Package 'lit'

August 15, 2023

Type Package

Title Latent Interaction Testing for Genome-Wide Studies

Version 1.0.0

Maintainer Andrew Bass <ajbass@emory.edu>

Description Identifying latent genetic interactions in genome-wide association studies using the Latent Interaction Testing (LIT) framework.
 LIT is a flexible kernel-based approach that leverages information across multiple traits to detect latent genetic interactions without specifying or observing the interacting variable (e.g., environment). LIT accepts standard PLINK files as inputs to analyze large genome-wide association studies.

URL https://github.com/ajbass/lit

License LGPL

Encoding UTF-8

VignetteBuilder knitr

RoxygenNote 7.2.3

LinkingTo Rcpp, RcppArmadillo, RcppEigen

Imports Rcpp (>= 1.0.11), genio, CompQuadForm

Suggests testthat (>= 3.0.0), knitr, rmarkdown

NeedsCompilation yes

Author Andrew Bass [aut, cre], Michael Epstein [aut]

Repository CRAN

Date/Publication 2023-08-15 10:10:02 UTC

R topics documented:

gamut_plink	2
it	3
it_h	4
it_plink	4
narginal	5
narginal_plink	6

Index

gamut_plink

GAMuT

Description

The GAMuT function is a kernel-based multivariate association test. Note that our code to process plink files builds from the genio R package.

Usage

```
gamut_plink(y, file, adjustment = NULL, pop_struct = NULL, verbose = TRUE)
```

Arguments

У	matrix of traits (n observations by k traits)
file	path to plink files
adjustment	matrix of covariates to adjust traits
pop_struct	matrix of PCs that captures population structure
verbose	If TRUE (default) print progress.

Value

A data frame of p-values where the columns are the cross products/squared residuals and the rows are SNPs.

See Also

lit_plink, marginal_plink

Examples

```
# set seed
set.seed(123)
# path to plink files
file <- system.file("extdata", 'sample.bed', package = "genio", mustWork = TRUE)
# Generate trait expression
Y <- matrix(rnorm(10*4), ncol = 4)</pre>
```

```
out <- gamut_plink(Y, file = file)</pre>
```

8

Description

Lit performs a kernel-based testing procedure, Latent Interaction Testing (LIT), using a set of traits and SNPs. LIT tests whether the squared residuals (SQ) and cross products (CP) are statistically independent of the genotypes. In particular, we construct a kernel matrix for the SQ/CP terms to measure the pairwise similarity between individuals, and also construct an analogous one for the genotypes. We then test whether these two matrices are independent. Currently, we implement the linear and projection kernel functions to measure pairwise similarity between individuals. We then combine the p-values of these implementations using a Cauchy combination test to maximize the number of discoveries.

Usage

lit(y, x, adjustment = NULL, pop_struct = NULL)

Arguments

У	matrix of traits (n observations by k traits)
х	matrix of SNPs (n observations by m SNPs)
adjustment	matrix of covariates to adjust traits
pop_struct	matrix of PCs that captures population structure

Value

A data frame of p-values where the columns are

- wlit: LIT using a linear kernel
- ulit: LIT using a projection kernel
- alit: Cauchy combination test of the above two LIT implementations.

See Also

lit_plink

Examples

```
# set seed
set.seed(123)
# Generate SNPs and traits
X <- matrix(rbinom(10*2, size = 2, prob = 0.25), ncol = 2)
Y <- matrix(rnorm(10*4), ncol = 4)
out <- lit(Y, X)</pre>
```

lit

Description

Internal use for now

Usage

lit_h(y, x, adjustment = NULL, pop_struct = NULL)

Arguments

У	matrix of traits (n observations by k traits)
х	matrix of SNPs (n observations by m SNPs)
adjustment	matrix of covariates to adjust traits
pop_struct	matrix of PCs that captures population structure

lit_plink

Latent Interaction Testing

Description

lit_plink performs a kernel-based testing procedure, Latent Interaction Testing (LIT), using a set of traits and SNPs. LIT tests whether the squared residuals (SQ) and cross products (CP) are statistically independent of the genotypes. In particular, we construct a kernel matrix for the SQ/CP terms to measure the pairwise similarity between individuals, and also construct an analogous one for the genotypes. We then test whether these two matrices are independent. Currently, we implement the linear and projection kernel functions to measure pairwise similarity between individuals. We then combine the p-values of these implementations using a Cauchy combination test to maximize the number of discoveries. This function is suitable for large datasets (e.g., UK Biobank) in plink format. Note that our code to process plink files builds from the genio R package

Usage

lit_plink(y, file, adjustment = NULL, pop_struct = NULL, verbose = TRUE)

Arguments

У	matrix of traits (n observations by k traits)
file	path to plink files
adjustment	matrix of covariates to adjust traits
pop_struct	matrix of PCs that captures population structure
verbose	If TRUE (default) print progress.

marginal

Value

A data frame of p-values where the columns are

- wlit: LIT using a linear kernel
- ulit: LIT using a projection kernel
- alit: Cauchy combination test of the above two LIT implementations.

See Also

lit

Examples

```
# set seed
set.seed(123)
# path to plink files
file <- system.file("extdata", 'sample.bed', package = "genio", mustWork = TRUE)
# Generate trait expression
Y <- matrix(rnorm(10*4), ncol = 4)</pre>
```

```
out <- lit_plink(Y, file = file)</pre>
```

marginal

Marginal (SQ/CP) approach

Description

The marginal function performs a trait-by-trait univariate test for latent interactions using the squared residuals and cross products.

Usage

```
marginal(y, x, adjustment = NULL, pop_struct = NULL)
```

Arguments

У	matrix of traits (n observations by k traits)
х	matrix of SNPs (n observations by m SNPs)
adjustment	matrix of covariates to adjust traits
pop_struct	matrix of PCs that captures population structure

Value

A data frame of p-values where the columns are the cross products/squared residuals and the rows are SNPs.

See Also

marginal_plink

Examples

```
# set seed
set.seed(123)
# Generate SNPs and traits
X <- matrix(rbinom(10*2, size = 2, prob = 0.25), ncol = 2)
Y <- matrix(rnorm(10*4), ncol = 4)</pre>
```

```
out <- marginal(Y, X)</pre>
```

marginal_plink

Marginal (SQ/CP) approach

Description

The marginal_plink function performs a trait-by-trait univariate test for latent interactions using the squared residuals and cross products. This function is suitable for large datasets (e.g., UK Biobank) in plink format. Note that our code to process plink files builds from the genio R package.

Usage

```
marginal_plink(y, file, adjustment = NULL, pop_struct = NULL, verbose = TRUE)
```

Arguments

У	matrix of traits (n observations by k traits)
file	path to plink files
adjustment	matrix of covariates to adjust traits
pop_struct	matrix of PCs that captures population structure
verbose	If TRUE (default) print progress.

Value

A data frame of p-values where the columns are the cross products/squared residuals and the rows are SNPs.

See Also

marginal_plink

6

marginal_plink

Examples

```
# set seed
set.seed(123)
# Path to plink files
file <- system.file("extdata", 'sample.bed', package = "genio", mustWork = TRUE)
# Generate trait expression
Y <- matrix(rnorm(10*4), ncol = 4)
out <- marginal_plink(Y, file = file)</pre>
```

Index

gamut_plink, 2
genio, 2, 4, 6

lit, 3, 5 lit_h, 4 lit_plink, 2, 3, 4

marginal, 5
marginal_plink, 2, 6, 6