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1 Introduction

Data collected by means of households’ expenditure survey may present a large proportion of zero ex-
penditures due to many households recording, for one reason or another, no expenditure for some items.
Analyzing these data requires to model any expenditure with a large proportion of nil observations as a
dependent variable left censored at zero.

Since the seminal paper of Tobin (1958), a large econometric literature has been developed to deal correctly
with this problem of zero observations. The problem of censored data has also been treated for a long time
in the statistics literature dealing with survival models.

In applied microeconometrics, different decision mechanisms have been put forward to explain the appearance
of zero expenditure observations. The original Tobin’s model takes only one of these mechanisms into account.
With mhurdle, up to three mechanisms generating zero expenditure observations may be introduced in the
model1. More specifically, we consider the following three zero expenditure generating mechanisms.

1his package is a new version of a package first developed as part of a PhD dissertation carried out by St’ephane Hoareau
(2009) at the University of Reunion under the supervision of Fabrizio Carlevaro and Yves Croissant.
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• A good selection mechanism (hurdle 1). According to this mechanism, the consumer2 first decides
which goods to include in its choice set and, as a consequence, he can discard some marketed goods
because he dislikes them (like meat for vegetarians or wine for non-drinkers) or considers them harmful
(like alcohol, cigarettes, inorganic food, holidays in dangerous countries), among others.

This censoring mechanism has been introduced in empirical demand analysis by Cragg (1971). It
allows to account for the non-consumption of a good as a consequence of a fundamentally non-economic
decision motivated by ethical, psychological or social considerations altering the consumer’s preferences.

• A desired consumption mechanism (hurdle 2). According to this mechanism, once a good has been
selected, the consumer decides which amount to consume and, as a consequence of his preferences, re-
sources and selected good prices, its rational decision can turn out to be a negative desired consumption
level leading to a nil consumption.

The use of this mechanism, to explain the presence of zero observations in family expenditure surveys,
was introduced by Tobin (1958). Its theoretical relevance has been later rationalized by the existence
of corner solutions to the microeconomic problem of rational choice of the neoclassical consumer.3

Cragg (1971)’s combination of this desired consumption mechanism and the selection mechanism leads
a double hurdle model, also called two-part model, which has been extended by Blundell and Meghir
(1987) to the case where the two equations are correlated.

• A purchasing mechanism (hurdle 3). According to this mechanism, once a consumption decision has
been taken, the consumer sets up the schedule at which to buy the good and, as a consequence of its
purchasing strategy, a zero expenditure may be observed if the survey by which these data are collected
is carried out over a too short period with respect to the frequency at which the good is bought.

This censoring mechanism has been introduced in empirical demand analysis by Deaton and Irish
(1984). It allows to account for the non-purchase of a good not because the good is not consumed but
because it is an infrequently bought good or service. This is typically the case for durable or storable
non durable goods, but also for many infrequently bought services like health, leisure, education and
training services. Remarkably, this mechanism allows to derive from observed expenditures the rate of
use of a durable good, the rate of consumption of a stored non durable good, and the rate of purchase
of an infrequently consumed non storable non durable good or service.

For each of these censoring mechanisms, a continuous latent variable is defined, indicating that censoring is
in effect when the latent variable is negative. These latent variables are modeled as functions of explanatory
variables and of a random disturbance, with a possible correlation between the disturbances of different latent
variables in order to account for a possible simultaneity of the decisions modeled by censoring mechanisms.
To model possible departures of the observed dependent variable from normality, as it is common with
economic variables, we use transformations of this variable allowing to rescale non normal random variables
to normality. By combining part or the whole set of these censoring mechanisms, we generate a set of non-
nested parametric models that can be used to explain censored expenditure data depending on the structural
censoring mechanisms that a priori information suggests to be at work.

These formal models have been primarily developed to deal with censored household expenditure data, and
numerous applications have been carried out in this field. Smith (2002) presented an overview of these
studies. Using an updated overview of these studies carried out by ourselves, we note a late popularity
of Cragg’s approach, as the first applications of hurdle models are published in the late of 1980s, namely
almost two decades after the publication of Cragg (1971) ’s paper. Since then, a large variety of demand
models including one or two among the previous three censoring mechanisms are estimated. However, none
of these studies use the three censoring mechanisms we consider, jointly. From the 1990s on, many studies
account for deviations of the desired consumption relation to homoscedasticity and normality by modeling

2The consumer we are referring to is that of the microeconomic theory, an abstract economic agent responsible of the
decisions of a consumption unit that may be an individual, a family, a household. According to the economic literature, we
term this concept "the consumer" by convenience.

3See section 10.2 of Amemiya (1985), for an elementary presentation of this issue, and chapter 4 of Pudney (1989), for a
more comprehensive one.
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the standard error of this variable as a non negative parametric function of some explanatory variables and by
transforming its distribution to normality using either the logarithmic, the Box-Cox or the inverse hyperbolic
sine transformations. The estimation of a correlation coefficient between disturbances is also performed in
several of these studies, with an increasing success over time, in terms of statistical significance of estimates.

The practical scope of multiple hurdle Tobit models is not restricted to empirical demand analysis but has
been fruitfully used in other fields of economics. This includes labor economics, contingent valuation studies,
finance, sport activities, internet use, gambling, production.

Our hurdle models are specified as fully parametric models allowing estimation and inference within an
efficient maximum likelihood framework. In order to identify a relevant model specification, goodness of fit
measures for model evaluation as well as Vuong tests for discriminating between nested and non nested models
have been implemented in mhurdle package. Vuong tests remarkably permit to compare two competing
models when neither of them contain the true mechanism generating the sample of observations. More
precisely, such tests allow to assess which of the two competing models is closest to the true unknown
model according to the Kullback-Leibler information criterion. Therefore, such tests are not intended, as
classical Neyman-Pearson tests, to pinpoint the chimeric true model, but to identify a best parametric
model specification (with respect to available observations) among a set of competing specifications. As a
consequence, they can provide inconclusive results, which prevent from disentangling some competing models,
and when they are conclusive, they don’t guarantee an identification of the relevant model specification.

Survival models are implemented in R with the survival package of Therneau (2013). It has also close
links with the problem of selection bias, for which some methods are implemented in the sampleSelection

package of Toomet and Henningsen (2008). It is also worth mentioning that a convenient interface to
survreg, called tobit, particularly aimed at econometric applications is available in the AER package of
Kleiber and Zeileis (2008). More enhanced censored regression models (left and right censoring, random
effect models) are available in the censReg package (Henningsen 2013). Some flavor of hurdle models have
also been developed for count data and are implemented in the hurdle function of the pscl package (Zeileis,
Kleiber, and Jackman 2008).

The paper is organised as follows: Section 2 presents the rationale of our modelling strategy. Section 3
presents the theoretical framework for model estimation, evaluation and selection. Section 4 discusses the
software rationale used in the package. Section 5 illustrates the use of mhurdle with a real-world example.
Section 6 concludes.

2 Modelling strategy

2.1 Model specification

Our modeling strategy is intended to model the level y of expenditures of a household for a given good or
service during a given period of observation. To this purpose, we use up to three zero expenditure generating
mechanisms, called hurdles, and a demand function.

Each hurdle is represented by a qualitative binary response model resting on one of the following three latent
dependent variables relations:











y∗
1 = β⊤

1 x1 + z1

T (y∗
2) = β⊤

2 x2 + σz2

y∗
3 = β⊤

3 x3 + z3

(1)

where y∗
1 , y∗

2 , y∗
3 stand for continuous latent dependent variables x1, x2, x3 for column-vectors of explanatory

variables (called covariates in the followings), β1, β2, β3 for column-vectors of the impact coefficients of the
explanatory variables on the latent dependent variables, z1, z2, z3 for standard normal random disturbances.
Since variables y∗

1 and y∗
3 are never observed, contrary to y∗

2 , the units of measurement of y∗
1 and y∗

3 are not
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identified. Hence, the disturbances in the corresponding binary response models are normalized by setting
their variances equal to 1.

Relying on a Johnson (1949)’s proposal, T (·) denotes a differentiable one-to-one transformation intended to
rescale a potentially not normally distributed random variable y∗

2 into a normally distributed ones, with σ
standard deviation. As the domain of definition of the inverse transformation T −1(·) my be restrained to a
subset of real numbers, the standard normal random disturbance z2 is potentially truncated at the bounds
of an interval [B1, B2] with B1 and/or B2 finite. To account for heteroscedasticity of z2, in mhurdle the
standard deviation σ can be specified as a positive monotonic transformation of a linear function of a vector
of covariates x4, namely β⊤

4 x4. However, for notational simplicity, we will adopt in what follows the notation
of an homoscedastic standard deviation σ rather than the more general one of an heteroscedastic standard
deviation σ(β⊤

4 x4).4

These equations model the hurdles, namely the sequence of binary decisions a consumer faces when buying
a good. Each hurdle decision is coded by a binary variable Ij taking value 1 if y∗

j > 0 and 0 otherwise.
Therefore, the outcome of each of such decisions is modeled as a probit model with outcome probabilities:
P(Ij = 1) = P(y∗

j > 0) and P(Ij = 0) = 1 − P(y∗
j > 0).

By assuming that consumption and purchases are uniformly distributed over time, but according to different
timetables entailing a frequency of consumption higher than that of purchasing, we can also interpret the
probability P(I3 = 1) = P(y∗

3 > 0) as measuring the share of purchasing frequency to that of consumption
during the observation period. This allows to relate the observed level of expenditures y to the unobserved
level of consumption y∗

2 during the observation period, using the following identity:

y =
T −1(β⊤

2 x2 + σz2)

P(I3 = 1)
I1I2I3. (2)

This modeling strategy provides an explanatory framework where censoring of the observed dependent
variable results from the effect of up to three different censoring mechanisms, namely: I1 = 0 and/or I2 = 0
and/or I3 = 0.

A priori information (theoretical or real-world knowledge) may suggest that one or more of these censoring
mechanisms are not in effect. For instance, we know in advance that all households purchase food regularly,
implying that the first two censoring mechanisms are inoperative for food. In this case, the relevant model is
defined by only two relations: one defining the desired consumption level of food and the other the decision
to purchase food during the observation period.

When the first and/or the third hurdles are supposed not to be in effect, the previous binary response models
for I1 and/or I3 must be replaced by singular probability response models where P(I1) = 1 and/or P(I3) = 1.
When the second hurdle is supposed to be inoperative, we must not only replace the binary response model
explaining I2 by a singular probability response model where P(I2 = 1) = 1 but also select a monotonic
transformation T (y∗

2) enforcing non-negative values to y∗
2 .

Cragg (1971) suggested two types of functional forms of the distribution of y∗
2 enforcing such constraint,

namely the (inverse) log-normal distribution:

y∗
2 = exp¶β⊤

2 x2 + σz2♢ (3)

and the normal distribution left-truncated at 0:

y∗
2 = max¶0; β⊤

2 x2 + σz2♢ = β⊤
2 x2 + σ max¶B1; z2♢ (4)

4For a practical application of this parametric model of heteroscedasticity, a functional form of σ(β⊤

4
x4) written as

exp¶β40F (β⊤

4
x4)♢, where F (.) is the distribution function of the standard normal random variable, has been programmed

in mhurdle. This functional form remains bounded with respect to any possible values of covariates x4 and allows testing the
assumption of homoscedasticity, σ = exp¶β40/2♢, by assessing the statistical non significance of parameter vector β4 without
an intercept.
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where max¶B1; z2♢ is a standard normal random variable left-truncated at B1 = −β⊤
2 x2/σ.

To account for these two functional forms within our general formal framework (1) and illustrate in section
5 their empirical use with mhurdle, in this paper we consider two transformations T (y∗

2).5

The first transformation is the identity transformation which generates an un-truncated normal distribution
of y∗

2 when hurdle 2 is in effect, and the left-truncated normal distribution (4) when hurdle 2 is not in effect.

The second transformation is a slight generalization of the logarithmic transformation leading to the (inverse)
log-normal distribution (3), namely:

T (y∗
2) = ln(y∗

2 + α) (5)

with α a location parameter which shifts the left-truncation bound of y∗
2 towards negative or positive values

according to the sign of α. As the inverse of this transformation is written as:

y∗
2 = exp¶β⊤

2 x2 + σz2♢ − α (6)

it turns out that this transformation allows to model skewed distributions of y∗
2 according to a translated

(inverse) log-normal functional form where the support of z2 is un-truncated. By the same token, testing
the statistical significance of parameter α, against the alternative α > 0, amounts to testing the assumption
that hurdle 2 is not in effect. Conversely, when α < 0 the transformation (5) holds for y∗

2 > −α meaning
that −α stands for a “committed” consumption of a basic necessity, while α > 0 typify a luxury good whose
consumption occurs only above a given income threshold.6

To derive the form of the probability distribution of the observable dependent variable y, we must still specify
the joint distribution of the random disturbances entering the hurdle relations assumed to be in effect and
that of the demand function, which in turn depends on the domain of definition of transformation T −1(·).
For trivariate hurdle models, where hurdles 1 and 3 are in effect (but not necessarily hurdle 2), the joint
density function of z1, z2 and z3 is a possibly truncated standard trivariate normal density function written
as:

ϕ (z1, z2, z3; ρ) /Π (7)

where Π = Φ(B2) − Φ(B1) with Φ(z) the distribution function of a standard univariate normal distribution,
ϕ(z1, z2, z3; ρ) the density function of a standard trivariate normal distribution with ρ the vector of the three
symmetric correlation coefficients ρ12, ρ13, ρ23 between the couples of normal standard random variables z1

and z2, z1 and z3, z2 and z3, respectively.

For bivariate hurdle models, where either hurdle 1 or hurdle 3 is not in effect, the joint density function of
zi, with i = 1 or 3, and z2 is a possibly truncated standard bivariate normal density function written as:

ϕ (zi, z2; ρi2) /Π (8)

where ϕ (zi, z2; ρi2) denotes the density function of a standard bivariate normal distribution.

Finally, for univariate hurdle models, where both hurdles 1 and 3 are not in effect, the density function of
z2 is a possibly truncated standard univariate normal density function:

5To model possible departures of the observed dependent variable y from normality towards distributions of the kind
encountered with real-world economic data, two families of flexible parametric transformations T (.) were programmed in
mhurdle, namely the two parameter Box and Cox (1964) transformation, as suggested by Lankford and Wyckoff (1991) and
Chaze (2005), and Johnson (1949)’s one parameter inverse hyperbolic sine transformation. The first family, which includes
transformations (4) and (5) as special cases, generates a broad range of skewed distributions, while the second family generates
a broad range of symmetric leptokurtic (more sharply peaked than the normal) distributions.

6This economic interpretation of parameter α my justify to model this parameter as a function of some covariates, like
household demographic characteristics.
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ϕ(z2)/Π (9)

where ϕ(z2) denotes the density function of a standard univariate normal distribution.

While the assumption of correlated disturbances is intended to account for the interdependence between
latent variables y∗

1 , y∗
2 and y∗

3 unexplained by covariates x1, x2 and x3, a priori information (theoretical
or real-world knowledge) may also suggest to set to zero some or all correlations between the random
disturbances entering these models, entailing a partial or total independence between model relations. The
use of this a priori information generates, for each trivariate or bivariate hurdle model, a subset of special
models all nested within the general model from which they are derived. For a trivariate hurdle model the
number of special models so derived is equal to seven, but for a bivariate hurdle model only one special
model is generated, namely the model obtained by assuming the independence between the two random
disturbances of the model.

2.2 Probability distribution of censored dependent variable

As for the standard Tobit model, the probability distribution of the observed censored variable y of our
hurdle models is a discrete-continuous mixture, which assigns a probability mass P(y = 0) to y = 0 and a
density function f+(y) to any y > 0, with:

P(y = 0) +

∫ ∞

0

f+(y)dy = 1. (10)

To compute the probability mass P(y = 0) = 1 − P(y > 0) and the density function f+(y) we must first
establish the joint density function of the latent variables entering the hurdle model.

For trivariate hurdle models, the joint density function of latent variables y∗
1 , y∗

2 and y∗
3 can be derived from

the density function (7) of variables z1, z2 and z3 by means of the change of variables:







z1 = y∗
1 − β⊤

1 x1

z2 = (T (y∗
2) − β⊤

2 x2)/σ
z3 = y∗

3 − β⊤
3 x3

(11)

which leads to:

f(y∗
1 , y∗

2 , y∗
3) =

T
′

(y∗
2)

σ

ϕ
(

y∗
1 − β⊤

1 x1, (T (y∗
2) − β⊤

2 x2)/σ, y∗
3 − β⊤

3 x3; ρ
)

Π
, (12)

where T
′

(y∗
2) stands for the derivative of T (y∗

2).

To compute P(y > 0), we integrate this density function over the three-dimensional positive octant using the
change of variables (11) and the symmetry property of density function (7). Performing this integration for
a strictly increasing transformation T (·)7, which is the case for the identity and logarithmic transformations
we focus in this paper, and z2 truncated over the interval [B1, B2] leads to:

7For a strictly decreasing transformation, as it is the case for some transformations of the Box-Cox family, the integration
with respect to z2 must be performed by reversing the direction of integration, from (T (0) − β⊤

2
x2)/σ to B1. By applying the

theorem on the inversion of the integration limits of a definite integral, we obtain a closed form of the integral similar to that
of formula (13) with truncation value B2 replaced by B1.
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P(y > 0) =

∫ ∞

−β⊤
1 x1

∫ B2

T (0)−β⊤
2

x2

σ

∫ ∞

−β⊤
3 x3

ϕ(z1, z2, z3; ρ)

Π
dz1dz2dz3

=

∫ β⊤
1 x1

−∞

∫

β⊤
2

x2−T (0)

σ

−B2

∫ β⊤
3 x3

−∞

ϕ(z1, z2, z3; ρ)

Π
dz1dz2dz3

=
Φ(β⊤

1 x1, (β⊤
2 x2 − T (0))/σ, β⊤

3 x3; ρ) − Φ(β⊤
1 x1, −B2, β⊤

3 x3; ρ)

Π
.

(13)

Therefore, for z2 left-truncated at B1 = −β⊤
2 x2/σ, which is the case for the truncated normal distribution

(4), this closed form for P(y > 0) simplifies to:

P(y > 0) =
Φ(β⊤

1 x1, (β⊤
2 x2 − T (0))/σ, β⊤

3 x3; ρ)

Φ(β⊤
2 x2/σ)

, (14)

while for the un-truncated normal and the translated (inverse) log-normal distribution (6) it is written as:

P(y > 0) = Φ(β⊤
1 x1, (β⊤

2 x2 − T (0))/σ, β⊤
3 x3; ρ). (15)

To compute the density function f+(y) we first derive the joint density function of variables y∗
1 , y and y∗

3 by
performing the change of variable y∗

2 = Φ3y with Φ3 = Φ(β⊤
3 x3) = P(I3 = 1) on the joint density function

(12), which leads to :

f(y∗
1 , y, y∗

3) =
Φ3T

′

(Φ3y)

σ

ϕ
(

y∗
1 − β⊤

1 x1, (T (Φ3y) − β⊤
2 x2)/σ, y∗

3 − β⊤
3 x3; ρ

)

Π
. (16)

We must then integrate this transformed density function over the positive quadrant of the bi-dimensional
support of variables y∗

1 and y∗
3 . To this purpose we rewrite this trivariate normal density function as the

product of the marginal density function of y, written as:

f(y) =
Φ3T

′

(Φ3y)

σ

ϕ
(

(T (Φ3y) − β⊤
2 x2)/σ

)

Π
, (17)

and of the conditional joint density function f(y∗
1 , y∗

3 ♣y), which is bivariate normal with expectations,
standard-deviations and correlation coefficient written as:

µi♣2(y) = β⊤
i xi + ρi2(T (Φ3y) − β⊤

2 x2)/σ, σi♣2 =
√

1 − ρ2
i2, i = 1, 3

ρ13♣2 =
ρ13 − ρ12ρ23

√

1 − ρ2
12

√

1 − ρ2
23

.
(18)

Integrating this factorization of density function (16) with respect to positive values of y∗
1 and y∗

3 leads to
the following closed form for f+(y):

f+(y) = f(y)
∫ ∞

0

∫ ∞

0
f(y∗

1 , y∗
3 ♣y)dy∗

1dy∗
3

= f(y)

∫ ∞

−
µ1♣2(y)

σ1♣2

∫ ∞

−
µ3♣2(y)

σ3♣2

ϕ
(

z1, z3; ρ13♣2

)

dz1dz3

= f(y)Φ



µ1♣2(y)

σ1♣2
,

µ3♣2(y)

σ3♣2
; ρ13♣2



.

(19)
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The probability distribution of the observed censored variable y for bivariate and univariate hurdle models
can be derived from that of the trivariate model by eliminating hurdles 1, 3 and 1 and 3, respectively. By
eliminating hurdle 1 we obtain:

P(y > 0) =
Φ

(

(β⊤
2 x2 − T (0))/σ, β⊤

3 x3; ρ23

)

− Φ
(

−B2, β⊤
3 x3; ρ23

)

Π
(20)

and

f+(y) =
Φ3T

′

(Φ3y)

σ

ϕ
(

(T (Φ3y) − β⊤
2 x2)/σ

)

Π
Φ



µ3♣2(y)

σ3♣2



, (21)

while the elimination of hurdle 3 leads to:

P(y > 0) =
Φ

(

β⊤
1 x1, (β⊤

2 x2 − T (0))/σ; ρ12

)

− Φ
(

β⊤
1 x1, −B2; ρ12

)

Π
(22)

and

f+(y) =
T

′

(y)

σ

ϕ
(

(T (y) − β⊤
2 x2)/σ

)

Π
Φ



µ1♣2(y)

σ1♣2



. (23)

Finally, removing both hurdles 1 and 3 leads to the univariate censured regression model with:

P(y > 0) =
Φ

(

(β⊤
2 x2 − T (0))/σ

)

− Φ (−B2)

Π
(24)

and

f+(y) =
T

′

(y)

σ

ϕ
(

(T (y) − β⊤
2 x2)/σ

)

Π
. (25)

The econometric framework described in the previous section provides a theoretical background for tackling
the problems of model estimation, evaluation, selection and prediction within the statistical theory of classical
inference. In mhurdle these statistical issues are tackled by assuming that data at hand are those observed
on a sample of individuals selected in a large population using a sampling design generating a data base
having the features of a random sample.8

To appraise the results of a model estimation two fundamental principles should be used, namely its economic
relevance and its statistical and predictive adequacy. The first principle deals with the issues of accordance
of model estimate with the economic rationale underlying the model specification and of its relevance for
answering the questions for which the model has been built. These issues are essentially context specific
and, therefore, cannot be dealt with by means of generic criteria. The second principle refers to the issues of
empirical soundness of an estimated model and of its ability to predict sample or out-of-sample observations.
These issues can be tackled by means of measures of goodness of fit, by formal tests of significance based on
the distribution of model parameter estimators, and by the quality of predictions provided by an estimated
model, respectively.

8Data provided by surveys conducted by official statistical offices usually fulfill such requirement, at least as far as the survey
is performed according to a random sampling design where no one of the modeled dependent variables was used to design the
sampling scheme. On this important issue see Chapter 24 of Cameron and Trivedi (2005).

8



3 Likelihood function

The full parametric specification of our multiple hurdle models allows to efficiently estimate their parameters
by means of the maximum likelihood principle. Indeed, it is well known from classical estimation theory
that, under the assumption of a correct model specification and for a likelihood function sufficiently well
behaved, the maximum likelihood estimator is asymptotically efficient within the class of consistent and
asymptotically normal estimators.9

For a random sample of n observations of the censored dependent variable y it is easy to derive its likelihood
function from the results set out in previous section 2.2. As these observations are all independently drawn
from the same conditional (on covariates x1, x2, x3 and x4) discrete-continuous distribution, which assigns a
conditional probability mass P(y = 0) to the observed value y = 0 and a conditional density function f+(y)
to the observed values y > 0, the log-likelihood function for an observation yi can be written as :

ln Li =



ln P(yi = 0) if yi = 0
ln f+(yi) if yi > 0

(26)

and the log-likelihood for the entire sample:

ln L =

n
∑

i=1

ln Li =
∑

i♣yi=0

ln P(yi = 0) +
∑

i♣yi>0

ln f+(yi). (27)

A maximum likelihood estimate of model parameters is obtained by numerically maximizing this function
with respect to all the unknown model parameters entering this function. Algorithms used in mhurdle to
perform this numerical optimization are described later in section 4.2. To the extent that such an estimate
is obtained, classical statistical inference about model parameters θ under the assumption of a correctly
specified model is performed in mhurdle using the asymptotic approximation of the distribution of maximum
likelihood estimators, which is normal, with expectation θ and covariance matrix (nIA(θ))−1 where IA(θ)
stands for the asymptotic Fisher information matrix of a random sample of n observations.10 For empirical
applications this theoretical matrix can be consistently estimated using one of the following two matrices:

1

n

n
∑

i=1

∂2 ln Li(θ̂)

∂θ∂θ⊤
or

1

n

n
∑

i=1

∂ ln Li(θ̂)

∂θ

∂ ln Li(θ̂)

∂θ⊤

which limits (for n → ∞) are called the Hessian and the gradient versions of IA(θ). These matrices are

directly provided by two standard iterative methods used to compute θ̂, namely the Newton-Raphson and
BHHH methods mentioned in section 4.2.

4 Model evaluation and selection using goodness of fit measures

4.1 Model evaluation and selection using goodness of fit measures

To assess the goodness of fit of a mhurdle model estimate we can not rely on a single measure, as a sample
of censored observations of dependent variable y consists of two sub-samples of incomparable observations,
namely the sub-sample of zero observations and that of positive observations. The former is a sample
of observations of a qualitative binary variable coding the outcome of the censoring mechanisms at work,
while the latter is a sample of observations of a quantitative variable measuring the outcome of the demand
function, when this demand is uncensured. As a consequence, a measure of goodness of fit for each of these

9See Amemiya (1985) chapter 4, for a rigorous statement of this property.
10A more robust approach to classical statistical inference with respect to model specification errors will be presented later,

in subsection 3.3.
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two samples of observations must be used as the goodness of fit is not measured the same way in qualitative
binary response models as in quantitative response models.

To this purpose, we reformulate a mhurdle model as a two-part model. The first-part specifies a model for
the censoring mechanism explaining the outcome of the qualitative binary variable:

d =



0 if y = 0
1 if y > 0

(28)

according to a probit model assigning the probability P(y = 0) to the censored observation (d = 0) and the
probability P(y > 0) = 1 − P(y = 0) to the uncensored observation (d = 1). Therefore, the log-likelihood for
this first-part model is written as:

ln L0 =

n
∑

i=1

[(1 − di) ln P(yi = 0) + di ln P(yi > 0)]. (29)

The second-part specifies, conditionally to an uncensored response being observed, the demand model ex-
plaining the outcome of quantitative variable y according to the following conditional density function:

f(y♣y > 0) = f+(y)/P(y > 0). (30)

For this second-part model, the log-likelihood is written as:

ln L+ =

n
∑

i=1

di[ln f+(y) − ln P(yi > 0)]. (31)

Adding-up the log-likelihoods of these two-part model leads to:

ln L0 + ln L+ =
∑n

i=1[(1 − di) ln P(yi = 0) + di ln f+(y)]

=
∑

i♣yi=0 ln P(yi = 0) +
∑

i♣yi>0 ln f+(yi) = ln L,
(32)

meaning that the two-part model is entirely consistent with an integrated specification of mhurdle model.

To develop a measure of fit for binary response models which may be intuitively interpreted in a similar way
to the coefficient of determination R2 in the linear regression model, Estrella (1998) suggests to rely on the
relationship between R2 and the classical likelihood-based test statistics, namely the likelihood ratio (LR),
Wald (W) and Lagrange multiplier/score (LM) statistics. In the normal linear regression model, where such
relationships holds exactly for the likelihood ratio statistics11, it is written as:

R2 = 1 − exp¶−A♢ (33)

with A = −(2/n) ln(Lc/Lu) the average value of the likelihood ratio statistic, Lu the maximum value of the
unconstrained likelihood, and Lc the maximum value of the likelihood constrained by the hypothesis of a
model without covariates (intercept-only model).

From this relationships, it follows that R2 = 0 for A = 0, which corresponds to the case where the fit of the
unconstrained model is identical to that of the constrained model (worst fit), and R2 = 1 when A = ∞, the
upper bound of the likelihood ratio statistic achieved when the fit of the unconstrained model is perfect (best
fit). Between these two limits R2 increases with A according to a rescaling of A determined by a differential
equation written as:

11For the Wald and Lagrange multiplier statistics such relationships holds only locally, in a neighborhood of the maintained
hypothesis of an intercept-only model, and takes another functional form.
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dR2/(1 − R2) = dA. (34)

These properties of relationships (33) were adopted by Estrella (1998) as a set of requirements for developing
a R2 analog of the measure of fit for a binary response model. Taking into account that, contrary to the
case of a normal linear regression model, for a binary response model the average likelihood ratio statistic A
varies between 0 (when Lu = Lc) and an upper finite bound B = −(2/n) ln Lc (when Lu = 1), a R2 analog
for a binary response model is obtained by solving the differential equation:

dR2/(1 − R2) = dA/(1 − A/B) (35)

with the initial condition R2(0) = 0. This solution:

R2 = 1 − (1 − A/B)B (36)

provides a rescaling of the likelihood ratio statistic for the binary response model that satisfies the condition
R2(B) = 1 and converge towards the rescaling (33) when B → ∞.

To conclude, for assessing the goodness of fit of the two parts of a mhurdle model we shall use the following
R2-rescaling of likelihoods L0 and L+:

R2
0 = 1 − (ln L0c/ ln L0u)(2/n) ln L0c and R2

+ = 1 − (L+c/L+u)2/n+ (37)

with n+ =
∑n

i=1 di the sample size of uncensored observations.

Note that the estimation of an intercept-only mhurdle model is not generally possible in its original
parametrization because in the absence of covariates many parameters are under-identified, and thus cannot
be consistently estimated. To compute the maximum values of the constrained likelihoods L0c and L+c, we
must respecify the probability distribution of dependent variable y by means of identifiable parameters. To
this end we observe from formula (13) that P(y > 0) is a constant P+, and from formula (19) that f+(y) is
proportional to the density function of T (y) which is normal with a constant expectation µ and a constant
variance s2. Hence, the log-likelihood of the constrained first-part model is written as:

ln L0c = n+ ln(1 − P+) + n+ ln P+, (38)

and provides the following maximum likelihood estimator for P+: P̂+ = n+/n. Similarly, the log-likelihood
of the constrained second-part model is written as:

ln L+c =

n
∑

i=1

di ln ϕ



T (yi) − µ

s



− n+ ln(sP+). (39)

leading to the following estimators for parameters µ and s2: µ̂ =
∑n

i=1 diT (yi)/n+ and ŝ2 =
∑n

i=1 di(T (yi)−
µ̂)2/n+.

The maximized values of constrained likelihoods L0c and L+c are obtained by inserting these estimators for
parameters P+, µ and s2 into formulas (38) and (39). Note that for the logarithmic transformation (5) with
a non-zero location parameter α, the constrained log-likelihood (39) must also be maximized with respect
to this parameter. This maximization may be performed effectively by considering µ̂ and ŝ2 as functions of
α, and maximizing the concentrated log-likelihood obtained by inserting these conditional estimators into
constrained log-likelihood (39), which becomes a function of the single parameter α written as:

ln max
µ,σ2

L+c = −n+

2

[

1 + ln


2π
n+

n



+ ln ŝ2(α)
]

. (40)
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Goodness of fit measures (37) can also be used for model selection, a decision problem dealing with the
identification, among several model specifications used to explain the same dependent variable, of the one
that is best suited to explain the sample of available observations. From this point of view, goodness of
fit measures (37) allow to identify the model specification achieving the best in-sample fit. To be fair,
the goodness of fit measure used for model selection must account for differences in the degree of model
parametrization. Indeed, the value of the above goodness of fit measures can be improved by increasing
model parametrization, because model estimation is performed by maximizing the model likelihood function
from which functionally depend the goodness of fit measures we consider. Consequently, a penalty that
increases with the number of model parameters should be added to formulas (37). To this purpose, we shall
rely on THEIL(1971)’s correction of the coefficient of determination in the linear regression model. This
leads to the following adjusted R2-rescaling of likelihoods L0 and L+:

R̄2
0 = 1 − n − 1

n − K
(ln L0c/ ln L0u)(2/n) ln L0c and R̄2

+ = 1 − n − K0

n − K
(L+c/L+u)2/n+ (41)

with K and K0 the number of parameters in the unconstrained model and the number of parameters in the
constrained second-part model, respectively. Such adjustments may not be relevant in large samples but
may be relevant in small samples.

4.2 Model selection using Vuong tests

Model evaluation can also be tackled from the point of view of the model specification that is favored in a
formal test comparing two model alternatives.

This second model selection criterion relies on the use of a test proposed by Vuong (1989). According to the
rationale of this test, the “best” parametric model specification among a collection of competing specifications
is the one that minimizes the Kullback-Leibler Information Criterion (KLIC), namely a measure of the
distance between the conditional probability mass/density function12 f(y♣x; θ) of a possibly misspecified
parametric model and that of the true unknown model denoted by h(y♣x), defined by the following formula:

KLIC = E



ln



h(y♣x)

f(y♣x; θ∗)



=

∫

ln



h(y♣x)

f(y♣x; θ∗)



dH(y, x), (42)

where H(y, x) denotes the distribution function of the true joint distribution of (y, x) and θ∗ the probability

limit, with respect to H(y, x), of the so called quasi-maximum likelihood estimator θ̂ obtained by applying
the maximum likelihood method when f(y♣x; θ) is misspecified. Note that KLIC criterion takes a minimum
value of 0 when there is a value θ0 of parameter vector θ such that f(y♣x; θ0) = h(y♣x) almost everywhere13,
meaning that conditional probability function f(y♣x; θ) is correctly specified. At the opposite, KLIC will
take large values when f(y♣x; θ) very poorly specifies the true conditional probability function h(y♣x).

As the application of this model selection criterion equals selecting the model specification for which the
quantity:

E[ln f(y♣x; θ∗)] =

∫

ln f(y♣x; θ∗)dH(y, x) (43)

is the largest, given two competing models with conditional probability functions f(y♣x; θ) and g(y♣x; π)
and parameter vectors θ and π of size K and L, respectively, Vuong suggests to discriminate between these
models by testing the null hypothesis:

12For mhurdle models, this conditional probability function is written as :

f(y♣x) = P(y = 0♣x)1−df+(y♣x)d,

with d defined by formula (28).
13By “almost everywhere” we mean: for all points of the support of the true distribution of (y, x) except those for which the

probability PH [(y, x) : f(y♣x; θ0) ̸= h(y♣x)] = 0.
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H0 : E[ln f(y♣x; θ∗)] = E[ln g(y♣x; π∗)] ⇐⇒ E



ln
f(y♣x; θ∗)

g(y♣x; π∗)



= 0,

meaning that the two models are equivalent, against either:

Hf : E[ln f(y♣x; θ∗)] > E[ln g(y♣x; π∗)] ⇐⇒ E



ln
f(y♣x; θ∗)

g(y♣x; π∗)



> 0,

meaning that specification f(y♣x; θ) is better than g(y♣x; π), or:

Hg : E[ln f(y♣x; θ∗)] < E[ln g(y♣x; π∗)] ⇐⇒ E



ln
f(y♣x; θ∗)

g(y♣x; π∗)



< 0,

meaning that specification g(y♣x; π) is better than f(y♣x; θ).

The quantity E[ln f(y♣x; θ∗)] is unknown but it can be consistently estimated, under some regularity con-
ditions, by 1/n times the log-likelihood evaluated at the quasi-maximum likelihood estimator for θ. Hence,
1/n times the log-likelihood ratio statistic:

LR(θ̂, π̂) =

n
∑

i=1

ln
f(yi♣xi; θ̂)

g(yi♣xi; π̂)
(44)

is a consistent estimator for E [ln(f(y♣x; θ∗)/g(y♣x; π∗))].

Therefore, an obvious test of H0 consists in verifying whether a LR-based statistic differs from zero. The dis-
tribution of such a statistic can be worked out even when the true model is unknown, as the quasi-maximum
likelihood estimators θ̂ and π̂ converge in probability to the pseudo-true values θ∗ and π∗, respectively, and
have asymptotic normal distributions centered on these pseudo-true values.

In his seminal paper Vuong (1989) suggests to use different LR-based statistic according to the relation
linking the two competing models, which may be nested, strictly non-nested or overlapping models.14

In a recent paper Shi (2015) has criticized Vuong testing procedures for discriminating between competing
models by showing that they can generate severe size distortions in finite samples. She develops a new test
statistic that corrects these size distortions and which universally applies to nested, strictly non-nested and
overlapping models. The rationale of Shi test statistic consists in correcting two finite sample size distortions
present in the test statistic used by Vuong to discriminate two strictly non-nested models, namely:

TLR =
LR(θ̂, π̂)/

√
n

ω̂
, (45)

with ω̂2 a sample analogue consistent estimator of the variance of the asymptotic distribution of the numer-
ator of statistic TLR, which is N(0, ω2) under the null hypothesis H0.

The first size distortion is due to a bias of order O(1/n) present in the expectation of the asymptotic
distribution of the numerator of TLR under H0. This expectation is written as −tr(V )/(2n) with tr(V ) =
tr(A−1

F BF ) − tr(A−1
G BG), where AF and BF are the limits of the Hessian and of the gradient version of the

Fisher information matrix of model Fθ, respectively, and AG and BG those of model Gπ. Therefore, for a
model for which the information identity A + B = O holds δ = −tr(A−1B) = tr(I) is equal to the number
of model parameters. This suggests to consider δ as a measure of the degree of model parametrization
which increases with the number of model parameters and with the discrepancy of the information identity
resulting from the nonlinearity of the model with respect to its parameters. As a consequence, the finite
sample bias of statistic LR(θ̂, π̂)/n is given by (−δF + δG)/(2n). It will be negligible for models of similar

14These classical Vuong tests have been programmed in our former version of mhurdle presented in Carlevaro et al. (2012).
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degrees of parametrization but negative and of possibly significant magnitude when model Fθ is more heavily
and non-linearly parameterized than model Gπ. Hence, in order to avoid an over-rejection of H0 in favor of
the more parameterized model, Shi suggests to correct the Vuong statistic TLR by subtracting to LR(θ̂, π̂)
a consistent estimator of its asymptotic bias under H0, namely −tr(V̂ )/2 with V̂ a consistent estimator of
matrix V .

The second adjustment of Vuong statistic TLR suggested by Shi is intended to prevent the denominator ω̂
of this statistic from taking values close to zero with non negligible probability, which contributes to create
a fat tail for the distribution of TLR. This adjustment consists in adding a positive constant term to ω̂2,
written as ctr(V̂ 2/n) with c a positive constant chosen according to a data-dependent method,15 in order to
avoid large values of TLR when its denominator is close to zero while its numerator is not.

Finally the modified Vuong test by Shi, called by her a non-degenerate Vuong test, uses the following statistic:

T mod
LR =

(LR(θ̂, π̂) + tr(V̂ )/2)/
√

n
√

ω̂2 + ctr(V̂ 2)/n
. (46)

To completely remove the asymptotic size distortion, Shi proposes to compute a simulated critical value
cv(a), which has a well controlled asymptotic size, in the sense that, asymptotically and for any c ≥ 0, the
probability of rejecting H0 when it is true is upper bounded by a.16 By systematically changing the value of
a in order to equalize the simulated critical value cv(a) to the observed value of statistic T mod

LR , it is possible
to derive a simulated p-value allowing to perform a non-degenerate Vuong test at any controlled asymptotic
size level.

For non-nested models the test is two sided. It is carried out by rejecting H0 if the simulated p-value is less
than the selected size level a, and in favor of either Hf if T mod

LR > 0, or of Hg if T mod
LR < 0.

For nested models the test is one sided because the nested model cannot be closer to the true unknown
model than the nesting model according to the KLIC criterion. Supposing without loss of generality that
model Gπ is nested into model Fθ, the test is carried out by rejecting H0 in favor of Hf if the simulated
p-value is less than the selected size level a. Note that this test is a robust alternative to the usual LR-test
for testing the statistical significance of a priori restrictions on the parameters of model Fθ, in the sense that
it allows the unrestricted model to be misspecified.

A last comment deserves to be devoted to the choice of the size α of the test, which measures the probability
of rejecting H0 when it is true, and thus the risk of favoring, on grounds of statistical evidence, the use of one
of two competing models while they are equivalent. This choice is routinely made by assuming a low value
of α (5% or 1%) without referring to the operational meaning of the test result. But in a decision-making
framework of selection between two models, the size of the test can be chosen as large as desired because if
the two models are equivalent it is irrelevant to use one or the other of these two models. On the other end,
the risk of the second kind, namely the probability of rejecting either Hf or Hg when one of these two models
is true, must be minimized, because concluding that the two models are equivalent does not allow deciding
which one of them should be used. Not rejecting H0 simply point out that further sample information is
needed to determine, with the desired degree of certainty, which of the two model alternatives is the more
suitable for the intended uses.

But how to proceed if further data-gathering is impossible, which is the typical situation faced in econometric
studies. In this situation the discrimination test between two models must be reformulated as a Simon (1943)
symmetric test, namely a binary choice between models Fθ and Gπ where none of these models is privileged as
a null hypothesis of a classical asymmetric Neyman-Pearson test. This reformulation removes the irrelevant
hypothesis of doubt H0 from the decision-making framework by forcing the test to always conclude in
favor of one of the two confronted models, which seems appropriate when there is no a priori evidence to

15Except for nested models, where c is set equal to zero
16For a two sided test this size is P [♣T mod

LR
♣ > cv(a)♣H0], and for a one sided test P [T mod

LR
> cv(a)♣H0].

14



consider one of the two models more plausible than the other17. The test is carried out by first computing
the value of statistic TLR or T mod

LR , then by rejecting model Gπ in favor of model Fθ when this value is
positive, and conversely by rejecting Fθ in favor of Gπ when the value is negative.18 The probability of
committing an error with this symmetric test (accepting model Fθ when it is worse than Gπ)19 is a function
of D = E [ln(f(y♣x; θ∗)/g(y♣x; π∗))], since the tested hypothesis is a composite one leaving unspecified the
absolute value of the distance D between the distributions of models Fθ and Gπ. This risk is maximum for
D = 0 and decreases with ♣D♣. The exact value of this risk can be found by integrating the density function
of statistics TLR or T mod

LR over its negative values20.

4.3 Prediction and marginal effects

Prediction with a causal model like mhurdle of an observable dependent random variable z refers to defining
a function of model covariates x providing, for any admissible value of x, a point estimate ẑ of z whose
prediction error e = z − ẑ is minimized according to some criterion. In the frame of classical or frequentist
statistical inference paradigm, an optimal conditional predictor of z, for a given value of covariates x, is
defined as the one that minimizes the expectation of the squared conditional prediction error, namely E[e2♣x]
called the mean-square error of prediction. Using this criterion leads to select as optimal predictor for z its
conditional expectation E[z♣x], called the best mean-square error predictor for z.

As defined by identity (2), the dependent observable variable y of mhurdle is a mixture of a fqualitative and
a quantitative variables whose expectation has no actual meaning, the zero-value of y denoting the numerical
value taken by the binary dummy variable d when the observation of latent variable y∗

2 is censored. Therefore,
for a predictive purpose, one must disentangle the qualitative component of y from its purely quantitative
component. This can be done by solving the prediction problem of y in the framework of the two-part
respecification of mhurdle models presented in section 3.2.

The first-part of this model explains the outcome of the qualitative component of y using the binary variable
d, whose best mean-square error predictor is given by:

E[d♣x] = 0 × P(y = 0) + 1 × P(y > 0) = P(y > 0), (47)

with P(y > 0) specified by formulas (13), (14), (15), (20), (22) and (24).

The second-part of the model explains the outcome of the quantitative component of y taking positive real
values according to the density function (30). Accordingly, the best mean-square error predictor of y > 0 is
given by:

E[y♣y > 0, x] =

∫ ∞

0

y
f+(y)

P(y > 0)
dy =

E[y♣x]

P(y > 0)
, (48)

with f+(y) specified by formulas (19), (21), (23) and (25).

For the special cases of transformations T (·) identity and logarithmic focused in this paper, closed analytical
forms for E[y♣x] can be established21.

17The assumption of a Bayesian probability of one half for the plausibility a priori of both confronted models may not be
appropriate in the case of two nested models, where one is a special case of the other, and thus the former less plausible than
the latter. For these models, an asymmetric Neyman-Person test where the restricted model represents the null hypothesis and
the unrestricted model the alternative hypothesis seems more appropriate, in particular when the model parameters on which
restrictions are tested have an economic meaning.

18For nested models, Simon’s approach always leads to favor the nesting (unrestricted) model to the nested (restricted) one.
19There is no need to distinguish between error of the first and second kind, since an error of the first kind for testing Hf

against Hg (rejecting model Fθ when it is better than model Gπ) is an error of the second kind for testing Hg against Hf

(accepting model Gπ when it is worse than Fθ), and vice versa.
20For the Vuong statistic TLR this distribution for testing Hf against Hg is N(D, 1) with D ≥ 0. Hence, the risk of rejecting

model Fθ when it is better than model Gπ is equal to P(N(0, 1) < −D) = Φ(−D). This probability decreases from 1/2 to 0
when D increases from 0 to ∞.

21Proofs for the analytical forms (49) and (53) are available from the authors.
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For the identity transformation T (y∗
2) = y∗

2 , this analytical closed form for trivariate hurdle models with
density function f+(y) specified by formula (19) is written as:

E[y♣x] =
Φ123

Φ3
β⊤

2 x2 +
σ

Φ3

(

ϕ2Φ13♣2 + ρ12ϕ1Φ23♣1 + ρ23ϕ3Φ12♣3

)

, (49)

where

Φ123 = Φ



β⊤
1 x1,

β⊤
2 x2

σ
, β⊤

3 x3; ρ



, ϕi = ϕ(β⊤
i xi), i = 1, 3, ϕ2 = ϕ



β⊤
2 x2

σ



,

Φij♣k = Φ



µi♣k

σi♣k
,

µj♣k

σj♣k
; ρij♣k



, i ̸= j ̸= k, µi♣k = β⊤
i xi − ρikβ⊤

k xk, k = 1, 3,

µi♣2 = β⊤
i xi − ρi2

β⊤
2 x2

σ
, σi♣k =

√

1 − ρ2
ik, ρij♣k =

ρij − ρikρjk

σi♣kσj♣k
.

The closed forms for bivariate and univariate hurdle models with density function f+(y) specified by formulas
(21), (23) and (25), are written as:

E[y♣x] =
Φ23

Φ3
β⊤

2 x2 +
σ

Φ3

(

ϕ2Φ3♣2 + ρ23ϕ3Φ2♣3

)

, (50)

E[y♣x] = Φ12β⊤
2 x2 + σ

(

ϕ2Φ1♣2 + ρ12ϕ1Φ2♣1

)

, (51)

E[y♣x] = Φ2β⊤
2 x2 + σϕ2, (52)

respectively.

Similarly, closed analytical forms for E[y♣x] can be established in the case of the logarithmic transformation
T (y∗

2) = ln(y∗
2 + α). For trivariate, bivariate and univariate hurdle models with density function f+(y)

specified by formulas (19), (21), (23) and (25) these closed forms are written, respectively:

E[y♣x] =
eβ⊤

2 x2+ 1
2 σ2

Φ3
Φ



β⊤
1 x1 + ρ12σ,

β⊤
2 x2 − ln α

σ
+ σ, β⊤

3 x3 + ρ23σ; ρ



− α

Φ3
Φ123, (53)

with Φ123 = Φ(β⊤
1 x1, (β⊤

2 x2 − ln α)/σ, β⊤
3 x3; ρ),

E[y♣x] =
eβ⊤

2 x2+ 1
2 σ2

Φ3
Φ



β⊤
2 x2 − ln α

σ
+ σ, β⊤

3 x3 + ρ23σ; ρ23



− α

Φ3
Φ23, (54)

E[y♣x] =
eβ⊤

2 x2+ 1
2 σ2

Φ3
Φ



β⊤
1 x1 + ρ12σ,

β⊤
2 x2 − ln α

σ
+ σ; ρ12



− α

Φ3
Φ12, (55)

E[y♣x] = eβ⊤
2 x2+ 1

2 σ2

Φ



β⊤
2 x2 − ln α

σ
+ σ



− α

Φ3
Φ2. (56)

The marginal effects we consider refer to the change in the value of predictors (47) and (48) generated by a
ceteris paribus increase of a model covariate, the value of the other model covariates being kept unchanged,
as in a laboratory experiment.

The definition of the marginal effect of a mhurdle covariate x0 on a dependent variable of the model, depends
on the scale of measure of x0. When x0 is a continuous quantitative variable measured either on an interval
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or on a ratio scale,22 the marginal effect of x0 on predictor (47) or (48) is the first derivative of the predictor
with respect to x0, namely the rate of change in the value of the predictor generated by a ceteris paribus
infinitesimal increase of x0. Similarly, if x0 is a count variable measuring the size of a population of individuals
or objects which can only vary by integers, the marginal effect will be defined as the finite change in the
predictor induced by a ceteris paribus unit increase of x0.

When x0 is a qualitative explanatory variable that can be in one and only one of K ≥ 2 different mutually
exclusive and exhaustive situations called attributes, it is usual to code it as a column vector of K dummy
variables x0 = [dk]k=1,...,K , taking values dh = 1 and dk = 0, ∀k ̸= h when the observed attribute of x0 is
the one indexed by h. In this case, considering x0 as the first (vector) element of one of mhurdle covariate
vectors xi, i = 1, ..., 4, the first term of the corresponding linear combination β⊤

i xi will take the value βih.

Yet, this dummy coding of a nominal explanatory variable23 has an annoying drawback: because the K
dummy variables are linearly related by the constraint

∑K
k=1 dk = 1, the parameters βik, k = 1, ..., K are

not identified and therefore not estimable when vector βi does contain an intercept term. To avoid this
inconvenience, it is suggested to suppress from a K-attribute dummy coding one of the K dummies, the
discarded attribute playing the role of a “reference attribute” with respect to which the impact on β⊤

i xi of

one of the K − 1 remaining attributes is measured. Indeed, substituting in
∑K

k=1 βikdk dummy variable dK

of reference attribute K by dK = 1−∑K
k=1 dk, we obtain

∑K−1
k=1 (βik −βiK)dk +βiK , showing that the impact

on β⊤
i xi of attribute k is measured by parameter bk = βik − βiK called contrast with respect to attribute

K, while the impact coefficient βiK is included in vector βi as an intercept, or incorporated to an already
existing intercept of this vector. Consequently, the marginal effect of a change of x0, from attribute h to
attribute k, will be defined as the finite change in the predictor induced by a ceteris paribus change of the
first term of β⊤

i xi from contrast bih to contrast bik, with obviously bK = 0.

When x0 is a nominal qualitative variable whose K attributes may be partially or totally ordered according
to some meaningful criterion (for example the educational level measured and ranked according to the highest
level of diploma awarded), it is possible to use a dummy coding allowing to assess the degree of monotonicity
between a ceteris paribus marginal increment of x0 from one attribute level to the next higher attribute
level, and its impact on the dependent variable predictor. To this purpose, this impact generated by the
marginal increment of x0 from its attribute of rank k − 1 to its attribute of immediately higher rank k
must be measured by the following marginal contrasts: γk = βik − βi,k−1, k = 2, ..., K. Hence, substituting

in
∑K

k=1 βikdk parameters βik by the following solution of the former recurrence equations with respect to

γk, k = 2, ..., K, namely βi1 +
∑k

h=2 γh leads to the following recoding of the K-attribute dummy coding in

terms of marginal contrasts: βi1 +
∑K

k=2 γkδk with δk =
∑K

h=k dh. Consequently, the marginal effect of a
change of x0, from pre-ordered attributes k − 1 to k, will be defined as the finite change in the predictor
induced by a ceteris paribus change of the first term of β⊤

i xi from marginal contrast γk−1 to marginal
contrast γk, with γ1 = 0.

So far, punctual prediction and marginal effects for a mhurdle independent variable have been tackled by
assuming known the value of the model parameters. However, to be operational these formulas must be
quantified by means of an estimate of these theoretical parameters. Using the maximum likelihood estimate
θ̂ of model parameters θ presented in section 3.1, provide an implied maximum likelihood estimator for a
column-vector h(θ) of best mean-square error predictors (47), (48), and/or marginal effects of these predic-

tors, namely h(θ̂). This estimator is, as θ̂, a consistent and asymptotically normal estimator for h(θ) whose

asymptotic distribution can be derived from a linearization of h(θ̂) around θ called the “delta method”, which

leads to the following asymptotic variance-covariance matrix of h(θ̂): (1/n)(∂h/∂θ⊤)IA(θ)−1(∂h/∂θ⊤)⊤.

22A variable is said to be quantitative when the distance between two states of the variable can be measured, as for a physical
magnitude, using the usual notion of distance between real numbers. This condition is fulfilled when a unit of measure, namely
the distance between two particular states of the variable, can be used as a standard to express the distance between any pair
of states as multiples of the unit of measure. This scale of measurement is said to be a cardinal or interval scale if the origin of
the scale, numerically coded by zero, is arbitrary; it is said to be a measure or ratio scale if the origin of the scale is unique and
not arbitrary; finally, it is said to be a count scale if its origin and unit of measure are both unique and not arbitrary.

23A qualitative variable is said to be nominal if its “scale of measure” allows to determine whether two observed states are
equal or different; it is said to be partially ordered if some of its attributes may also be ordered; finally, it is said to be ordered
if all its attributes may be ordered.
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A last comment deserves to be devoted to how to present the estimates of marginal effects which are
representative for the available sample. To this purpose it is customary to provide either the marginal
effects computed at the sample average value of model covariates, or the average value of the sample of
marginal effects computed at the model covariates values of the individuals of the sample. The first solution
must be avoided when same model covariates are qualitative, because the sample average value of a dummy
coded qualitative variable is no more a qualitative variable but a vector of proportions without a meaningful
interpretation for a representative individual. Regarding the second solution, it provides an informative
measure of location of the marginal distribution of a marginal effect, but that is not enough to characterize,
by itself, the a priori unknown profileq of this distribution. Accordingly, it should be supplemented by other
indicators allowing to characterize the typical shape of the distribution, in particular the bounds of the
distribution range, the standard deviation and the three quartiles.

5 Software rationale

To illustrate the use of mhurdle, we use one surveys conducted by the Bureau of Labour Statistics of the
U.S. Department of Labour, called the “Interview Survey”. Data from 25813 households on all expenditures
are collected on a quarterly basis. They are reported on an annual basis, in thousands of USD, and divided
by the number of consumption units24. The micro-data files are publicly available on the website of the
Bureau of Labour Statistics, and may be downloaded and used without permission. We use a small subset
of 1000 randomly selected households.

library("mhurdle")

data("Interview", package = "mhurdle")

The covariates are :

-income: the anual net income by consumption unit,

-smsa: does the household live in a SMSA (yes or no),

-age: the age of the reference person of the household,

-educ: the number of year of education of the reference person of the household,

-sex: the sex of the reference person of the household (male and female),

-size: the number of persons in the household,

-month: the month of the interview (between 1 and 12),

Among the numerous goods available in this data set, we choose the “fees and admissions” good (denoted
shows in the data set), which is of particulary interest because the three competing hurdles are a priori
relevant to explain censored observations.

round(c(mean = mean(Interview$shows),

"% of 0" = mean(Interview$shows == 0),

"mean pos" = mean(Interview$shows) / mean(Interview$shows > 0)),

2)

## mean % of 0 mean pos

## 0.12 0.69 0.38

The consumption of this good is highly censored, as only less than a third of the households in the sample
actually purchased it during the survey. The average consumption is $120 a year, or $380 for those who
consumme.

24Obtained by counting for one the first adult of the household, 0.7 the subsequent adults and 0.5 every other person aged
under 18
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5.1 Estimation

The estimation is performed using the mhurdle function, which has the following arguments:

-formula: a formula describing the model to estimate. It should have between two and four parts on the
right-hand side specifying, in the first part, the good selection equation covariates, in the second part, the
desired consumption equation covariates, in the third part, the purchasing equation covariates and in the
fourth part, the covariates of the variance equation.

-data: a data frame containing the observations of the variables present in the formula.

-subset, weights, na.action: these are arguments passed on to the model.frame function in order to
extract the data suitable for the model. These arguments are present in the lm function and in most of the
estimation functions.

-start: the starting values, that can be provided by the user, which may be necessary for complicated
and highly parametric models, -dist: this argument indicates the functional form of the desired consump-
tion equation, which may be either log-normal "ln" (the default), normal "n", Box-Cox "bc", or inverse
Hyperbolic Sine "ihs",

-corr: this boolean argument indicates whether the disturbance of the different equations are correlated,
the default value is FALSE,

-h2: this boolean argument indicates whether the second hurdle is effective or not,

-robust: if TRUE, transformations of some parameters are used, so that they lie in the required range (positive
values for the standard deviation and for the position parameter, between -1 and +1 for the coefficients of
correlation),

-...: further arguments that are passed to the optimisation function maxLik.

For sake of clarity, we’ll denote the estimated models using à 5 digits name. The first one is a capital letter
indicating the distribution used (either N for a normal distribution and L for a log-normal distribution), the
second, third and fourth ones are 1 if the first, second and third hurdles are present, 0 if they are not and
the fifth digit is either D or I if a dependent or an independent model is estimated.

To illustrate the use of mhurdle, we start with single equation tobit models, using a normal and a log-normal
specification.

N010I <- mhurdle(shows ~ 0 | linc + smsa + age +

educ + size, data = Interview,

h2 = TRUE, dist = "n", method = "bhhh")

L010I <- update(N010I, dist = "ln")

We then consider the two other potential hurdles, namely the selection process and the infrequency of
purchase. We only keep linc as a covariate for the desired consumption and the other covariates (smsa, age,
educ and size) are used either in the first (selection model) or the third part (infrequency of purchase model)
of the formula. Note that the dist argument is not provided (so that the default log-normal distribution is
chosen) and that the lack of ressource hurdle is either maintained or removed by setting the h2 argument
respectively to TRUE or FALSE

L100D <- mhurdle(shows ~ smsa + age + educ + size |

linc, data = Interview,

h2 = FALSE, dist = "ln", corr = TRUE, method = "bhhh",

finalHessian = TRUE)

L100D2 <- update(L100D, start = coef(L100D), robust = FALSE)

L110D <- update(L100D, h2 = TRUE)

L110D2 <- update(L110D, start = coef(L110D), robust = FALSE)
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L001D <- mhurdle(shows ~ 0 | linc | smsa + age +

educ + size, data = Interview,

h2 = FALSE, corr = TRUE, method = "bhhh",

finalHessian = TRUE)

L001D2 <- update(L001D, start = coef(L001D), robust = FALSE)

L011D <- update(L001D, h2 = TRUE)

L011D2 <- update(L011D, start = coef(L011D), robust = FALSE)

Finally, we estimate three equations models. The 4 socio-economic covariates that were previously either
included in the first or the third parts of the formula are now split on these two equations. More precisely,
we assume that educ and size are the determinants of the selection process and that smsa and size explain
the frequency of purchase. The first model is a double-hurdle model ; selection and purchasing mechanism
are effective and note that in this case, the h2 argument is set to FALSE). The last two ones triple-hurdle
models, with correlated and uncorrelated errors:

L101D <- mhurdle(shows ~ educ + size | linc |

smsa + age, data = Interview,

h2 = FALSE, method = "bhhh", corr = TRUE,

finalHessian = TRUE)

L101D2 <- update(L101D, start = coef(L101D), robust = FALSE)

L111D <- update(L101D, h2 = TRUE)

L111D2 <- update(L111D, start = coef(L111D), robust = FALSE)

L111I <- update(L111D, corr = FALSE)

L111I2 <- update(L111I, start = coef(L111I), robust = FALSE)

The results are presented in table 1.

5.2 Tests

The position parameter (µ in table 1 enables to test directly the hypothesis that the second hurdle is operative,
using a Wald-like test. For all the models, the hypothesis that the coefficient is equal to 0 is highly rejected.
Note also that the only model which impose that the second hurdle is not operative (denoted L101D in the
table) has the worst value of log-likelihood.

The coefficient of correlation is highly significant for the double-hurdle selection model, but not for the double-
hurdle selection model. For the most general three equations model, only the coefficient of correlation for
the first two equations is significant. Formal tests for this two nested models can be performed using a
traditional log-likelihood ratio test:

library("lmtest")

lrtest(L111D, L111I)

or a Vuong test, which don’t make the hypothesis that one of the competing model is the “true” model:

vuongtest(L111D, L111I, type = "nested")

Both tests don’t reject the independence hypothesis at the 5% level, especially the Vuong test, the p-values
being respectively equal to 0.076 and 0.2154219.

For non-nested models, one can use Vuong test. For example, for the double-hurdles selection and ptobit
models, the test is performed using:
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Table 1: Multiple hurdle regressions

L110D L011D L101D L111D L111I

(Intercept) −2.34 (0.53) −2.12 (0.46) −2.27 (1.03) −3.05 (0.87)
smsayes 0.34 (0.20)
age −0.01 (0.00)
educ 0.11 (0.03) 0.13 (0.02) 0.15 (0.05) 0.19 (0.06)
size 0.22 (0.05) 0.11 (0.03) 0.29 (0.11) 0.39 (0.14)
(Intercept) 0.42 (0.20) 0.17 (0.12) 0.38 (0.45) 0.25 (0.39) −0.04 (0.17)
linc 0.74 (0.09) 0.78 (0.09) 0.64 (0.09) 0.73 (0.09) 0.73 (0.09)
(Intercept) −1.61 (0.39) 0.66 (0.34) 0.10 (0.36) 0.07 (0.25)
smsayes 0.24 (0.15) 0.45 (0.25) 0.56 (0.31) 0.54 (0.25)
age −0.01 (0.00) −0.02 (0.01) −0.03 (0.01) −0.02 (0.01)
educ 0.08 (0.02)
size 0.19 (0.04)
σ 0.86 (0.09) 1.09 (0.14) 1.45 (0.25) 0.91 (0.15) 0.82 (0.07)
α 0.83 (0.19) 0.50 (0.15) 0.62 (0.17) 0.58 (0.16)
ρ12 −0.26 (0.27) −0.74 (0.14) −0.54 (0.22)
ρ13 −0.87 (0.16) 0.07 (1.74)
ρ23 −0.74 (0.09) 0.71 (0.16) −0.23 (1.08)

N 1000 1000 1000 1000 1000
degree of par. 10.7
No 694
N+ 306
R2

o 0.157
R2

+ 0.136
log likelihood −1002.9
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vuongtest(L110D, L011D)

The statistic is -2.173. Its negative sign indicate that the p-tobit model better fits the data compared to the
selection model. The difference is significant at the 5% level, as the (two-ways) p-values equal 0.015, which
leads to the conclusion that the ptobit model is significantly better than the selection model.

The parcimony principal leads to the selection of the ptobit double-hurdle model, as it is not significantly
worst than the more general three-hurdle model.
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