Package ‘jointCalib’

September 6, 2023
Type Package
Title A Joint Calibration of Totals and Quantiles
Version 0.1.0

Description A small package containing functions to perform a joint calibration of totals and quan-
tiles. The calibration for totals is based on Deville and Sérn-
dal (1992) <doi:10.1080/01621459.1992.10475217>, the calibration for quan-
tiles is based on Harms and Duchesne (2006) <https:
//www150.statcan.gc.ca/n1/en/catalogue/12-001-X20060019255>. The pack-
age uses standard calibration via the 'survey’, 'sampling' or 'lacken' packages. In addition, en-
tropy balancing via the 'ebal’ package and empirical likeli-
hood based on codes from Wu (2005) <https://www150.statcan.gc.ca/n1/pub/12-001-x/
2005002/article/9051-eng.pdf> can be used. See the pa-
per by Bergsewicz and Szymkowiak (2023) for details <arXiv:2308.13281>.

License GPL-3

Encoding UTF-8

RdMacros mathjaxr

LazyData yes

Depends R (>=3.5.0)

URL https://github.com/ncn-foreigners/jointCalib, https:
//ncn-foreigners.github.io/jointCalib/

BugReports https://github.com/ncn-foreigners/jointCalib/issues

Roxygen list(markdown = TRUE)

RoxygenNote 7.2.3

Imports laeken,
sampling,
mathjaxr,
survey,
MASS,
ebal

R topics documented:

calib_el e
control_calib L e
joint_calib e e e 4
joint_calib_create_matrixXo e e

https://doi.org/10.1080/01621459.1992.10475217
https://www150.statcan.gc.ca/n1/en/catalogue/12-001-X20060019255
https://www150.statcan.gc.ca/n1/en/catalogue/12-001-X20060019255
https://www150.statcan.gc.ca/n1/pub/12-001-x/2005002/article/9051-eng.pdf
https://www150.statcan.gc.ca/n1/pub/12-001-x/2005002/article/9051-eng.pdf
https://arxiv.org/abs/2308.13281
https://github.com/ncn-foreigners/jointCalib
https://ncn-foreigners.github.io/jointCalib/
https://ncn-foreigners.github.io/jointCalib/
https://github.com/ncn-foreigners/jointCalib/issues

2 calib_el

Index 11
calib_el An internal function for calibration of weights using empirical likeli-
hood method
Description

calib_el performs calibration using empirical likelihood (EL) method. The function is taken from
Wu (2005), if algorithm has problem with convergence codes from Zhang, Han and Wu (2022)
using constrOptim is used.

In (pseudo) EL the following (pseudo) EL function is maximized
> dilog(py),
€T
under the following constraint
va = 17
ier
with constraints on quantiles (with notation as in Harms and Duchesne (2006))
Zpi(ai —a/N) =0,
€T
where a; is created using joint_calib_create_matrix function, and possibly means
> i@ — pa) =0,
€T

where 1, is known population mean of X. For simplicity of notation we assume only one quantile
and one mean is known. This can be generalized to multiple quantiles and means.

Usage

calib_el(X, d, totals, maxit = 50, tol = 1e-08, eps = .Machine$double.eps, ...)
Arguments

X matrix of variables for calibration of quantiles and totals (first column should be

intercept),

d initial d-weights for calibration (e.g. design-weights),

totals vector of totals (where 1 element is the population size),

maxit a numeric value giving the maximum number of iterations,

tol the desired accuracy for the iterative procedure,

eps the desired accuracy for computing the Moore-Penrose generalized inverse (see

MASS: :ginv()),

arguments passed to stats::optim via stats::constrOptim.

control_calib 3

Value

Returns a vector of empirical likelihood g-weights

Author(s)
Maciej Bergsewicz based on Wu (2005) and Zhang, Han and Wu (2022)

References

Wu, C. (2005). Algorithms and R codes for the pseudo empirical likelihood method in survey
sampling. Survey Methodology, 31(2), 239 (code is taken from https://sas.uwaterloo.ca/
~cbwu/Rcodes/LagrangeM2. txt).

Zhang, S., Han, P, and Wu, C. (2023) Calibration Techniques Encompassing Survey Sampling,
Missing Data Analysis and Causal Inference. International Statistical Review, 91: 165-192. https://doi.org/10.1111/insr.]
(code is taken from Supplementary Materials).

Examples

generate data based on Haziza and Lesage (2016)
set.seed(123)
N <- 1000
x <= runif(N, 0, 80)
y <- exp(-0.1 + @.1xx) + rnorm(N, @, 300)
p <- rbinom(N, 1, prob = exp(-0.2 - 0.014%xx))
totals_known <- c(N=N, x=sum(x))
df <- data.frame(x, y, p)
df_resp <- df[df$p == 1,]
df_resp$d <- N/nrow(df_resp)
res <- calib_el(X = model.matrix(~x, df_resp),
d = df_resp$d,
totals = totals_known)
data.frame(known = totals_known, estimated=colSums(resxdf_resp$d*model.matrix(~x, df_resp)))

control_calib control parameters

Description

control_calib is function that contains control parameters for joint_calib_create_matrix

Usage

control_calib(
interpolation = c("logit"”, "linear"),
logit_const = -1000,
survey_sparse = FALSE,
ebal_constraint_tolerance = 1,
ebal_print_level = 0

https://sas.uwaterloo.ca/~cbwu/Rcodes/LagrangeM2.txt
https://sas.uwaterloo.ca/~cbwu/Rcodes/LagrangeM2.txt

4 joint_calib

Arguments

interpolation type of interpolation: logit or linear,
logit_const constant for logit interpolation,

survey_sparse whether to use sparse matrices via Matrix package in survey: :grake() (cur-
rently not supported),

ebal_constraint_tolerance
This is the tolerance level used by ebalance to decide if the moments in the
reweighted data are equal to the target moments (see ebal: :ebalance()),

ebal_print_level

Controls the level of printing: O (normal printing), 2 (detailed), and 3 (very
detailed) (see ebal: :ebalance()).

Value

a list with parameters

Author(s)

Maciej Bergsewicz

joint_calib Function for the joint calibration of totals and quantiles

Description

joint_calib allows joint calibration of totals and quantiles. It provides a user-friendly interface
that includes the specification of variables in formula notation, a vector of population totals, a list
of quantiles, and a variety of backends and methods.

Usage

joint_calib(
formula_totals = NULL,
formula_quantiles = NULL,
data = NULL,
dweights = NULL,
N = NULL,
pop_totals = NULL,
pop_quantiles = NULL,
subset = NULL,

backend = c("sampling”, "laeken”, "survey", "ebal”, "base"),

method = c("raking”, "linear"”, "logit"”, "sinh", "truncated”, "el"”, "eb"),
bounds = c(0, 10),

maxit = 50,

tol = 1e-08,

eps = .Machine$double.eps,

control = control_calib(),

joint_calib

Arguments

formula_totals a formula with variables to calibrate the totals,

formula_quantiles

data
dweights
N

pop_totals

pop_quantiles

subset

backend

method

bounds

maxit

tol

eps

control

Value

a formula with variables for quantile calibration,

a data.frame with variables,

initial d-weights for calibration (e.g. design weights),
population size for calibration of quantiles,

a named vector of population totals for formula_totals. Should be provided
exactly as in survey package (see survey: :calibrate),

anamed list of population quantiles for formula_quantiles or an newsvyquantile

class object (from survey: : svyquantile function),
a formula for subset of data,

specify an R package to perform the calibration.
survey, ebal or base are allowed,

Only sampling, laeken,

specify method (i.e. distance function) for the calibration. Only raking, linear,
logit, sinh, truncated, el (empirical likelihood), eb (entropy balancing) are
allowed,

a numeric vector of length two giving bounds for the g-weights,
a numeric value representing the maximum number of iterations,

the desired accuracy for the iterative procedure (for sampling, laeken, ebal,
el) or tolerance in matching population total for survey: :grake (see help for
survey::grake)

the desired accuracy for computing the Moore-Penrose generalized inverse (see
MASS: :ginv())

a list of control parameters (currently only for joint_calib_create_matrix)

arguments passed either to sampling: :calib, laeken: :calibWeights, survey
or optim: :constrOptim

Returns a list with containing:

* g — g-weight that sums up to sample size,

* Xs — matrix used for calibration (i.e. Intercept, X and X_q transformed for calibration of

quantiles),

e totals — a vector of totals (i.e. N, pop_totals and pop_quantiles),

¢ method — selected method,

¢ backend — selected backend.

Author(s)

Maciej Bergsewicz

::calibrate

6 joint_calib

References

Bergsewicz, M., and Szymkowiak, M. (2023). A note on joint calibration estimators for totals and
quantiles Arxiv preprint https://arxiv.org/abs/2308.13281

Deville, J. C., and Sérndal, C. E. (1992). Calibration estimators in survey sampling. Journal of the
American statistical Association, 87(418), 376-382.

Harms, T. and Duchesne, P. (2006). On calibration estimation for quantiles. Survey Methodology,
32(1), 37.

Wu, C. (2005) Algorithms and R codes for the pseudo empirical likelihood method in survey sam-
pling, Survey Methodology, 31(2), 239.

Zhang, S., Han, P., and Wu, C. (2023) Calibration Techniques Encompassing Survey Sampling,
Missing Data Analysis and Causal Inference, International Statistical Review 91, 165-192.

Haziza, D., and Lesage, E. (2016). A discussion of weighting procedures for unit nonresponse.
Journal of Official Statistics, 32(1), 129-145.

See Also

sampling: :calib() — for standard calibration.
laeken: :calibWeights() — for standard calibration.
survey: :calibrate() — for standard and more advanced calibration.

ebal: :ebalance() — for standard entropy balancing.

Examples

generate data based on Haziza and Lesage (2016)

set.seed(123)

N <- 1000

x <= runif(N, 0, 80)

y <- exp(-0.1 + 0.1xx) + rnorm(N, @, 300)

p <- rbinom(N, 1, prob = exp(-0.2 - 0.014%xx))

probs <- seq(0.1, 0.9, 0.1)

quants_known <- list(x=quantile(x, probs))

totals_known <- c(x=sum(x))

df <- data.frame(x, y, p)

df_resp <- df[df$p == 1,]

df_resp$d <- N/nrow(df_resp)

y_quant_true <- quantile(y, probs)

standard calibration for comparison

result@ <- sampling::calib(Xs = cbind(1, df_resp$x),
d = df_resp$d,
total = c(N, totals_known),
method = "linear")

y_quant_hat@® <- laeken::weightedQuantile(x = df_resp$y,

probs = probs,

weights = result@*df_resp$d)
x_quant_hat@ <- laeken::weightedQuantile(x = df_resp$x,

probs = probs,

weights = resultoxdf_resp$d)

example 1: calibrate only quantiles (deciles)
resultl <- joint_calib(formula_quantiles = ~x,
data = df_resp,

https://arxiv.org/abs/2308.13281

joint_calib

dweights = df_resp$d,

N =N,
pop_quantiles = quants_known,
method = "linear”,

backend = "sampling")

estimate quantiles
y_quant_hat1 <- laeken::weightedQuantile(x = df_resp$y,

probs = probs,

weights = result1$gxdf_resp$d)
x_quant_hat1 <- laeken::weightedQuantile(x = df_resp$x,

probs = probs,

weights = result1$gxdf_resp$d)

compare with known
data.frame(standard = y_quant_hat@, est=y_quant_hatl, true=y_quant_true)

example 2: calibrate with quantiles (deciles) and totals
result2 <- joint_calib(formula_totals = ~x,
formula_quantiles = ~x,
data = df_resp,
dweights = df_resp$d,
N = N,
pop_quantiles = quants_known,
pop_totals = totals_known,
method = "linear”,
backend = "sampling")
estimate quantiles
y_quant_hat2 <- laeken::weightedQuantile(x = df_resp$y,
probs = probs,
weights = result2$gxdf_resp$d)
x_quant_hat2 <- laeken::weightedQuantile(x = df_resp$x,
probs = probs,
weights = result2$gxdf_resp$d)

compare with known
data.frame(standard = y_quant_hat@, estl=y_quant_hat1,
est2=y_quant_hat2, true=y_quant_true)

example 3: calibrate wigh quantiles (deciles) and totals with
hyperbolic sinus (sinh) and survey package

result3 <- joint_calib(formula_totals = ~x,
formula_quantiles = ~x,
data = df_resp,
dweights = df_resp$d,
N =N,
pop_quantiles = quants_known,
pop_totals = totals_known,
method = "sinh",
backend = "survey")

estimate quantiles
y_quant_hat3 <- laeken::weightedQuantile(x = df_resp$y,

probs = probs,

weights = result3$gxdf_resp$d)
X_quant_hat3 <- laeken::weightedQuantile(x = df_resp$x,

probs = probs,

8 joint_calib_create_matrix

weights = result3$g*df_resp$d)

example 4: calibrate wigh quantiles (deciles) and totals with ebal package
result4 <- joint_calib(formula_totals = ~x,

formula_quantiles = ~x,

data = df_resp,

dweights = df_resp$d,

N =N,

pop_quantiles = quants_known,

pop_totals = totals_known,

method = "eb",

backend = "ebal")

estimate quantiles
y_quant_hat4 <- laeken::weightedQuantile(x = df_resp$y,

probs = probs,

weights = result4$g*df_resp$d)
x_quant_hat4 <- laeken::weightedQuantile(x = df_resp$x,

probs = probs,

weights = result4$g*df_resp$d)

compare with known

data.frame(standard = y_quant_hato,
estl1=y_quant_hat1,
est2=y_quant_hat2,
est3=y_quant_hat3,
est4=y_quant_hat4,
true=y_quant_true)

compare with known X

data.frame(standard = x_quant_hato,
est1=x_quant_hat1,
est2=x_quant_hat2,
est3=x_quant_hat3,
est4=x_quant_hat4,
true = quants_known$x)

joint_calib_create_matrix
An internal function to create an A matrix for calibration of quantiles

Description

joint_calib_create_matrix is function that creates an A = [a,;] matrix for calibration of quan-
tiles. Function allows to create matrix using logistic interpolation (using stats::plogis, de-
fault) or 1inear (as in Harms and Duchesne (2006), i.e. slightly modified Heavyside function).

In case of logistic interpolation elements of A are created as follows

1
(1 + exp (—2l (l‘ij - Q:ch,oz)))]v7

where x;; is the ith row of the auxiliary variable X;, N is the population size, () » is the known
population ath quantile, and [is set to -1000 (by default).

aij =

joint_calib_create_matrix 9

In case of 1inear interpolation elements of A are created as follows

J\/vil7 Lij < L:vj,r (Qazj,a))
A5 = N_lﬂmj’r (ij,a) ; = ij,’r (Qa:j,oc))
0, Lij > ij,r (Qmj,oz) ’

i=1,...,r,7 =1,... k, where r is the set of respondents, k is the auxiliary variable index and

Ly, »(t) = max {{z;j,i € s | x;; <t} U{—o0}},
Uz, r(t) = min {{z;,i € s | x5 >t} U{oo}},
t— L, ()
Ufﬂjvs(t) o ijvs(t)’

Bwj ,r(t) -

Usage

joint_calib_create_matrix(X_q, N, pop_quantiles, control = control_calib())

Arguments
X_q matrix of variables for calibration of quantiles,
N population size for calibration of quantiles,

pop_quantiles a vector of population quantiles for X_qg,

control a control parameter for creation of X_q matrix.

Value

Return matrix A

Author(s)

Maciej Bergsewicz

References

Harms, T. and Duchesne, P. (2006). On calibration estimation for quantiles. Survey Methodology,
32(1), 37.

Examples

Create matrix for one variable and 3 quantiles
set.seed(123)

N <- 1000

x <- as.matrix(rnorm(N))

quants <- list(quantile(x, c(0.25,0.5,0.75)))

A <- joint_calib_create_matrix(x, N, quants)
head(A)

colSums(A)

Create matrix with linear interpolation
A <- joint_calib_create_matrix(x, N, quants, control_calib(interpolation="1linear"))

10

joint_calib_create_matrix

head(A)
colSums(A)

Create matrix for two variables and different number of quantiles

set.seed(123)

x1 <= rnorm(N)

x2 <- rchisq(N, 1)

x <= cbind(x1, x2)

quants <- list(quantile(x1, ©.5), quantile(x2, c(0.1, 0.75, 0.9)))
B <- joint_calib_create_matrix(x, N, quants)

head(B)

colSums(B)

Index

calib_el, 2
control_calib, 3

ebal::ebalance(), 4,6

joint_calib, 4
joint_calib_create_matrix, 8

laeken: :calibWeights(), 6
MASS::ginv(), 2,5

sampling::calib(), 6
stats::constrOptim, 2
stats::optim, 2
survey::calibrate(), 6
survey: :grake, 5
survey: :grake(), 4

11

	calib_el
	control_calib
	joint_calib
	joint_calib_create_matrix
	Index

