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a b s t r a c t 

Background and Objective : Competing risk data are frequently interval-censored in real-world applications, 

that is, the exact event time is not precisely observed but is only known to lie between two time points 

such as clinic visits. This type of data requires special handling because the actual event times are un- 

known. To deal with this problem we have developed an easy-to-use open-source statistical software. 

Methods : An approach to perform semiparametric regression analysis of the cumulative incidence func- 

tion with interval-censored competing risks data is the sieve maximum likelihood method based on 

B-splines. An important feature of this approach is that it does not impose restrictive parametric as- 

sumptions. Also, this methodology provides semiparametrically efficient estimates. Implementation of this 

methodology can be easily performed using our new R package intccr . 

Results : The R package intccr performs semiparametric regression analysis of the cumulative incidence 

function based on interval-censored competing risks data. It supports a large class of models including 

the proportional odds and the Fine–Gray proportional subdistribution hazards model as special cases. 

It also provides the estimated cumulative incidence functions for a particular combination of covariate 

values. The package also provides some data management functionality to handle data sets which are in 

a long format involving multiple lines of data per subject. 

Conclusions : The R package intccr provides a convenient and flexible software for the analysis of the 

cumulative incidence function based on interval-censored competing risks data. 

© 2019 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

1. Introduction 

Competing risk data are time-to-event data where there are 

multiple mutually exclusive events or causes of failure. The term 

“competing risks” also includes situations where the scientific in- 

terest is focused on the first occurring event [1,2] . In our mo- 

tivating example, taken from a Human Immunodeficiency Virus 

(HIV) care and treatment program in sub-Saharan Africa, patients 

were at risk of death while receiving antiretroviral treatment (ART) 

and while in care or of becoming lost to care. This latter situa- 

tion is important because patients who are not retained in care 

are less likely to receive ART, can infect others in the commu- 

nity and have worse prognosis themselves. In such studies, the 

interest typically lies on the first event that patients experience, 
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whether this is death or loss to HIV care. The main estimands 

from such competing risks data are the cause–specific hazard func- 

tion and the cumulative incidence function. The cause–specific 

hazard function represents the instantaneous failure rate from a 

specific event in the presence of the other events, while the cu- 

mulative incidence function represents the cumulative probability 

of an event in the presence of the others. In this article we fo- 

cus on the analysis of the cumulative incidence function which 

is the key quantity for studying the risk of occurrence of various 

events. The cumulative incidence function is used for studying dis- 

ease prognosis, for evaluating interventions in populations and for 

prediction and implementation science purposes [3,4] . In the case 

of right-censored competing risk data, the packages cmprsk and 

prodlim can be used to estimate the cumulative incidence func- 

tion non-parametrically, based on the Aalen-Johansen estimator 

[5] . The function cif in the package compeir estimates the cumu- 

lative incidence function parametrically for each competing risk. 

For regression analysis of the cumulative incidence function, the 

https://doi.org/10.1016/j.cmpb.2019.03.002 

0169-2607/© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license. ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

https://doi.org/10.1016/j.cmpb.2019.03.002
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cmpb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cmpb.2019.03.002&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:jp84@iu.edu
mailto:gbakogia@iu.edu
mailto:cyiannou@iu.edu
https://doi.org/10.1016/j.cmpb.2019.03.002
http://creativecommons.org/licenses/by-nc-nd/4.0/


168 J. Park, G. Bakoyannis and C.T. Yiannoutsos / Computer Methods and Programs in Biomedicine 173 (2019) 167–176 

Fig. 1. Data resphaping with the function dataprep . 

packages cmprsk, kmi, survival with the function survfit , and 

the package riskRegression can be used to fit the Fine–Gray pro- 

portional subdistribution hazards model [6] . The package timereg 

provides semiparametric estimators for a whole class of models 

that includes the Fine–Gray model as a special case [7,8] . Addition- 

ally, the package cmprskQR performs quantile regression analysis 

of subdistribution functions [9] . 

A frequent problem in many clinical studies is that the event 

time is not precisely observed but is only known to lie between 

two examination times, such as clinic visits [4,10–12] . This phe- 

nomenon is known as interval censoring in survival and competing 

risks analysis. In our motivating example, the working definition 

of loss to care was three months without a clinic visit. This cutoff

was chosen by the clinical investigators because, typically, HIV pa- 

tients receive ART supplies for up to three months at each clinic 

visit. The analytical problem is that the exact time of disengage- 

ment from HIV care, among patients who have not returned for 

their next visit, is only known to lie within the three-month inter- 

val following the last clinic visit. Similarly, the exact time to death 

is not known as the data set contains only the death reporting date 

which is usually after the actual death date. Therefore, the actual 

death date lies between the last clinic visit of the patient and the 

death reporting date. 

Although interval-censored competing risk data arise frequently 

in a variety of clinical and medical research settings, only two R 

packages exist for the analysis of such data. The first is the pack- 

age MLEcens , which applies the height mapping algorithm and 

the support reduction algorithm by [13] and [14] to compute the 

nonparametric maximum likelihood estimate (NPMLE) of the cu- 

mulative incidence function with bivariate interval–censored data. 

The second is the package MIICD which includes the function 

MIICD.crreg . This package implements the multiple imputation 

approach proposed by [15] to estimate the regression coefficients 

and the baseline cumulative incidence function based on the Fine–

Gray proportional subdistribution hazards model [6] . However, the 

package MLEcens does not involve covariates, and the package MI- 

ICD uses Rubin’s variance estimator, which is well known to be 

biased when the imputation model and the analysis models are 

uncongenial [16] . Moreover, the latter package only fits the Fine–

Gray proportional subdistribution hazards model [6] , and the cor- 

responding regression coefficient estimators are not semiparamet- 

rically efficient [17] . 

The package intccr attempts to deal with the aforementioned 

issues by implementing the semiparametric regression method- 

ology proposed by Bakoyannis, Yu, and Yiannoutsos [4] for the 

analysis of interval-censored competing risk data. It is important 

to note that the methodology provides semiparametrically effi- 

cient regression coefficient estimates [4] . The function ciregic 

contained in the intccr package fits semiparametric regression 

models for the cumulative incidence function that belong to the 

large class of generalized odds rate transformation models [18–

21] with interval–censored competing risk data. This class in- 

cludes the Fine–Gray proportional subdistribution hazards model 

and the proportional odds model as special cases [18] . The function 

ciregic produces a simple and familiar table of the summarized 

results. Also, the package intccr provides an option for parallel 

computing that can achieve a substantially faster bootstrap estima- 

tion of the variance-covariance matrix for the estimated regression 

coefficients. 

In Section 2 , the methodological background about the under- 

lying methodology for interval-censored competing risks data is 

briefly described. Section 3 describes the basic use of the pack- 

age intccr and, also, presents its evaluation through simulation 

experiments. In Section 4 , a comprehensive analysis of a real- 

life data set obtained from an HIV cohort study in sub-Saharan 

Africa is presented. Future plans and updates are discussed in 

Section 5 . 

2. Methodology 

2.1. Notation 

Let T be the actual unobserved event time and C ∈ {1, 2, ���, 

J } be the observed event type or cause of failure. Currently, the 

package intccr allows for two event types, i.e. C ∈ {1, 2}. Let [ a, 

b ] denote the observation time interval with 0 < a < b < ∞ . For i = 

1 , · · · , n, the m i distinct observation times of the i th study partici- 

pant are denoted by a ≤ W i, 1 < W i, 2 < · · · < W i,m i 
≤ b. Also, the last 

observation time prior to the event is denoted as V i and the first 

observation time after the event as U i . Based on this notation, the 

event time of the i th study participant is contained in ( V i , U i ]. If the 

i th study participant’s event time is left-censored then (V i , U i ] = 

(0 , W i, 1 ] , if it is right–censored then (V i , U i ] = (W i,m i 
, ∞ ] , and if it is 

interval-censored between the observation times W i,k and W i,k +1 , 
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Fig. 2. Baseline cumulative incidence function. 

Solid gray and light blue lines indicate true baseline cumulative incidence functions of the event type 1 and the event type 2 respectively. Dotted black and blue lines 

indicate the estimated baseline cumulative incidence functions of the event type 1 and the event type 2 respectively. (For interpretation of the references to colour in this 

figure legend, the reader is referred to the web version of this article.) 

then (V i , U i ] = (W i,k , W i,k +1 ] . Now, let δi j = I(V i < T i ≤ U i , C = j) for 

j = 1 , 2 be the indicator function that the i th study participant has 

experienced the j th event, and the corresponding event time is 

interval-censored. Similarly, let δ1 
i j = I(0 < T i ≤ W i, 1 , C = j) denote 

that the i th study participant has experienced the j th event, and 

the corresponding event time is left-censored. The failure from any 

event indicator is defined as δi = 
∑ 2 

j=1 (δi j + δ1 
i j ) . Obviously, δi = 0 

indicates that the i th study participant is right–censored. Finally, 

let Z ∈ R d be a vector of covariates of interest. The observed data 

for the i th study participant are thus D D D i = (V i , U i , C i , δi j , δ
1 
i j , Z i ) . The 

cause–specific cumulative incidence function for the j th event is 

expressed as 

F j (t; z ) = P (T ≤ t, C = j| Z = z ) 

for j = 1 , 2 . 

2.2. Estimation methodology 

With the assumptions that ( W 1 , W 2 , ���, W m ) ⊥ ( T, C ) conditional 

on Z and that the observation time distribution does not contain 

the parameters of interest (non-informative interval censoring), the 

likelihood function is 

L ( θθθ ;D D D ) ∝ 

n 
∏ 

i =1 

( { 
2 

∏ 

j=1 

[

F j (U i ;Z i , θθθ j ) − F j (V i ;Z i , θθθ j ) 
]δi j 

} 

×

{ 
2 

∏ 

j=1 

[

F j (U i ;Z i , θθθ j ) 
]δ1 

i j 

} [ 

1 −
2 

∑ 

j=1 

F j (V i ;Z i , θθθ j ) 

] 1 −δi 
⎞ 

⎠ (1) 

where θθθ = ( θθθ ′ 
1 , θθθ

′ 
2 ) are the unknown parameters to be estimated. 

The cumulative incidence functions can be modeled by using a 
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member of the class of semiparametric transformation models 

[6,17,18] for the cumulative incidence function, which have the 

general form 

g j 
[

F j ( t; z ) 
]

= φ j ( t ) + βT z 

for j = 1 , 2 , where g j ( · ) is a known increasing link function and 

φj ( · ) is an unspecified increasing and invertible smooth function 

(infinite-dimensional parameter) which is related to the j th base- 

line cumulative incidence function. In this case, θθθ j = ( βββ j , φ j ) . A 

special subset of the class of semiparametric transformation mod- 

els is the class of generalized odds transformation models which is 

defined as 

g j (F j ;α j ) = 

⎧ 

⎪ 
⎨ 

⎪ 
⎩ 

log 
[

− log (1 − F j ) 
]

if α j = 0 

log 

[

(1 − F j ) 
−α j − 1 

α j 

]

if α j ∈ (0 , ∞ ) 

The Fine–Gray proportional subdistribution hazards model [6] is 

a special case of this class of models with α j = 0 , and so is 

the proportional odds model [22] with α j = 1 . An effective ap- 

proach to deal with maximum likelihood estimation problems 

that involve infinite-dimensional parameters is the sieve maxi- 

mum likelihood approach [23] . This approach avoids some theo- 

retical problems related to likelihood maximization over infinite- 

dimensional parameter spaces and, also, provides computational 

efficiency gains [12,23,4] . Here we implement the methodology 

proposed in [4] which utilizes a sieve maximum likelihood esti- 

mation approach based on B-splines. The corresponding sieve pa- 

rameter space is given by 

M n (γ j , N j , m j ) = 

{ 

φ : φ(t;γ j ) = 

N j + m j 
∑ 

s =1 

γ j,s B s,m j (t) , 

γ ∈ R 
N j + m j , γ j, 1 < · · · < γ j,N j + m j 

} 

(2) 

where N j and m j are the number of internal knots and the or- 

der of the B-spline for the j th event type or cause of failure, and 

{ γ j, 1 , · · · , γ j,N j + m j 
} is the set of B-spline coefficients. For more de- 

tailes about the optimal choice of the number of knots see the 

Discussion Section of this manuscript and Section 2.1 in [4] . Max- 

imizing the likelihood function in Eq. (1) with respect to the re- 

gression coefficients over a regular Euclidean space and the un- 

specified functions φ1 and φ2 over the B-spline sieve space pro- 

vides the sieve maximum likelihood estimates ( ̂  β1 , ̂
 β2 , 

ˆ φ1 , 
ˆ φ2 ) . 

The consistency for ( ̂  β1 , ̂
 β2 , 

ˆ φ1 , 
ˆ φ2 ) , and the asymptotic normality 

and semiparametric efficiency of ( ̂  β1 , ̂
 β2 ) , have been established 

by [4] . 

The function ciregic in the pacakge intccr performs the 

proposed method with nonlinear inequality constraints, using the 

package alabama , to impose the monotonicity constraints involved 

in Eq. (2) , which follow from the natural monotonicity of the cu- 

mulative incidence function. Additionally, the function ciregic 

utilizes the package alabama to impose the non-linear inequality 

constraint 

max 
z 

{ 
2 

∑ 

j=1 

F j (b; z , θ j ) 

} 

< 1 , 

since the sum of the two cumulative incidence functions is a prob- 

ability and, as such, it is naturally bounded by 1. 

3. Basic use of the package and simulation study 

The version information of R [24] and the platform of operating 

system(OS) used in this article are as follows: 

Under 64-bit version of Windows 10 OS, Monte Carlo simula- 

tion and data analysis were performed. With the assumption that 

the user has the most recent version of R installed, the most re- 

cent version of the package intccr has to be installed on the user’s 

OS and loaded as follows: 

The package intccr provides two simulated data sets. The first 

data set is longdata which is a long data format, and the second 

data set is simdata which is in a ready-to-use data format. The 

data set longdata consists of 200 individuals with 5 variables, 

where id represents individuals’ identification number, t repre- 

sents the clinic visit or event evaluation times, c represents the 

event or censoring indicator, and z1 and z2 are binary and con- 

tinuous covariates respectively. Note that c has to be 0, 1, or 2, 

with 0 indicating that the event was not observed throughout the 

total follow-up period (right censoring). The first 10 observations 

of longdata are listed below. 

To analyze the data set longdata using the function 

ciregic , the data must be reshaped to a suitable format. The 

package intccr provides the function dataprep to reshape data 

from a long format to a suitable format that is required by the 

function ciregic . 
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Fig. 3. Predicted cumulative incidence functions for females aged 20 to 50 years, with CD4 count 120 cells/ µl at ART initiation. 

Table 1 

Arguments in the function ciregic . 

Arguments Description 

formula a formula object relating survival object Surv2(v, u, event) to a set of covariates 
data an input data frame 

alpha parameters that define the link functions from class of generalized odds-rate transformation models 

k a parameter that controls the number of internal knots in the B-spline with k ∈ [0.5, 1] 
nboot a number of bootstrap samples for estimating variances and covariances of an estimated regression coefficients 

do.par a logical constant for using parallel computing for bootstrap variance estimation 

The first 10 observations of newdata are given by 

There are two competing events: the first ( c = 1 ) and the 

second ( c = 2 ) event type. Right-censored observations are in- 

dicated by c = 0 . There are 76 observations with the first event 

type, 95 observations with the second, and 29 observations are 

right-censored. To elucidate the underlying mechanisms of the 

function dataprep , Fig. 1 shows how longdata is reshaped into 

newdata via the use of the function dataprep . In longdata , 

three individuals with id = 1 , id = 2 , and id = 5 had 7, 4, 

and 3 time records respectively. These individuals experienced one 

of the event types between their last two time records. This infers 

that the event times of those individuals were interval-censored. 

The function dataprep detected the type of event that an in- 

dividual experienced and the corresponding time interval. In ad- 

dition, the function dataprep returned v as the last observa- 

tion prior to the event and u as the first observation after the 

event in newdata . The individual with id = 3 who have 8 

time records in longdata did not experience any events. The 

function dataprep returned v = 2.9426552 , which is the last 

time record of the individual with id = 3 , as the last obser- 

vation prior to the event and u = Inf as the first observation 

after the event in newdata because the individual with id = 

3 was right–censored. For the individual with id = 6 , the only 

one time record was observed with event type 1. Therefore, the 

last observation prior to the event was v = 0 and the first ob- 

servation after the event was u = 0.3777047 in the newdata 

because the individual with id = 6 was left-censored. Descrip- 

tive statistics for the covariates z1 and z2 in newdata are listed 

below. 
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The arguments of the core function ciregic are described in 

Table 1 . The data must contain the last observation time prior to 

the event, the first observation time after the event, and the event 

indicator. The function ciregic fits cumulative incidence mod- 

els in the class of generalized transformation models on interval–

censored competing risk data based on B-spline sieve maximum 

likelihood estimation. The value of ααα = (1 , 1) for the link functions 

of the two competing risks is used in this simulation, which cor- 

responds to the proportional odds model [19,22] for both event 

types as described in Section 2 . This is because the data were sim- 

ulated from proportional odds models for both event types. Sample 

R code and the corresponding output of the function ciregic are 

listed below: 

There are 6 arguments in the function ciregic (see 

Table 1 ). The argument formula has the form of response ∼
predictor . The response part of the formula must be a Surv2 

object in the function ciregic , and the predictor is a vec- 

tor of covariates. The first argument in Surv2 is the last exami- 

nation time before the event, the second is the first examination 

time after the event, and the last is the event type or censoring 

status ( c ∈ {0, 1, 2}), with 0 indicating right censoring. The ar- 

gument alpha is a vector of two parameters that represent the 

link functions of generalized odds rate transformation models for 

competing events. The support of ααα is [0, ∞ ) × [0, ∞ ). For ex- 

ample, α1 = 0 fits the Fine–Gray proportional subdistribution haz- 

ards model [6] for event type 1 and α2 = 1 fits the proportional 

odds model [22] for event type 2. The argument k is a param- 

eter that controls the number of internal knots of the B-spline. 

k = 1 is the default, but the user can choose any value satis- 

fying 0 . 5 ≤ k ≤ 1 . Using the half number of internal knots com- 

pared to the default can be achieved by choosing k = 0.5 than 

as the default. This choice can have a substantial effect on com- 

putation time with larger data sets. The function ciregic uses 

cubic B-splines. The argument nboot = 0 forces the function 

ciregic to returning only the estimated regression coefficients 

without calculating the bootstrap variance-covariance matrix for 

the estimated regression coefficients. The function ciregic pro- 

vides bootstrap variance-covariance matrix for the estimated re- 

gression coefficients when a value of the argument nboot is 

greater than or equal to 2 . By setting nboot = 0 and do.par 

= FALSE , the function ciregic returns only the estimated re- 

gression coefficients. This is useful when it is desirable to fit the 

model and just get point estimates. Below is a sample R code 

to obtain a bootstrap variance-covariance matrix utilizing parallel 

computing: 

The argument nboot requires a non-negative integer and 

denotes the number of bootstrap samples used to estimate a 

variance-covariance matrix of the estimated regression coefficients. 

In the above application, we set nboot = 50 and do.par = 

TRUE . This means that 50 bootstrap samples were used to com- 

pute the variance-covariance matrix in parallel computing. The 

packages doParallel and parallel are implemented to set the en- 

vironment for parallel computing, and the package foreach is used 

to perform bootstrap calculations simultaneously. The argument 

do.par = TRUE detects the number of cores automatically and 

assigns jobs to the maximum number of available cores. The total 

number of assigned cores is usually the same as the total number 

of detected cores minus one. 

Extensive Monte Carlo simulations based on 10 0 0 replications 

were performed with sample sizes 10 0, 20 0, 40 0, and 80 0. The re- 

sults of the simulations are shown in Table 2 . The vector of the 

estimated regression coefficients is ˆ βββ = ( ̂  β11 , 
ˆ β12 , 

ˆ β21 , 
ˆ β22 ) 

′ which 

are associated with the estimated regression coefficients of z1 and 

z2 for the two event types, respectively. Among 10 0 0 replications 

Table 2 

Monte Carlo simulation results based on 10 0 0 replications. 

The standard error is estimated by bootstrap sampling. Monte Carlo standard 

deviation (MCSD), average standard error (ASE), empirical coverage probabil- 

ity (ECP). 

n Event type Parameters %bias MCSD ASE ECP 

100 1 β11 -3.055 0.403 0.425 0.957 

β12 4.645 0.189 0.207 0.967 

2 β21 -1.033 0.394 0.417 0.960 

β22 4.867 0.191 0.202 0.961 

200 1 β11 -0.578 0.282 0.285 0.954 

β12 2.983 0.144 0.140 0.939 

2 β21 1.418 0.273 0.282 0.948 

β22 2.737 0.139 0.136 0.936 

400 1 β11 0.683 0.198 0.197 0.947 

β12 -0.851 0.097 0.097 0.952 

2 β21 1.812 0.196 0.195 0.953 

β22 -0.127 0.095 0.095 0.946 

800 1 β11 2.160 0.138 0.138 0.951 

β12 0.261 0.070 0.069 0.941 

2 β21 1.884 0.136 0.136 0.946 

β22 -0.011 0.066 0.067 0.944 
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for the Monte Carlo simulations, one data set with 100 observa- 

tions did not converge in at least one bootstrap sample generated 

in order to calculate the bootstrap standard error. Similarly, two 

data sets with 200 observations did not converge. Despite these 

very rare non-convergence issues, the simulation results show 

negligible bias, similar values of Monte Carlo standard deviation 

(MCSD) and average standard error (ASE), and values of empiri- 

cal coverage probability (ECP) close to the nominal level of 0.95. 

Moreover, the MCSD for the different sample sizes is compatible 

with a 
√ 
n convergence rate of the estimator. Fig. 2 depicts the true 

baseline cumulative incidence functions along with the estimated 

baseline cumulative incidence function for both event types. This 

Figure illustrates that the function ciregic provides virtually un- 

biased estimates even with small sample sizes. Table 3 shows sum- 

mary statistics about the computation times for a single data set 

in the simulation study. In each scenario, the median computa- 

tion time using the parallel computing option ( do.par = TRUE ) 

to calculate the bootstrap variance-covariance matrix based on 50 

bootstrap samples is roughly three times more computationally ef- 

ficient compared to those without the parallel computing option 

( do.par = FALSE). 

4. Example: Analysis of HIV data using the intccr package 

A data analysis from an HIV study on death and loss to HIV care 

in sub-Saharan Africa is presented in this section. The data were 

collected by the IeDEA-EA (East African International epidemiology 

Databases to Evaluate AIDS) Consortium that includes HIV care and 

treatment programs in Kenya, Uganda, and Tanzania. The data we 

use here include 3053 patients who initiated antiretroviral treat- 

ment (ART) with a CD4 cell count of at least 100 cells/ µl. The data 

consist of 6 variables, with v being the last clinical examination 

time prior to the event since ART initiation, u the first clinical ex- 

amination time after the event, c the event or right-censoring in- 

dicator, and age , male and cd4 being the age at ART initiation, 

male gender indicator, and CD4 cell count at ART initiation, respec- 

tively. 

In total, there were 2232 patients in HIV care who did not expe- 

rience any of the events throughout the follow-up period ( c = 0 , 

right-censored observations). Moreover, 690 patients were lost to 

care ( c = 1 ), and 131 patients died while in HIV care ( c = 2 ). 

Summary statistics regarding age by event type or censoring c 

are given below: 

The median age was 35.2 years, 40.9 years, and 37.1 years for 

those lost to care, deceased, and still alive and in HIV care at 

the end of the follow-up period, respectively. Similarly, summary 

statistics for cd4 by event type are given below: 

The median CD4 cell count at ART initiation was 188 cells/ µl , 

163 cells/ µl , and 199 cells/ µl for those lost to care, deceased, and 

still alive and in HIV care at the end of the follow-up period, re- 

spectively. For the data, we set ααα = (1 , 1) , that is we chose the 

proportional odds model [22] for both event types (i.e. loss to 

care and death). This choice was made due to the straightfor- 

ward interpretation of the regression coefficient estimates under 

the model. For reproducibility purposes regarding the bootstrap 

variance-covariance matrix of the estimated regression coefficients, 

we set the seed number to 12345 . 

Note that the function factor in the model formula can be 

used for categorical covariates with more than 2 levels. For exam- 

ple, consider the categorical version of cd4 : 

cd4cat = 

{ 
1 if cd4 ≤ 250 
2 if 250 < cd4 ≤ 350 
3 if cd4 > 350 

In this case, the analysis can be performed as follows 

For simplicity, we will use the continuous version of cd4 in the 

remainder of this Section. The function ciregic is an S3 class 

function, and therefore the function can be used in conjunction 
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with the generic accessor functions coef , vcov , and summary , 

as it is illustrated below. 

The computation time for fitting the model and computing 

standard errors based on 50 bootstraps using the HIV data set of 

3053 individuals was 4.8 minutes with parallel computing and 12.8 

minutes without using parallel computing. The function summary 

returns a summary of the fitted model results with asterisks indi- 

cating the corresponding level of statistical significance. The code 

below extracts the vector of the estimated regression coefficients 

and the bootstrap variance-covariance matrix, respectively. 

The results from the analysis presented above indicate that the 

odds of loss to care for males is about 24% higher compared to 

the corresponding odds for females (odds ratio = exp(0.2128) 

= 1.24 ). Also, older age at ART initiation by 10 years is associated 

with a 26% lower odds of loss to care ( exp(10 
∗ -0.0295) = 

0.74 ). There is no statistical evidence for an association between 

CD4 cell count at ART initiation and the cumulative incidence of 

loss to care as p -value = 0.98. Moreover, older age by 10 years is 

associated with 9% higher odds of death (odds ratio = exp(10 
∗ 0.0084) = 1.09 ), and, an increased CD4 cell count by 100 

cells/ µl is associated with 30% lower odds of death (odds ratio = 

exp(100 
∗ -0.0035) = 0.70 ). The predicted cumulative inci- 

dence functions of loss to care and death for females with a CD4 

count of 120 cells/ µl at ART initiation, according to age at ART 

initiation, are depicted in Fig. 3 . Fitting the proportional subdis- 

tribution hazards model (i.e. Fine–Gray model) for loss to care and 

the proportional odds model for death can be performed by setting 

α1 = 0 and α2 = 1 , as follows: 

The generic accessor function predict can be directly used 

with an object of class ciregic . Table 4 describes the arguments 

of the function predict . In this example, the argument object 

is the previously fitted model fit . In the argument covp , the user 

defines the desired covariate pattern for (male, age, cd4) , 

to predicting the corresponding covariate-specific cumulative inci- 

dence functions of loss to HIV care and death. There are 4 lines 

of output representing 4 different combinations of age by the two 

event types, “loss to care” (c = 1) and “death” (c = 2) re- 

spectively. The argument times produces 100 equally distributed 

time points between the minimum and the maximum observation 

time point in the data, for each event type. 

Moreover, the waldtest function can be used to perform a 

Wald test based on an object from the function ciregic in the 

package intccr . Below are three examples of performing a Wald 

test. In the first example we compare a model ( male , age , cd4 ) 

with the null model (model without covariates). 

The function waldtest returns output for two parts: one is 

the test for the effect of the covariates on any event type and the 
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Table 3 

Computation times (seconds) for fitting the model and calculating the standard errors using 50 bootstrap samples 

based on Monte Carlo simulation with 10 0 0 replications. 

Parallel Yes ( do.par = TRUE ) No ( do.par = FALSE ) 

n Min Q1 Median Q3 Max Min Q1 Median Q3 Max 

100 29.78 37.45 39.96 42.80 57.70 81.92 102.22 108.74 116.00 145.39 

200 29.85 38.59 41.23 43.96 65.06 85.59 105.00 112.94 120.80 166.98 

400 31.91 42.59 45.95 49.80 70.07 88.70 116.04 126.58 136.70 194.84 

800 39.33 49.53 52.95 56.83 75.22 105.36 135.38 145.95 156.90 209.63 

Table 4 

The arguments of the function predict . 

Arguments Description 

object An object of class ciregic , generated from the fitted model 

covp The vector of covariates 

times User-defined time points used to predict the cumulative incidence functions 

other is the event-specific test. In the above example, the χ2 statis- 

tic of overall test is 75.5 and its p-value is close to 0. Also, the χ2 

statistic of each test for event types 1 and 2 is 26.1 and 39.5 re- 

spectively and those p-values are close to 0. These results indicate 

that the variables male , age , and cd4 should be in the model be- 

cause parameters associated with those variables are not zero. The 

next example is the Wald test comparing a model with covariates 

male , age , and cd4 to the nested model with covaraites male 

and age . 

The χ2 statistic for the effect of CD4 of the cumulative inci- 

dence of death is 3.96 with p -value = 0.047, indicating a statisti- 

cally significant effect of CD4 on the cumulative incidence of death. 

In the above example, the χ2 statistic of overall test is 23.7 and 

its p-value is close to 0. Also, the χ2 statistic of each test for event 

types 1 and 2 is 4.1 and 11.1 respectively and those p-values are 

0.12 and close to 0 respectively. 

5. Discussion 

The package intccr provides a convenient and versatile tool for 

robust semiparametric regression analysis of the cumulative inci- 

dence function based on interval–censored competing risk data. 

The package supports a large class of models for the cumulative 

incidence function, including the proportional odds and the Fine–

Gray proportional subdistribution hazards model as special cases. 

It also provides semiparametrically efficient regression coefficient 

estimates. To the best of our knowledge, the only other avail- 

able software for semiparametric regression analysis of interval- 

censored competing risks data is the R package MIICD . That pack- 

age utilizes Rubin’s multiple imputation approach to deal with the 

unobserved event times. However, it is well known that Rubin’s 

variance estimator is biased in cases where the imputation and 

the analysis models are uncongenial [16] , or when the imputa- 

tion model is misspecified, two situations that occurs frequently 

in practice. In addition, the MIICD package does not provide semi- 

parametrically efficient regression coefficient estimates and it only 

supports the Fine–Gray proportional subdistribution hazards model 

[6] , whose interpretation is more difficult compared to the propor- 

tional odds model. 

The package intccr follows the guideline for selecting the num- 

ber of knots in Section 2.1 in Bakoyannis, Yu, and Yiannoutsos 

[4] . Briefly, the number of internal knots for the B-spline is N = 

⌊ k × n 1 / 3 ⌋ where ⌊ a ⌋ is the largest integer that is smaller than or 

equal to the real number a, k ∈ [0.5, 1] is a parameter that is spec- 

ified by the user and n is the sample size. For more details about 

the justification of the selection of knots, please see Section 2.1 in 

Bakoyannis, Yu, and Yiannoutsos [4] . The package intccr uses flex- 

ible cubic B-splines which is a standard choice in practice. Re- 

garding the maximum number of regression coefficients to be es- 

timated (or equivalently the maximum number of covariates) for 

each event type, we suggest the following rule of thumb: 

Maximum number of covariates = 

⌊

min (n 1 , n 2 ) 

10 

⌋

where n j , j = 1 , 2 , is the number of observations with the j th 

event type. 

It has to be noted that, in many cases, there is no obvious in- 

terval censoring. However, the event time is typically measured in 

days, and the exact time of the event occurence is not recorded. 

In this case, assuming that the true event time is continuous, 
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the exact event time is still interval censored, with the width of 

the censoring interval being 1 day. Such cases, can still be an- 

alyzed using the package intccr by setting V = X − 0 . 5 days and 

U = X + 0 . 5 days, where X is the recorded event time in days. This 

occurs, for example, in dementia studies, where the time to de- 

mentia is interval-censored while the time to death is more pre- 

cisely recorded in days. Such data can be easily analyzed using the 

R package intccr . 

The simulations were ran on Intel(R) Core(TM) i5-2400 CPU 

3.10GHz with 8 GB ram. Maximum number of available cores in 

parallel computing was 3. We expect that the users having higher 

specification of their computer may see more computationally ef- 

ficient results. 

The intccr package introduced in this paper also provides 

the estimated cumulative incidence functions for a particular 

combination of covariate values. This quantity is very appeal- 

ing for graphical illustration. Also, the package provides data 

management functionality to reformat data sets provided in a 

long format (i.e. data sets with multiple lines per subject), and 

turn them into the wide (single-line per subject) format re- 

quired by the package. One limitation of the intccr package is 

that, for the time being, it only allows for two event types 

or causes of failure. We plan to update our package to allow 

for more than two event types in the near future. The pack- 

age is freely available for download from the CRAN website 

https://cran.r-project.org/web/packages/intccr/index.html . 
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