Package ‘mockthat’

November 1, 2022
Title Function Mocking for Unit Testing
Version 0.2.8

Description With the deprecation of mocking capabilities shipped with
'testthat' as of 'edition 3' it is left to third-party packages to replace
this functionality, which in some test-scenarios is essential in order to
run unit tests in limited environments (such as no Internet connection).
Mocking in this setting means temporarily substituting a function with a
stub that acts in some sense like the original function (for example by
serving a HTTP response that has been cached as a file). The only exported
function 'with_mock()' is modeled after the eponymous 'testthat’ function
with the intention of providing a drop-in replacement.

License MIT + file LICENSE
URL https://nbenn.github.io/mockthat/

BugReports https://github.com/nbenn/mockthat/issues
Depends R (>=3.3.0)

Imports utils, rlang

Suggests testthat, pkgload, curl, jsonlite, withr

Encoding UTF-8

Language en-US

RoxygenNote 7.2.1

NeedsCompilation no

Author Nicolas Bennett [aut, cre]

Maintainer Nicolas Bennett <nicolas.bennett@stat.math.ethz.ch>
Repository CRAN

Date/Publication 2022-11-01 08:07:45 UTC

R topics documented:

MOCK . . . e e
with_mock e e

Index

https://nbenn.github.io/mockthat/
https://github.com/nbenn/mockthat/issues

2 mock

mock Mocking helper functions

Description

Calls to mock-objects either constructed using mock () or returned by local_mock () can keep track
of how they were called and functions mock_call(), mock_arg/s() and mock_n_called() can be
used to retrieve related information.

Usage

mock (expr, env = parent.frame())

mock_call(x, call_no = mock_n_called(x))

mock_args(x, call_no = mock_n_called(x))
mock_arg(x, arg, call_no = mock_n_called(x))

mock_n_called(x)

Arguments
expr Expression to be used as body of the function to be mocked.
env Environment used as ancestor to the mock function environment.
X Object of class mock_fun to be queried for call and argument information.
call_no The call number of interest (in case the function was called multiple times).
arg String-valued argument name to be retrieved.

Details

A mocking function can be created either from a single object to be used as return value or from an
expression which is used as function body. In both cases, the function signature is inferred from the
mock-target. Furthermore, closures constructed by mock () are able to keep track of call objects and
arguments passed to their respective targets. The following utility functions are available to query
this information:

* mock_call(): retrieves the call captured by base: :match.call()

» mock_arg(): retrieves the value of the argument with name passed as string-valued argument
arg

* mock_args(): retrieves a list of all arguments used for calling the mocked function
e mock_n_called(): counts the number of times the mocked function was called
Calls to mock objects are indexed chronologically and both mock_call() and mock_args() provide

an argument call_no which can be used to specify which call is of interest, with the default being
the most recent (or last) one.

with_mock 3

Value
* mock(): amock_fun object
* mock_call(): acall (created by base: :match.call())
» mock_arg(): the object used as specified function argument

* mock_args(): alist of all function arguments used to create a call to the mock_fun object in
question

* mock_n_called(): a scalar integer

Examples

url <- "https://eu.httpbin.org/get?foo=123"

mk <- mock("mocked request”)
dl <- function(x) curl::curl(x)

with_mock(*curl::curl® = mk, dl(url))
mock_call(mk)
mock_args (mk)

mock_n_called(mk)

mk <- mock({
url

»
with_mock(*curl::curl® = mk, dl(url))

my_return_val <- "mocked request”
mk <- mock(my_return_val)

with_mock(‘curl::curl® = mk, dl(url))

with_mock Mock functions in a package.

Description

Mocking allows you to temporary replace the implementation of functions within a package, which
useful for testing code that relies on functions that are slow, have unintended side effects or access
resources that may not be available when testing.

Up until recently, such capability was offered via testthat::with_mock(), but with release of
version 3.0.0 and introduction of edition 3, this was deprecated from ’testthat’, leaving it to third
party packages to replace this feature. Powered by utils::assignInNamespace(), this mocking
implementation can be used to stub out both exported and non-exported functions from a package,
as well as functions explicitly imported from other packages using either importFrom directives or
namespaced function calls using : :.

4 with_mock

Usage

with_mock(..., mock_env = pkg_env(), eval_env = parent.frame())

local_mock(
mock_env = pkg_env(),
eval_env = parent.frame(),
local_env = eval_env

)
Arguments
Named parameters redefine mocked functions, unnamed parameters will be eval-
uated after mocking the functions.
mock_env The environment in which to patch the functions, defaults to either the package
namespace when the environment variable TESTTHAT_PKG is set pr the calling
environment. A string is interpreted as package name.
eval_env Environment in which expressions passed as . . . are evaluated, defaults to base: :parent.frame().
local_env Passed to withr: :defer() as envir argument (defaults to the values passed as
eval_env)
Details

Borrowing the API from the now-deprecated testthat: :with_mock(), named arguments passed
as ... are used to define functions to be mocked, where names specify the target functions and
the arguments themselves are used as replacement functions. Unnamed arguments passed as . . .
will be evaluated in the environment specified as eval_env using the mocked functions. Functions
to be stubbed should be specified as they would be used in package core. This means that when
a function from a third party package is imported, prefixing the function name with pkg_name: :
will not give the desired result. Conversely, if the function is not imported, the package prefix is of
course required. On exit of with_mock (), the mocked functions are reverted to their original state.

Replacement functions can either be specified as complete functions, or as either quoted expres-
sions, subsequently used as function body or objects used as return values. If functions are created
from return values or complete function bodies, they inherit the signatures from the respective func-
tions they are used to mock, alongside the ability to keep track of how they are subsequently called.
A constructor for such mock-objects is available as mock (), which quotes the expression passed as
expr.

If mocking is desirable for multiple separate calls to the function being tested, local_mock()
is available, which holds onto the mocked state for the lifetime of the environment passed as
local_env using withr::defer(). Unlike with_mock(), which returns the result of evaluating
the last unnamed argument passed as . . ., local_mock() (invisibly) returns the functions used for
mocking, which if not fully specified as functions, will be mock-objects described in the previous
paragraph.

Value

The result of the last unnamed argument passed as ... (evaluated in the environment passed as
eval_env) in the case of local_mock() and a list of functions or mock_fun objects (invisibly) for

with_mock

calls to local_mock().

Examples

url <- "https://eu.httpbin.org/get?foo=123"
mok <- function(...) "mocked request”

with_mock(
‘curl::curl_fetch_memory* = mok,
curl::curl_fetch_memory(url)

)
dl_fun <- function(x) curl::curl_fetch_memory(x)

with_mock(
‘curl::curl_fetch_memory" = mok,
dl_fun(url)

)

with_mock(
‘curl::curl_fetch_memory* = "mocked request”,
dl_fun(url)

)

dl <- function(x) curl::curl(x)

local({
mk <- local_mock(‘curl::curl® = "mocked request”)
list(dl(url), mock_arg(mk, "url"))

»

Index

base::match.call(), 2, 3
base: :parent.frame(), 4

local_mock (with_mock), 3

mock, 2

mock_arg (mock), 2
mock_args (mock), 2
mock_call (mock), 2
mock_n_called (mock), 2

testthat: :with_mock(), 3, 4
utils::assignInNamespace(), 3

with_mock, 3
withr::defer(), 4

	mock
	with_mock
	Index

