Package ‘memoiR’

May 1, 2025
Title R Markdown and Bookdown Templates to Publish Documents
Version 1.3-1

URL https://ericmarcon.github.io/memoiR/,
https://github.com/EricMarcon/memoiR/

BugReports https://github.com/EricMarcon/memoiR/issues/

Description Producing high-quality documents suitable for publication directly from R is made possi-
ble by the R Markdown ecosystem.
'memoiR' makes it easy.
It provides templates to knit memoirs, articles and slideshows with helpers to publish the docu-
ments on GitHub Pages and activate continuous integration.

License GPL (>=3)

Encoding UTF-8

RoxygenNote 7.3.2

SystemRequirements pandoc

VignetteBuilder knitr

Imports bookdown, distill, rmarkdown, rmdformats, usethis
Suggests knitr, pkgdown, testthat

NeedsCompilation no

Author Eric Marcon [aut, cre] (ORCID: <https://orcid.org/0000-0002-5249-321X>)
Maintainer Eric Marcon <eric.marcon@agroparistech.fr>
Repository CRAN

Date/Publication 2025-05-01 06:50:02 UTC

Contents
build_ghworkflow 2
build_githubpages 3
build_gitignore L e 4
build readme e 5
Knit . . . e e e 6

https://ericmarcon.github.io/memoiR/
https://github.com/EricMarcon/memoiR/
https://github.com/EricMarcon/memoiR/issues/
https://orcid.org/0000-0002-5249-321X

2 build_ghworkflow

Index 8

build_ghworkflow Build GitHub Action Workflow

Description

Build a YAML file (.gihub/workflows/memoir.yml) to knit the documents of the project to
GitHub Pages. The workflow knits all R Markdown files according their header: all output for-
mats are produced and stored into the gh-pages branch of the project.

Usage
build_ghworkflow()

Details

All HTML outputs have the same name so the last one knitted overwrites the previous ones. Keep
only one HTML format in the header of each RMarkdown file.

No DESCRIPTION file is necessary in the project to install packages. They must be declared in the
options code chunk of each .Rmd file (index.Rmd for the memoir template).

Two secrets must have been stored in the GitHub account:

e GH_PAT: a valid access token,
e EMAIL: the email address to send the workflow results to.

Value

The content of the YAML file as a vector of characters, invisibly. Each element is a line of the file.

Examples

Simulate the creation of a new project

Save working directory

original_wd <- getwd()

Get a temporary working directory

wd <- tempfile("example")

Simulate File > New File > R Markdown... > From Template > Simple Article
rmarkdown: :draft(wd, template="simple_article”, package="memoiR", edit=FALSE)
Go to temp directory

setwd(wd)

Make it the current project

usethis::proj_set(path = ".", force = TRUE)

Build GitHub Actions Workflow script
build_ghworkflow()

Content
readLines(".github/workflows/memoir.yml")

build_githubpages 3

End of the example: cleanup

Return to the original working directory and clean up
setwd(original_wd)

unlink(wd, recursive = TRUE)

build_githubpages Build GitHub Pages

Description

Copy the files produced by knitting to the destination folder.

Usage

build_githubpages(destination = usethis: :proj_path("docs"))

Arguments

destination destination folder of the knitted documents.

Details

Produced files are HTML pages and their companions (css, figures, libraries) and PDF documents.
The function moves them all and the README . md file into the destination folder. GitHub Pages allow
making a website to present them:

* README.md is the home page. Make it with build_readme () to have links to the HTML and
PDF outputs.
* knit both HTML and PDF versions to avoid dead links.

* run build_githubpages() when a document is knitted to move the outputs into the docs
folder.

* push to GitHub and activate GitHub Pages on the main branch and the docs folder. The
function is useless in book projects: the Build the Book (i.e. the bookdown: : render_book ()
function) takes care of every step.

Value

A vector with the names of the files and directory that were copied if they existed (some may not
be knitted), invisibly.

4 build_gitignore

Examples

Not run:

Simulate the creation of a new project

Save working directory

original_wd <- getwd()

Get a temporary working directory

wd <- tempfile("example")

Simulate File > New File > R Markdown... > From Template > Simple Article
rmarkdown: :draft(wd, template="simple_article”, package="memoiR", edit=FALSE)
Go to temp directory

setwd(wd)

Make it the current project

usethis::proj_set(path = ".", force = TRUE)

Sequence of actions to build a complete project

Build .gitignore

build_gitignore()

Activate source control, edit your files, commit

Build README, link to HTML output only in this example

build_readme(PDF = FALSE)

render: knit to HTML Document (interactively: click the Knit button)

rmarkdown: :render(input = list.files(pattern = "x.Rmd"),
output_format = "bookdown::html_document2")

Build GitHub Pages

build_githubpages()

List the GitHub Pages files

setwd("docs")

list.files(recursive = TRUE)

Commit and push. Outputs will be in /docs of the master branch.

End of the example: cleanup

Return to the original working directory and clean up
setwd(original_wd)

unlink(wd, recursive = TRUE)

End(Not run)

build_gitignore Build .gitignore

Description

Build a .gitignore file suitable for R Markdown projects.

Usage

build_gitignore()

build readme 5

Details

The .gitignore file contains the list of files (file name patterns) that must not be controlled by git.
Run this function once in each project created from a memoiR template, before activating version
control.

Value

The content of the .gitignore file as a vector of characters, invisibly. Each element is a line of the
file.

Examples

Simulate the creation of a new project

Save working directory

original_wd <- getwd()

Get a temporary working directory

wd <- tempfile("example")

Simulate File > New File > R Markdown... > From Template > Simple Article
rmarkdown: :draft(wd, template="simple_article”, package="memoiR", edit=FALSE)
Go to temp directory

setwd(wd)

Make it the current project

usethis::proj_set(path = ".", force = TRUE)

Build .gitignore file
build_gitignore()

Content
readLines(".gitignore")

End of the example: cleanup

Return to the original working directory and clean up
setwd(original_wd)

unlink(wd, recursive = TRUE)

build_readme Build README

Description

Build a README . md file that will be used as index of GitHub Pages.

Usage
build_readme(PDF = TRUE)

Arguments

PDF if TRUE (by default), a link to the PDF output is added.

6 Knit

Details

R Markdown files of the project are used to get the title and abstract of the published documents.
Run this function once in each project created from a memoiR template, before build_githubpages().
A link to their HTML and, optionally, PDF versions is added. Metadata fields are read in the .Rmd
files YAML header: title, abstract and URL.

Value

The content of the README . md file as a vector of characters, invisibly. Each element is a line of the
file.

Examples

Simulate the creation of a new project

Save working directory

original_wd <- getwd()

Get a temporary working directory

wd <- tempfile("example")

Simulate File > New File > R Markdown... > From Template > Simple Article
rmarkdown: :draft(wd, template="simple_article”, package="memoiR", edit=FALSE)
Go to temp directory

setwd(wd)

Make it the current project

usethis::proj_set(path = ".", force = TRUE)

Build README.md file
build_readme()

Content
readLines("README.md")

End of the example: cleanup

Return to the original working directory and clean up
setwd(original_wd)

unlink(wd, recursive = TRUE)

Knit Knit

Description

Create documents from templates
Usage
knit_all(destination = usethis::proj_path("docs"), gallery = "gallery")

knit_template(
template,

Knit 7

output_format,
destination = usethis::proj_path("docs"),
gallery = "gallery"

)
Arguments
destination name of the folder containing GitHub pages or equivalent.
gallery name of the subfolder of destination to store the knitted documents.
template name of the template to knit, e.g. "simple_article".

output_format A character vector of the output formats to convert to. Each value must be the
name of a function producing an output format object, such as "bookdown::pdf_book".

Details
These functions are used to test the templates and produce a gallery.

* knit_template() produces an HTML and a PDF output of the chosen template.

* knit_all() runs knit_template() on all templates of the package. The output_format argu-
ment selects the way templates are rendered:

* articles may be rendered in HTML by bookdown::html_document2, bookdown::gitbook, rmd-
formats::downcute (and others, see the package rmdformats) and in PDF by bookdown::pdf_book.

* books may be rendered in HTML by bookdown::gitbook or bookdown::bs4_book and in PDF
by bookdown::pdf_book.

* slides may be rendered in HTML by bookdown::slidy_presentation2, bookdown::ioslides_presentation2
and in PDF by bookdown::beamer_presentation?2.

These functions are mainly used for test and documentation purposes. In projects based on the
templates, use the Knit button (articles, presentations) or the Build the Book button (memoirs) or
bookdown: : render_book ().

Value

TRUE if all documents have been knitted and copied to the gallery, invisibly.

Index

bookdown: :beamer_presentation2, 7
bookdown: :bs4_book, 7
bookdown: : gitbook, 7

bookdown: :html_document2, 7
bookdown: :ioslides_presentation2, 7
bookdown: : pdf_book, 7
bookdown: : render_book(), 3, 7
bookdown: :slidy_presentation2, 7
build_ghworkflow, 2
build_githubpages, 3
build_githubpages(), 6
build_gitignore, 4

build_readme, 5

build_readme(), 3

Knit, 6
knit_all (Knit), 6
knit_template (Knit), 6

rmdformats: :downcute, 7

	build_ghworkflow
	build_githubpages
	build_gitignore
	build_readme
	Knit
	Index

