting parameter (if SFCM or SGFCM)

beta: beta parameter for generalized version of FCM (GFCM or SGFCM)
algo: the name of the algorithm used

rasters: a list of rasters with membership values and the most likely group (if rasters were
used)

missing: a boolean vector indicating raster cell with data (TRUE) and with NA (FALSE) (if
rasters were used)

maxiter: the maximum number of iterations used

tol: the convergence criterio

lag_method: the lag function used (if SFCM or SGFCM)

nblistw: the neighbours list used (if vector data were used for SFCM or SGFCM)
window: the window used (if raster data were used for SFCM or SGFCM)

44 SGFCMeans

Examples

data(LyonIris)

AnalysisFields <-c(”Lden”,"NO2","PM25","VegHautPrt","Pct0_14","Pct_65","Pct_Img",
"TxChom1564","Pct_brevet"”,"NivVieMed")

dataset <- sf::st_drop_geometry(LyonIris[AnalysisFields])

queen <- spdep::poly2nb(LyonIris,queen=TRUE)

Wqgueen <- spdep::nb2listw(queen,style="W")

result <- SFCMeans(dataset, Wqueen,k = 5, m = 1.5, alpha = 1.5, standardize = TRUE)

SGFCMeans SGFCMeans

Description

spatial version of the generalized c-mean algorithm (SGFCMeans)

Usage

SGFCMeans (
data,
nblistw = NULL,
K,
m,
alpha,
beta,
lag_method = "mean”,
window = NULL,
maxiter = 500,
tol = 0.01,
standardize = TRUE,
robust = FALSE,
noise_cluster = FALSE,

delta = NULL,
verbose = TRUE,
init = "random”,
seed = NULL
)
Arguments
data A dataframe with only numerical variables. Can also be a list of rasters (pro-
duced by the package raster). In that case, each raster is considered as a variable
and each pixel is an observation. Pixels with NA values are not used during the
classification.
nblistw A list.w object describing the neighbours typically produced by the spdep pack-

age. Required if data is a dataframe, see the parameter window if you use a list
of rasters as input.

SGFCMeans

k
m
alpha

beta

lag_method

window

maxiter

tol

standardize

robust

noise_cluster
delta
verbose

init

seed

Details

45

An integer describing the number of cluster to find
A float for the fuzziness degree

A float representing the weight of the space in the analysis (0 is a typical fuzzy-
c-mean algorithm, 1 is balanced between the two dimensions, 2 is twice the
weight for space)

A float for the beta parameter (control speed convergence and classification
crispness)

A string indicating if a classical lag must be used ("mean") or if a weighted
median must be used ("median"). When working with rasters, a function can be
given (or a string which will be parsed). It will be applied to all the pixels values
in the matrix designated by the parameter window and weighted according to the
values of this matrix. Typically, to obtain an average of the pixels in a 3x3 matrix
one could use the function sum (or "sum") and set the window as: window <-
matrix(1/9,nrow = 3, ncol = 3). There is one special case when working with
rasters: one can specify "nl" (standing for non-local) which calculated a lagged
version of the input rasters, using the inverse of the euclidean distance as spatial
weights (see the section Advanced examples in the vignette introduction for
more details).

If data is a list of rasters, then a window must be specified instead of a list.w
object. It will be used to calculate a focal function on each raster. The window
must be a square numeric matrix with odd dimensions (such 3x3). The values in
the matrix indicate the weight to give to each pixel and the centre of the matrix
is the centre of the focal function.

An integer for the maximum number of iterations

The tolerance criterion used in the evaluateMatrices function for convergence
assessment

A boolean to specify if the variables must be centred and reduced (default =
True)

A boolean indicating if the "robust" version of the algorithm must be used (see
details)

A boolean indicatong if a noise cluster must be added to the solution (see details)
A float giving the distance of the noise cluster to each observation
A boolean to specify if the progress should be printed

A string indicating how the initial centres must be selected. "random" indicates
that random observations are used as centres. "kpp" use a distance-based method
resulting in more dispersed centres at the beginning. Both of them are heuristic.

An integer used for random number generation. It ensures that the starting cen-
tres will be the same if the same value is selected.

The implementation is based on the following article : doi:10.1016/j.dsp.2012.09.016.

https://doi.org/10.1016/j.dsp.2012.09.016

46

SGFCMeans

the membership matrix (u) is calculated as follow

(Nl — v3l[2 — by + af[gh — vi|2) Y/ m=1)
Simi(llze — v|2 = be + af [— vy]|2)(=1/m=D)

Uik =

the centers of the groups are updated with the following formula

e (ko)
- N
(1+a) S0, up

i

with

* vi the center of the group vi
 xk the data point k
» xk_bar the spatially lagged data point k

b, = 8 x min(||xg — v|])

Value

An S3 object of class FCMres with the following slots

* Centers: a dataframe describing the final centers of the groups

* Belongings: the final membership matrix

* Groups: a vector with the names of the most likely group for each observation
 Data: the dataset used to perform the clustering (might be standardized)

* isRaster: TRUE if rasters were used as input data, FALSE otherwise

* k: the number of groups

* m: the fuzyness degree

* alpha: the spatial weighting parameter (if SFCM or SGFCM)

* beta: beta parameter for generalized version of FCM (GFCM or SGFCM)

* algo: the name of the algorithm used

e rasters: a list of rasters with membership values and the most likely group (if rasters were
used)

* missing: a boolean vector indicating raster cell with data (TRUE) and with NA (FALSE) (if
rasters were used)

* maxiter: the maximum number of iterations used

* tol: the convergence criterio

* lag_method: the lag function used (if SFCM or SGFCM)

* nblistw: the neighbours list used (if vector data were used for SFCM or SGFCM)
¢ window: the window used (if raster data were used for SFCM or SGFCM)

spatialDiag 47

Examples

data(LyonIris)

AnalysisFields <-c("”Lden",”N02","PM25","VegHautPrt”, "Pct@_14","Pct_65","Pct_Img",
"TxChom1564","Pct_brevet"”,”"NivVieMed")

dataset <- sf::st_drop_geometry(LyonIris[AnalysisFields])

queen <- spdep::poly2nb(LyonIris,queen=TRUE)

Wqueen <- spdep::nb2listw(queen,style="W")

result <- SGFCMeans(dataset, Wqueen,k =5, m= 1.5, alpha=1.5, beta =0.5, standardize = TRUE)

spatialDiag Spatial diagnostic

Description

Utility function to facilitate the spatial diagnostic of a classification

Calculate the following indicators: Moran I index (spdep::moranl) for each column of the member-
ship matrix, Join count test (spdep::joincount.multi) for the most likely groups of each datapoint,
Spatial consistency index (see function spConsistency) and the Elsa statistic (see function calcElsa).
Note that if the FCMres object given was constructed with rasters, the joincount statistic is not cal-
culated and no p-values are provided for the Moran I indices.

Usage

spatialDiag(
object,
nblistw = NULL,
window = NULL,
undecided = NULL,
matdist = NULL,

nrep = 50
)
Arguments

object A FCMres object, typically obtained from functions CMeans, GCMeans, SFCMeans,
SGFCMeans. Can also be a simple membership matrix.

nblistw A list.w object describing the neighbours typically produced by the spdep pack-
age. Required if data is a dataframe, see the parameter window if you use a list
of rasters as input. Can also be NULL if object is a FCMres object.

window If rasters were used for the classification, the window must be specified instead
of a list.w object. Can also be NULL if object is a FCMres object.

undecided A float giving the threslhod to detect undecided observations. An observation
is undecided if its maximum membership value is bellow this float. If null, no
observations are undecided.

matdist A matrix representing the dissimilarity between the clusters. The matrix must

be squared and the diagonal must be filled with zeros.

48 spConsistency

nrep An integer indicating the number of permutation to do to simulate the random
distribution of the spatial inconsistency

Value

A named list with :

* MoranValues : the moran I values for each column of the membership matrix (spdep::Moranl)

* JoinCounts : the result of the join count test calculated with the most likely group for each
datapoint (spdep::joincount.multi)

» SpConsist : the mean value of the spatial consistency index (the lower, the better, see ?spCon-
sistency for details)

Examples

data(LyonIris)

AnalysisFields <-c("”Lden","”N02","PM25","VegHautPrt"”, "Pct@_14","Pct_65","Pct_Img",
"TxChom1564","Pct_brevet"”,"NivVieMed")

dataset <- sf::st_drop_geometry(LyonIris[AnalysisFields])

queen <- spdep::poly2nb(LyonIris,queen=TRUE)

Wgueen <- spdep::nb2listw(queen,style="W")

result <- SFCMeans(dataset, Wqueen,k = 5, m = 1.5, alpha = 1.5, standardize = TRUE)
spatialDiag(result, undecided=0.45, nrep=30)

spConsistency Spatial consistency index

Description

Calculate a spatial consistency index

Usage

spConsistency(
object,
nblistw = NULL,
window = NULL,

nrep = 999,
adj = FALSE,
mindist = le-11
)
Arguments
object A FCMres object, typically obtained from functions CMeans, GCMeans, SFCMeans,

SGFCMeans. Can also be a simple membership matrix.

spConsistency 49

nblistw A list.w object describing the neighbours typically produced by the spdep pack-
age. Required if data is a dataframe, see the parameter window if you use a list
of rasters as input. Can also be NULL if object is a FCMres object.

window if rasters were used for the classification, the window must be specified instead
of a list.w object. Can also be NULL if object is a FCMres object.

nrep An integer indicating the number of permutation to do to simulate spatial ran-
domness. Note that if rasters are used, each permutation can be very long.

adj A boolean indicating if the adjusted version of the indicator must be calculated
when working with rasters (globally standardized). When working with vectors,
see the function adjustSpatialWeights to modify the list.w object.

mindist When adj is true, a minimum value for distance between two observations. If
two neighbours have exactly the same values, then the euclidean distance be-
tween them is 0, leading to an infinite spatial weight. In that case, the minimum
distance is used instead of 0.

Details

This index is experimental, it aims to measure how much a clustering solution is spatially consistent.
A classification is spatially inconsistent if neighbouring observation do not belong to the same
group. See detail for a description of its calculation

The total spatial inconsistency (*Scr*) is calculated as follow
isp =2 > (win — ujp)” + Wi
i j ok

With U the membership matrix, i an observation, k the neighbours of i and W the spatial weight
matrix This represents the total spatial inconsistency of the solution (true inconsistency) We propose
to compare this total with simulated values obtained by permutations (simulated inconsistency).
The values obtained by permutation are an approximation of the spatial inconsistency obtained in a
random context Ratios between the true inconsistency and simulated inconsistencies are calculated
A value of 0 depict a situation where all observations are identical to their neighbours A value
of 1 depict a situation where all observations are as much different as their neighbours that what
randomness can produce A classification solution able to reduce this index has a better spatial
consistency

Value

A named list with

* Mean : the mean of the spatial consistency index

prt05 : the 5th percentile of the spatial consistency index

prt95 : the 95th percentile of the spatial consistency index
» samples : all the value of the spatial consistency index

 sum_diff : the total sum of squarred difference between observations and their neighbours

50 spiderPlots

Examples

data(LyonIris)

AnalysisFields <-c("”Lden",”N02","PM25","VegHautPrt”, "Pct@_14","Pct_65","Pct_Img",
"TxChom1564","Pct_brevet"”,”"NivVieMed")

dataset <- sf::st_drop_geometry(LyonIris[AnalysisFields])

queen <- spdep::poly2nb(LyonIris,queen=TRUE)

Wqueen <- spdep::nb2listw(queen,style="W")

result <- SFCMeans(dataset, Wqueen,k = 5, m = 1.5, alpha = 1.5, standardize = TRUE)
NOTE : more replications are needed for proper inference
spConsistency(result$Belongings, nblistw = Wqueen, nrep=25)

spiderPlots Spider chart

Description

Display spider charts to quickly compare values between groups

Usage

spiderPlots(data, belongmatrix, chartcolors = NULL)

Arguments

data A dataframe with numeric columns
belongmatrix A membership matrix

chartcolors A vector of color names used for the spider plot

Details

For each group, the weighted mean of each variable in data is calculated based on the probability of
belonging to this group of each observation. On the chart the exterior ring represents the maximum
value obtained for all the groups and the interior ring the minimum. The groups are located between
these two limits in a linear way.

Value

NULL, the plots are displayed directly by the function (see fmsb::radarchart)

Examples

data(LyonIris)

AnalysisFields <-c(”Lden”,”N02","PM25","VegHautPrt”,"Pct@_14","Pct_65","Pct_Img",
"TxChom1564","Pct_brevet"”,"NivVieMed")

dataset <- sf::st_drop_geometry(LyonIris[AnalysisFields])

queen <- spdep::poly2nb(LyonIris,queen=TRUE)

Wgueen <- spdep::nb2listw(queen,style="W")

result <- SFCMeans(dataset, Wqueen,k = 5, m = 1.5, alpha = 1.5, standardize = TRUE)
spiderPlots(dataset,result$Belongings)

sp_clust_explorer 51

sp_clust_explorer Classification result explorer

Description

Start a local Shiny App to explore the results of a classification

Usage

sp_clust_explorer(
object = NULL,
spatial = NULL,
membership = NULL,
dataset = NULL,

port = 8100,
)
Arguments
object A FCMres object, typically obtained from functions CMeans, GCMeans, SFCMeans,
SGFCMeans
spatial A feature collection (sf) used to map the observations. Only needed if object
was not created from rasters.
membership A matrix or a dataframe representing the membership values obtained for each
observation. If NULL, then the matrix is extracted from object.
dataset A dataframe or matrix representing the data used for the classification. If NULL,
then the matrix is extracted from object.
port An integer of length 4 indicating the port on which to start the Shiny app. Default
is 8100
Other parameters passed to the function runApp
Examples
Not run:
data(LyonIris)

#selecting the columns for the analysis
AnalysisFields <-c("”Lden”,"NO2","PM25","VegHautPrt", "Pct0_14",
"Pct_65","Pct_Img","TxChom1564", "Pct_brevet"”, "NivVieMed")

#rescaling the columns
Data <- sf::st_drop_geometry(LyonIris[AnalysisFields])
for (Col in names(Data)){
Data[[Col]] <- as.numeric(scale(Data[[Col]l]))
3

52 summarizeClusters

Cmean <- CMeans(Data,4,1.5,500,standardize = FALSE, seed = 456, tol = 0.00001, verbose = FALSE)
sp_clust_explorer(Cmean, LyonlIris)

End(Not run)

standardizer Standardizing helper

Description

Create functions to standardize and unstandardize data

Usage
standardizer(x)
Arguments
X a numeric vector or a data.frame with only numeric columns. Non numeric
columns are dropped.
Value

If x was a vector, the function returns a list containing two functions : scale and unscale. The first
one is an equivalent of the classical function scale(x, center = TRUE, scale = TRUE). The second
can be used to reverse the scaling and get back original units. If x was a data.frame, the same pair
of functions is returned inside of a list for each numeric column.

Examples

data(LyonIris)
LyonScales <- standardizer(sf::st_drop_geometry(LyonIris))

summarizeClusters Descriptive statistics by group

Description

Calculate some descriptive statistics of each group

Usage

summarizeClusters(data, belongmatrix, weighted = TRUE, dec = 3, silent = TRUE)

summary.FCMres 53

Arguments

data The original dataframe used for the classification
belongmatrix A membership matrix

weighted A boolean indicating if the summary statistics must use the membership matrix
columns as weights (TRUE) or simply assign each observation to its most likely
cluster and compute the statistics on each subset (FALSE)

dec An integer indicating the number of digits to keep when rounding (default is 3)
silent A boolean indicating if the results must be printed or silently returned
Value

A list of length k (the number of group). Each element of the list is a dataframe with summary
statistics for the variables of data for each group

Examples

data(LyonIris)

AnalysisFields <-c("”Lden","”N02","PM25","VegHautPrt"”, "Pct@_14","Pct_65","Pct_Img",
"TxChom1564","Pct_brevet"”,"NivVieMed")

dataset <- sf::st_drop_geometry(LyonIris[AnalysisFields])

queen <- spdep::poly2nb(LyonIris,queen=TRUE)

Wqgueen <- spdep::nb2listw(queen,style="W")

result <- SFCMeans(dataset, Wqueen,k = 5, m = 1.5, alpha = 1.5, standardize = TRUE)
summarizeClusters(dataset, result$Belongings)

summary.FCMres Summary method for FCMres

Description

Calculate some descriptive statistics of each group of a FCMres object

Usage

S3 method for class 'FCMres'

summary(object, data = NULL, weighted = TRUE, dec = 3, silent = TRUE, ...)
Arguments

object A FCMres object, typically obtained from functions CMeans, GCMeans, SFCMeans,

SGFCMeans
data A dataframe to use for the summary statistics instead of obj$data
weighted A boolean indicating if the summary statistics must use the membership matrix

columns as weights (TRUE) or simply assign each observation to its most likely
cluster and compute the statistics on each subset (FALSE)

dec An integer indicating the number of digits to keep when rounding (default is 3)
silent A boolean indicating if the results must be printed or silently returned
Not used

uncertaintyMap

Value

A list of length k (the number of group). Each element of the list is a dataframe with summary
statistics for the variables of data for each group

Examples

data(LyonIris)

AnalysisFields <-c("”Lden”,"NO2","PM25","VegHautPrt”,"Pct@_14","Pct_65","Pct_Img",
"TxChom1564","Pct_brevet"”,"NivVieMed")

dataset <- sf::st_drop_geometry(LyonIris[AnalysisFields])

queen <- spdep::poly2nb(LyonIris,queen=TRUE)

Wgueen <- spdep::nb2listw(queen,style="W")

result <- SFCMeans(dataset, Wqueen,k = 5, m = 1.5, alpha = 1.5, standardize = TRUE)
summary (result)

uncertaintyMap Uncertainty map

Description

Return a map to visualize membership matrix

Usage

uncertaintyMap(
geodata,
belongmatrix,
njit = 150,
radius = NULL,
colors = NULL,
pt_size = 0.05

Arguments

geodata An object of class feature collection from sf ordered like the original data used
for the clustering.

belongmatrix A membership matrix
njit The number of points to map on each feature.

radius When mapping points, the radius indicates how far random points will be plotted
around the original features.

colors A vector of colors to use for the groups.

pt_size A float giving the size of the random points on the final map (default is 0.05)

undecidedUnits 55

Details

This function maps the membership matrix by plotting random points in polygons, along lines
or around points representing the original observations. Each cluster is associated with a color
and each random point has a probability to be of that color equal to the membership value of the
feature it belongs itself. Thus, it is possible to visualize regions with uncertainty and to identify the
strongest clusters.

Value

a map created with tmap

Examples

Not run:

data(LyonIris)

AnalysisFields <-c("Lden",”N02","PM25","VegHautPrt"”, "Pct@_14","Pct_65","Pct_Img",
"TxChom1564","Pct_brevet”,"NivVieMed")

dataset <- sf::st_drop_geometry(LyonIris[AnalysisFields])

queen <- spdep::poly2nb(LyonIris,queen=TRUE)

Wqueen <- spdep::nb2listw(queen,style="W")

result <- SFCMeans(dataset, Wqueen,k = 5, m = 1.5, alpha = 1.5, standardize = TRUE)

uncertaintyMap(LyonIris, result$Belongings)

End(Not run)

undecidedUnits Undecided observations

Description

Identify the observation for which the classification is uncertain

Usage

undecidedUnits(belongmatrix, tol = 0.1, out = "character")

Arguments

belongmatrix The membership matrix obtained at the end of the algorithm

tol A float indicating the minimum required level of membership to be not consid-
ered as undecided

out The format of the output vector. Default is "character". If "numeric", then the
undecided units are set to -1.

Value

A vector indicating the most likely group for each observation or "Undecided" if the maximum
probability for the observation does not reach the value of the tol parameter

56 violinPlots

Examples

data(LyonIris)

AnalysisFields <-c("”Lden",”N02","PM25","VegHautPrt”, "Pct@_14","Pct_65","Pct_Img",
"TxChom1564","Pct_brevet"”,”"NivVieMed")

dataset <- sf::st_drop_geometry(LyonIris[AnalysisFields])

queen <- spdep::poly2nb(LyonIris,queen=TRUE)

Wqueen <- spdep::nb2listw(queen,style="W")

result <- SFCMeans(dataset, Wqueen,k = 5, m = 1.5, alpha = 1.5, standardize = TRUE)
undecidedUnits(result$Belongings, tol = 0.45)

violinPlots Violin plots

Description

Return violin plots to compare the distribution of each variable for each group.

Usage

violinPlots(data, groups)

Arguments

data A dataframe with numeric columns

groups A vector indicating the group of each observation
Value

A list of plots created with ggplot2

Examples

Not run:

data(LyonIris)

AnalysisFields <-c("Lden",”N02","PM25","VegHautPrt"”, "Pct@_14","Pct_65","Pct_Img",
"TxChom1564","Pct_brevet"”,"NivVieMed")

dataset <- sf::st_drop_geometrie(LyonIris[AnalysisFields])

queen <- spdep::poly2nb(LyonIris,queen=TRUE)

Wqueen <- spdep::nb2listw(queen,style="W")

result <- SFCMeans(dataset, Wqueen,k = 5, m = 1.5, alpha = 1.5, standardize = TRUE)
violinPlots(dataset, result$Groups)

End(Not run)

Index

x datasets
LyonIris, 29

adjustSpatialWeights, 3
Arcachon, 4

barPlots, 5
boot_group_validation, 5
boot_group_validation.mc, 7

calc_local_moran_raster, 21
calc_moran_raster, 21
calcCalinskiHarabasz, 9
calcDaviesBouldin, 10
calcELSA, 11
calcexplainedInertia, 12
calcFukuyamaSugeno, 13
calcFuzzyELSA, 14
calcGD43, 15

calcGD53, 16
calcNegentropyI, 17
calcqualityIndexes, 18
calcSilhouetteldx, 19
calcUncertaintyIndex, 20
cat_to_belongings, 22
catToBelongings (cat_to_belongings), 22
circular_window, 22
CMeans, 23

GCMeans, 25
groups_matching, 27

is.FCMres, 28

load_arcachon (Arcachon), 4
LyonIris, 29

mapClusters, 30

plot.FCMres, 31
predict.FCMres, 32

57

predict_membership, 33
print.FCMres, 34

select_parameters, 35

select_parameters.mc, 38

selectParameters (select_parameters), 35

selectParameters.mc
(select_parameters.mc), 38

SFCMeans, 41

SGFCMeans, 44

sp_clust_explorer, 51

spatialDiag, 47

spConsistency, 48

spiderPlots, 50

standardizer, 52

summarizeClusters, 52

summary.FCMres, 53

uncertaintyMap, 54
undecidedUnits, 55

violinPlots, 56

	adjustSpatialWeights
	Arcachon
	barPlots
	boot_group_validation
	boot_group_validation.mc
	calcCalinskiHarabasz
	calcDaviesBouldin
	calcELSA
	calcexplainedInertia
	calcFukuyamaSugeno
	calcFuzzyELSA
	calcGD43
	calcGD53
	calcNegentropyI
	calcqualityIndexes
	calcSilhouetteIdx
	calcUncertaintyIndex
	calc_local_moran_raster
	calc_moran_raster
	cat_to_belongings
	circular_window
	CMeans
	GCMeans
	groups_matching
	is.FCMres
	LyonIris
	mapClusters
	plot.FCMres
	predict.FCMres
	predict_membership
	print.FCMres
	select_parameters
	select_parameters.mc
	SFCMeans
	SGFCMeans
	spatialDiag
	spConsistency
	spiderPlots
	sp_clust_explorer
	standardizer
	summarizeClusters
	summary.FCMres
	uncertaintyMap
	undecidedUnits
	violinPlots
	Index

