Package 'iC10'

July 19, 2024

Type Package

Title A Copy Number and Expression-Based Classifier for Breast Tumours

Version 2.0.2

Date 2024-07-16

Maintainer Oscar M Rueda < Oscar.Rueda@mrc-bsu.cam.ac.uk>

Description

Implementation of the classifier described in the paper Ali HR et al (2014) <doi:10.1186/s13059-014-0431-1>. It uses copy number and/or expression form breast cancer data, trains a Tibshirani's 'pamr' classifier with the features available and predicts the iC10 group.

License GPL-3

Imports pamr, impute, iC10TrainingData

NeedsCompilation no

Repository CRAN

Date/Publication 2024-07-19 09:00:26 UTC

Author Oscar M Rueda [aut, cre] (<https://orcid.org/0000-0003-0008-4884>)

Contents

iC10-package	2
compare	3
getCNfeatures	4
getExpfeatures	5
goodnessOfFit	6
iC10	7
matchFeatures	8
normalizeFeatures	10
plot.iC10	
print.iC10	12
summary.iC10	13

Index

```
iC10-package
```

Description

Implementation of the classifier described in the paper Ali HR et al (2014) <doi:10.1186/s13059-014-0431-1>. It uses copy number and/or expression form breast cancer data, trains a Tibshirani's 'pamr' classifier with the features available and predicts the iC10 group.

Details

The DESCRIPTION file:

Package:	iC10
Type:	Package
Title:	A Copy Number and Expression-Based Classifier for Breast Tumours
Version:	2.0.2
Date:	2024-07-16
Authors@R:	person("Oscar M", "Rueda", , "Oscar.Rueda@mrc-bsu.cam.ac.uk", role = c("aut", "cre"), comment = c(
Maintainer:	Oscar M Rueda <oscar.rueda@mrc-bsu.cam.ac.uk></oscar.rueda@mrc-bsu.cam.ac.uk>
Description:	Implementation of the classifier described in the paper Ali HR et al (2014) <doi:10.1186 s13059-014-04<="" td=""></doi:10.1186>
License:	GPL-3
Imports:	pamr, impute, iC10TrainingData
Packaged:	2015-09-23 02:37:41 UTC; rueda01
NeedsCompilation:	no
Repository:	CRAN
Date/Publication:	2015-09-23 08:05:08
Author:	Oscar M Rueda [aut, cre] (<https: 0000-0003-0008-4884="" orcid.org="">)</https:>

Index of help topics:

compare	Compare results of the iC10 classifier
getCNfeatures	Internal function for matching copy number
	features.
getExpfeatures	Internal function for matching expression
	features.
goodnessOfFit	Goodness of fit results of the iC10 classifier
iC10	A copy number and expression-based classfier
	for breast cancers
iC10-package	A Copy Number and Expression-Based Classifier
	for Breast Tumours
matchFeatures	Matching features from the classifier to the
	test data.
normalizeFeatures	Normalization of expression features
plot.iC10	Plot results of the iC10 classifier
print.iC10	Print results of the iC10 classifier
summary.iC10	Summary results of the iC10 classifier

compare

iC10 implements the classifier described in the paper 'Genome-driven integrated classification of breast cancer validated in over 7,500 samples' (Ali HR et al., Genome Biology 2014). It uses copy number and/or expression form breast cancer data, trains a pamr classifier (Tibshirani et al.) with the features available and predicts the iC10 group.

Author(s)

NA

Maintainer: Oscar M Rueda < Oscar.Rueda@mrc-bsu.cam.ac.uk>

References

Ali HR et al. Genome-driven integrated classification of breast cancer validated in over 7,500 samples. Genome Biology 2014; 15:431. Curtis et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 2012; 486:346-352. Tibshirani et al. Diagnosis of multiple cancer types by shrunken centroids of gene expression. PNAS 2002; 99(10):6567-6572.

Examples

```
require(iC10TrainingData)
data(train.CN)
data(train.Exp)
features <- matchFeatures(Exp=train.Exp, Exp.by.feat="probe")
features <- normalizeFeatures(features, "scale")
res <- iC10(features)
summary(res)
goodnessOfFit(res, newdata=features)
compare(res, iC10=1:2, newdata=features)
compare(res, iC10=2:4, newdata=features)
```

compare

Compare results of the iC10 classifier

Description

This function plots the centroids of the training set versus the average profiles of the new data classified in each group.

Usage

```
compare(obj, iC10=1:10, newdata, name.test="Test",...)
## S3 method for class 'iC10'
compare(obj, iC10=1:10, newdata, name.test="Test",...)
```

Arguments

obj	An object of class iC10, a result of a call to iC10()	
iC10	Groups to plot	
newdata	Set of features of the new data to compare. They must be the same samples classified and contained in x. A result of a call to matchFeatures() or normalizeFeatures()	
name.test	Name of the new data set to appear in the text of the plot	
	Additional arguments passed to plot()	

Value

A plot is returned with two plots per groups requested.

Author(s)

Oscar M. Rueda

References

Ali HR et al. Genome-driven integrated classification of breast cancer validated in over 7,500 samples. Genome Biology 2014; 15:431. Curtis et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 2012; 486:346-352.

See Also

iC10, plot.iC10, matchFeatures, normalizeFeatures

Examples

```
require(iC10TrainingData)
data(train.CN)
data(train.Exp)
features <- matchFeatures(Exp=train.Exp, Exp.by.feat="probe")
features <- normalizeFeatures(features, "scale")
res <- iC10(features)
compare(res, 1:3, newdata=features)</pre>
```

getCNfeatures Internal function for matching copy number features.

Description

This function should not be called directly

Usage

```
getCNfeatures(CN, Probes, Map, by.feat, ref, Synonyms)
```

getExpfeatures

Arguments

CN	CN features matrix
Probes	Vector with the probes to match
Мар	data.frame with the genomic description of the features to match
by.feat	"probe" or "gene", indicating if match should be done by probe position or gene name.
ref	hg18 or hg19 (only relevant if matching is done by probe position).
Synonyms	data.frame with available synonym gene names to match (only relevant if match- ing is done by gene name).

Value

A matrix with the copy number features

Author(s)

Oscar M Rueda

getExpfeatures Internal function for matching expression features.

Description

Internal function for matching expression features.

Usage

getExpfeatures(Exp, Probes, Synonyms, by.feat)

Arguments

Exp	Matrix of expression features
Probes	Vector of probes to match
Synonyms	vector of synonyms fo gene names
by.feat	either "probe" or "gene"

Value

A matrix with the Probes in Exp.

Note

This function is not supposed to be called directly. use matchFeatures instead.

Author(s)

Oscar M Rueda

References

Curtis et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 2012; 486:346-352.

See Also

matchFeatures

goodnessOfFit Goodness of fit results of the iC10 classifier

Description

Goodness of fit results of the iC10 classifier: this function computes correlations between the signatures of the training dataset and the classified features.

Usage

```
goodnessOfFit(obj, iC10=1:10, newdata=NULL,...)
## S3 method for class 'iC10'
goodnessOfFit(obj, iC10=1:10, newdata=NULL,...)
```

Arguments

obj	An object of iC10 class.
iC10	Groups to compute goodness of fit.
newdata	The feature data to compute the goodness of fit. Must be the samples classified in obj. It can be a call to matchFeatures or normalizeFeatures. If NULL, obj\$fitted is used.
	Additional arguments passed to cor (like method; Default is pearson)

Value

It prints the correlation for each iC10.

Author(s)

Oscar M Rueda

References

Ali HR et al. Genome-driven integrated classification of breast cancer validated in over 7,500 samples. Genome Biology 2014; 15:431. Curtis et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 2012; 486:346-352.

iC10

See Also

iC10

Examples

```
require(iC10TrainingData)
data(train.CN)
data(train.Exp)
features <- matchFeatures(Exp=train.Exp, Exp.by.feat="probe")
features <- normalizeFeatures(features, "scale")
res <- iC10(features)
goodnessOfFit(res, newdata=features)</pre>
```

iC10

A copy number and expression-based classfier for breast cancers

Description

iC10 implements the classifier described in the paper 'Genome-driven integrated classification of breast cancer validated in over 7,500 samples' (Ali HR et al., Genome Biology 2014). It uses copy number and/or expression form breast cancer data, trains a pamr classifier (Tibshirani et al.) with the features available and predicts the iC10 group.

Usage

iC10(x, seed=25435)

Arguments

х	An object with class iC10features: A list with elements 'train.CN', 'train.Exp', 'train.iC10', 'CN', 'Exp', 'map.cn', 'map.exp'
seed	seed to initialize random number generator. It is passed to set.seed(). See details.

Details

This function trains a pamr classifier and predicts the set of samples. The shrinkage parameter is obtained with crossvalidation, therefore different runs can give different results (unless a seed is specified).

Value

An object of class iC10. A list with the following elements:

class	Prediction classes for the samples
posterior	Probablitites for each sample to belong to each of the 10 groups
centroids	Shrunken Centroids for each of the 10 groups.

matchFeatures

fitted	Normalized features for the samples classified.
map.cn	Annotation data for the copy number features
map.exp	Annotation data for the expression features

Author(s)

Oscar M. Rueda

References

Ali HR et al. Genome-driven integrated classification of breast cancer validated in over 7,500 samples. Genome Biology 2014; 15:431. Curtis et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 2012; 486:346-352. Tibshirani et al. Diagnosis of multiple cancer types by shrunken centroids of gene expression. PNAS 2002; 99(10):6567-6572.

See Also

See pamr.train, pamr.cv and pamr.predict in package pamr.

Examples

```
require(iC10TrainingData)
data(train.CN)
data(train.Exp)
features <- matchFeatures(Exp=train.Exp, Exp.by.feat="probe")
features <- normalizeFeatures(features, "scale")
res <- iC10(features)</pre>
```

matchFeatures Matching features from the classifier to the test data.

Description

This function matches available copy number and/or expression data features to the training signatures; using either genomic position or HUGO gene name for copy number features and either Illumina probe names or HUGO gene name for expression features.

Usage

```
matchFeatures(CN = NULL, Exp = NULL,
CN.by.feat = c("gene", "probe"),
Exp.by.feat = c("gene", "probe"),
ref="hg19")
```

matchFeatures

Arguments

CN	Data must be log2 copy number ratios. Two formats are allowed: - a matrix where each row represents a gene and each column a sample. In this case CN.by.feat must be "gene" and the rownames must be the hgnc gene names a data.frame with segmented data. The following columns must exist: 'ID' for the sample name, 'chromosome_name' for the chromosome (must be numeric), 'loc.start' for the start position of the region, 'loc.end' for the end position of the region, 'seg.mean' for the log2ratio of the segment. If NULL, copy number is not used in the classifier.
Exp	Matrix with the expression data to classify. Each row must be a gene or an Illumina probe, and each column must correspond to a sample. Rownames must be either Illumina probes, in which case Exp.by.feat must be "probe"; or hgnc gene names, in which case Exp.by.feat must be "gene". If NULL, expression is not used in the classifier.
CN.by.feat	Either "probe" or "gene", Default is "probe".
Exp.by.feat	Either "probe" or "gene", Default is "gene".
ref	Either "hg18", "hg19" or "hg38". It is used to match the copy number probes if CN.by.feat is "probe"

Details

One of CN or Exp must be not NULL. If matching is done by gene, hgnc gene name is used to match the rownames of the features. A list of synonym gene names is used (see Map.All). For copy number features matched by probe, the maximum log ratio in absolute value inside the limits of the feature is used. If there is no copy number in that region, the value of the probe before it is used.

Value

A list with the following elements is returned:

CN	copy number data to classify
train.CN	copy number training data
Exp	expression data to classify
train.Exp	expression training data
train.iC10	iC10 assignments for the training data
map.cn	annotation data for the copy number features
map.exp	annotation data for the expression features

Note

Note that the training set will be different, depending on the features matched. Genomic annotation for the training dataset has been obtained from Mark Dunning's lluminaHumanv3.db package.

Author(s)

Oscar M Rueda

References

Ali HR et al. Genome-driven integrated classification of breast cancer validated in over 7,500 samples. Genome Biology 2014; 15:431. Curtis et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 2012; 486:346-352.

See Also

normalizeFeatures, iC10

Examples

```
require(iC10TrainingData)
data(train.CN)
data(train.Exp)
features <- matchFeatures(Exp=train.Exp,Exp.by.feat="probe", ref="hg18")
str(features)</pre>
```

normalizeFeatures Normalization of expression features

Description

Normalization of expression features. Several methods available in the package CONOR can be used.

Usage

```
normalizeFeatures(x, method=c("none", "scale"))
```

Arguments

Х	An object result of a call to matchFeatures
method	Several methods are available: "none": No normalization is done "scale": Each
	expression feature is scaled to have zero mean and standard deviation 1

Details

No further normalization is needed on the copy number, as log2 ratios are comparable between platforms.

Value

A list of the same format as matchFeatures, but with train.Exp anfd Exp normalized.

Note

As CONOR package is no longer maintained, the methods are not available temporarily. We will include more normalization methods in the next version of this package.

plot.iC10

Author(s)

Oscar M Rueda

References

Ali HR et al. Genome-driven integrated classification of breast cancer validated in over 7,500 samples. Genome Biology 2014; 15:431. Curtis et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 2012; 486:346-352.

Examples

```
require(iC10TrainingData)
data(train.CN)
data(train.Exp)
features <- matchFeatures(Exp=train.Exp,
Exp.by.feat="probe", ref="hg18")
features <- normalizeFeatures(features, "scale")</pre>
```

plot.iC10

Plot results of the iC10 classifier

Description

Plot results of the iC10 classifier, in two different formats: either the signatures of the training set or the signatures of the new data classified.

Usage

S3 method for class 'iC10'
plot(x, sample.name=1, newdata = NULL,...)

Arguments

х	An object of iC10 class:
sample.name	Number of sample to plot (if newdata is NULL). It can be either a number or a character with the sample name.
newdata	An object result to call to matchFeatures or normalizeFeatures containing the features of the samples to plot.
	Additional arguments passed to plot.

Details

Two types of plots can be produced. If newdata is NULL, a panel 6x2 is drawn with the 10 profiles of the signatures of the training set and the profile of the features of sample.name and the distribution of the probabilities of classification to each iC10 for that sample. If newdata is not nutll, a panel 6x2 (with the 11th panel empty) is drawn with the 10 profiles of newdata samples and their distribution into the clusters. The features are sorted by type: copy number (if available) are drawn in grey, and then expression, each of them are sorted by genomic position.

Value

A 6x2 plot is produced.

Author(s)

Oscar M Rueda

References

Ali HR et al. Genome-driven integrated classification of breast cancer validated in over 7,500 samples. Genome Biology 2014; 15:431. Curtis et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 2012; 486:346-352.

See Also

iC10

Examples

```
require(iC10TrainingData)
data(train.CN)
data(train.Exp)
features <- matchFeatures(Exp=train.Exp, Exp.by.feat="probe")
features <- normalizeFeatures(features, "scale")
res <- iC10(features)
plot(res, sample.name=10)
plot(res, newdata=features)</pre>
```

print.iC10

Print results of the iC10 classifier

Description

Print results of the iC10 classifier

Usage

S3 method for class 'iC10'
print(x, ...)

Arguments

х	An object of iC10 class:
	Additional arguments passed to print.

Value

It returns a call to str.

Author(s)

Oscar M Rueda

References

Ali HR et al. Genome-driven integrated classification of breast cancer validated in over 7,500 samples. Genome Biology 2014; 15:431. Curtis et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 2012; 486:346-352.

See Also

iC10

Examples

```
require(iC10TrainingData)
data(train.CN)
data(train.Exp)
features <- matchFeatures(Exp=train.Exp, Exp.by.feat="probe")
features <- normalizeFeatures(features, "scale")
res <- iC10(features)
res</pre>
```

summary.iC10 Summary results of the iC10 classifier

Description

Summary results of the iC10 classifier: shows the distribution of samples classified into each iC10 group and a summary of the maximum posterior probablity for each sample. Small values pinpoint samples with no clear group assigned.

Usage

S3 method for class 'iC10'
summary(object, ...)

Arguments

object	An object of iC10 class.
	Additional arguments passed to summary.

Value

The function prints a table of the classification ad a summary of the maximum posterior probability for each sample.

Author(s)

Oscar M Rueda

References

Ali HR et al. Genome-driven integrated classification of breast cancer validated in over 7,500 samples. Genome Biology 2014; 15:431. Curtis et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 2012; 486:346-352. Tibshirani et al. Diagnosis of multiple cancer types by shrunken centroids of gene expression. PNAS 2002; 99(10):6567-6572.

See Also

See iC10 and pamr.train, pamr.cv and pamr.predict in package pamr.

Examples

```
require(iC10TrainingData)
data(train.CN)
data(train.Exp)
features <- matchFeatures(Exp=train.Exp,
Exp.by.feat="probe", ref="hg18")
features <- normalizeFeatures(features, "scale")
res <- iC10(features)
summary(res)</pre>
```

Index

* package iC10-package, 2

compare, 3

getCNfeatures, 4
getExpfeatures, 5
goodnessOfFit, 6

iC10, 4, 7, 10 iC10-package, 2

matchFeatures, 4, 6, 8

normalizeFeatures, 4, 10, 10

plot.iC10, 4, 11
print.iC10, 12

summary.iC10, 13