Package ‘multiMarker’

October 13, 2022

Version 1.0.1
Date 2020-12-10

Title Latent Variable Model to Infer Food Intake from Multiple
Biomarkers

Description
A latent variable model based on factor analytic and mixture of experts models, designed to in-
fer food intake from multiple biomarkers data. The model is framed within a Bayesian hierarchi-
cal framework, which provides flexibility to adapt to different biomarker distributions and facili-
tates inference on food intake from biomarker data alone, along with the associated uncer-
tainty. Details are in D'Angelo, et al. (2020) <arXiv:2006.02995>.

Maintainer Silvia D'Angelo <silvia.dangelo@ucd.ie>
Imports truncnorm, ordinalNet

Depends R (>=3.0)

License GPL (>=2)

Encoding UTF-8

ByteCompile true

LazyData true

NeedsCompilation no

Author Silvia D'Angelo [aut, cre],
Claire Gormley [ctb],
Lorraine Brennan [ctb]

Repository CRAN
Date/Publication 2020-12-11 11:00:03 UTC

R topics documented:

multiMarker e e e 2
predictmultiMarkero 6
Index 10

https://arxiv.org/abs/2006.02995

multiMarker

multiMarker

A latent variable model to infer food intake from multiple biomarkers.

Description

Implements the multiMarker model via an MCMC algorithm.

Usage

multiMarker(y, quantities,

Arguments

y

quantities

niter

burnIn

posteriors

sigmaAlpha

nuZl, nuZ2

niter = 10000, burnIn = 3000,

posteriors = FALSE, sigmaAlpha = 1,

nuZl = NULL, nuZ2 = NULL,

nuSigmaP1 = NULL, nuSigmaP2 = NULL, sigmaWprior = 0.000001,
nuBetal = 2, nuBeta2 = 3, tauBeta = 0.1)

A matrix of dimension (n x P) storing P biomarker measurements on a set of
n observations. Missing values (NA) are allowed.

A vector of length n storing the food quantities allocated to each of the n obser-
vations in the intervention study data. Missing values (NA) are not allowed.

The number of MCMC iterations. The default value is niter = 10000.

A numerical value, the number of iterations of the chain to be discarded when
computing the posterior estimates. The default value is burnIn = 3000.

A logical value indicating if the full parameter chains should also be returned in
output. The default value is posteriors = FALSE.

Intercepts’ hyperparameter (o,2), see details. The default value is sigmaAlpha
=1.

Are two vectors of length D storing hyperparameters for the components’ vari-
ance parameters. The default values are nuZ1 = nuZ2 = NULL, corresponding to
nuzl = (D, D-1, ...,1) andnuz2=(D, D,...,D).

nuSigmaP1, nuSigmaP2

sigmaWprior

Scalar hyperparameters for the error’s variance parameters. The default val-
ues are nuSigmaP1 = nuSigmaP2 = NULL, corresponding to nuSigmaP1 =1 and
nuSigmaP2 =n.

A scalar corresponding to the components’ weights hyperparameter. The default
value is sigmaWprior = 0.1

nuBetal, nuBeta2

tauBeta

Scalar hyperparameters for the scaling coefficient’s variance parameters. The
default values are nuBetal = 2 and nuBeta2 = 3.

A scalar factor for the scaling coefficient’s variance parameters. The default
value is tauBeta=0.1.

multiMarker 3

Details

The function facilitates inference of food intake from multiple biomarkers via MCMC, according
to the multiMarker model (D’Angelo et al., 2020). The multiMarker model first learns the rela-
tionship between the multiple biomarkers and food quantity data from an intervention study and
subsequently allows inference on the latent intake when only biomarker data are available.

Consider a biomarker matrix Y of dimension (n x P), storing P different biomarker measurements
on n independent observations. The number of food quantities considered in the intervention study
is denoted by D, with the corresponding set being X = (X1,...,X4,..., Xp) and X4 < Xgy1.

‘We assume that the biomarker measurements are related to an unobserved, continuous intake value,
leading to the following factor analytic model:

Yip=0p+ Ppzi +€p, V i=1,...,n, p=1,..., P,

where the latent variable z; denotes the latent intake of observation i, withz = (21,...,2;,..., 2p).
The o, and 3, parameters characterize, respectively, the intercept and the scaling effect for biomarker
p. We assume that these parameters are distributed a priori according to O-truncated Gaussian dis-
tributions, with parameters (1iq,05) and (ug, 0'3) respectively. The error term ¢, is the variability
associated with biomarker p. We assume that these errors are normally distributed with 0 mean and

variance 012), which serves as a proxy for the precision of the biomarker.

A mixture of D O-truncated Gaussian distributions is assumed as prior distribution for the la-

tent intakes. Components are centered around food quantity values X4, and component-specific
variances 62 model food quantity-specific intake variability, with lower values suggesting higher
consumption-compliance. Mixture weights are observation-specific and denoted with 7; = (71, ..., Tip).
Given the inherent ordering of the food quantities in the intervention study, an ordinal regression
model with Cauchit link function is employed to model the observation-specific weights.

A Bayesian hierarchical framework is employed for the modelling process, allowing quantification
of the uncertainty in intake estimation, and flexibility in adapting to different biomarker data distri-
butions. The framework is implemented through a Metropolis within Gibbs Markov chain Monte
Carlo (MCMC) algorithm. Hyperprior distributions are assumed on the prior parameters with the
corresponding hyperparameter values fixed based on the data at hand, following an empirical Bayes
approach.

For more details on the estimation of the multiMarker model, see D’ Angelo et al. (2020).

Value
An object of class 'multiMarker' containing the following components:

estimates A list with 9 components, storing posterior estimates of medians, standard devi-
ations and 95% credible interval lower and upper bounds for the model param-
eters:

* ALPHA_E is a matrix of dimension (4 x P) storing the posterior estimates of
medians (1st row), standard deviations (2nd row) and 95% credible interval
lower (3rd row) and upper bounds (4th row) for the P intercept parameters,
(a1y...,ap).

* BETA_E is a matrix of dimension (4 x P) storing the posterior estimates of
medians (1st row), standard deviations (2nd row) and 95% credible interval

multiMarker

lower (3rd row) and upper bounds (4th row) for the P scaling coefficient
parameters, (81, ..., 8p).

SigmaErr_E is a matrix of dimension (4 x P) storing the posterior estimates
of medians (1st row), standard deviations (2nd row) and 95% credible in-
terval lower (3rd row) and upper bounds (4th row) for the P error variance
parameters, (02,...,0%).

SigmaD_E is a matrix of dimension (4 x D) storing the posterior estimates of
medians (1st row), standard deviations (2nd row) and 95% credible interval
lower (3rd row) and upper bounds (4th row) for the D components’ variance
parameter, (02,...,0%).

Z_E is a matrix of dimension (4 X n) storing the posterior estimates of
medians (1st row), standard deviations (2nd row) and 95% credible inter-
val lower (3rd row) and upper bounds (4th row) for the n latent intakes,
(2’1, N ,Zn).

THETA_Est is an array of ((P+1) x (D —1) x4) dimensions composed of 4
((P+1)x (D—1)) matrices, storing the posterior estimates of medians (Ist
matrix), standard deviations (2nd matrix) and 95% credible interval lower
(3rd matrix) and upper bounds (4th matrix) for the components’ weights
parameters. In each matrix, the first row reports the values for the compo-
nents’ weights intercept parameter, while the other P rows store those of
the weights scaling coefficient parameters, (7,61,...,0p_1).
sigmaBeta_E is a vector containing the posterior estimates of medians,
standard deviations and 95% credible interval lower and upper bounds for
the scaling coefficients’ variance parameter (a%).

muAlpha_E is a vector containing the posterior estimates of medians, stan-
dard deviations and 95% credible interval lower and upper bounds for the
intercepts’ mean parameter (i,).

muBeta_E is a vector containing the posterior estimates of medians, stan-
dard deviations and 95% credible interval lower and upper bounds for the
scaling coefficients’ mean parameter (yi3).

varPHp Estimated error variance parameter values, (v}, Vps), see Refer-
ences.

constants A list with 11 components, storing constant model quantities:

nuZ1, nuZ2 are two vectors of length D storing hyperparameters for the
components’ variance parameters, see References.

sigmaAlpha is a scalar and it corresponds to the variance of the intercept
parameters (0,2).

nuSigmaP1, nuSigmaP2 are scalar hyperparameters for the error’s variance
parameters, see References.

nuBetal, nuBeta2 are scalar hyperparameters for the scaling coefficient’s
variance parameters, see References.

tauBeta is a scalar factor for the scaling coefficient’s variance parameters,
see References.

x_D is a vector storing the values for the D food quantities.
P is a scalar indicating the number of biomarkers in the data.
D is a scalar indicating the number of food quantities in the data.

multiMarker 5

* nis a scalar indicating the number of observations the data.

e sigmaWprior is a scalar and it corresponds to the components’ weights
hyperparameter, see References.

* y_Median is a vector storing the observed P biomarker median values.
* y_Var is a vector storing the observed P biomarker variance values.

chains If posteriors = TRUE, a list with posterior distributions of model parameters is
returned:

* ALPHA_c is a matrix of dimension (niter — burnIn) x P containing the
estimated posterior distributions for the intercept parameters, (o, . .., ap).

* BETA_c is a matrix of dimension (niter — burnIn) x P containing the esti-
mated posterior distributions for the scaling coefficient parameters, (51, ..., 5p).

* SigmaErr_c is a matrix of dimension (niter — burnin) x P contain-
ing the estimated posterior distributions for the error variance parameters,
(02,...,0%).

* SigmaD_c is a matrix of dimension (niter —burnin)x D containing are the
estimated posterior distributions for the components’ variance parameters,

2 2
(61,...,0D).

* Z_cis amatrix of dimension (niter —burnln) x n containing the estimated
posterior distributions for the latent intakes, (21, . .., 25).

* THETA_c is an array of (P + 1) x (D — 1) x (niter — burnln) dimen-
sions containing the estimated posterior distributions for the components’
weights parameters. The first one corresponds to that of the weights in-
tercept parameter, while the other P posterior distributions are those of the
weights scaling coefficient parameters. In each one of the (niter —burnin)
matrices, the first row reports the values for the components’ weights inter-
cept parameter, while the other P rows store those of the weights scaling
coefficient parameters, (v, 01,...,0p_1).

* sigmaBeta_c is a vector containing the estimated posterior distribution for
the scaling coefficients’ variance parameter (af,).

* muAlpha_c is a vector containing the estimated posterior distribution for
the intercepts’ mean parameter ({tq).

* muBeta_c is a vector containing the estimated posterior distribution for the
scaling coefficients’ mean parameter (yi3).

* weights_info is a list containing the acceptance probability values for the
weights’ parameters, (v, 01,...,0p_1).

References

D’Angelo, S. and Brennan, L. and Gormley, I.C. (2020). Inferring food intake from multiple
biomarkers using a latent variable model. arxiv

Examples

library(truncnorm)
oldpar <- par(no.readonly =TRUE)

predict. multiMarker

#-- Simulate intervention study biomarker and food quantity data --#

P <-D<-3; n<-50

alpha <- rtruncnorm(P, @, Inf, 4, 1)

beta <- rtruncnorm(P, @, Inf, 0.001, 0.1)

x <- c(50, 100, 150)

labels_z <- sample(c(1,2,3), n, replace = TRUE)

quantities <- x[labels_z]

sigma_d <- 8

z <- rtruncnorm(n, @, Inf, x[labels_z], sigma_d)

Y <- sapply(1:P, function(p) sapply(1:n, function(i)
max(@, alphalp] + betal[pJl*z[i] + rnorm(1, @, 5))))

#-- Visualize the data --#

par(mfrow= c(2,2))

boxplot(Y[,1] ~ quantities, xlab = "Food quantity”, ylab = "Biomarker 1")
boxplot(Y[,2] ~ quantities, xlab = "Food quantity”, ylab = "Biomarker 2")
boxplot(Y[,3] ~ quantities, xlab = "Food quantity”, ylab = "Biomarker 3")

#-- Fit the multiMarker model --#
Number of iterations (and burnIn) set small for example.
modM <- multiMarker(y = Y, quantities = quantities,
niter = 100, burnIn = 30,
posteriors = TRUE)
niter and burnIn values are low only for example purposes

#-- Extract summary statistics for model parameters --#
modM$estimates$ALPHA_E[,3] #estimated median, standard deviation,
0.025 and 0.975 quantiles for the third intercept parameter (alpha_3)

modM$estimates$BETA_E[,2] #estimated median, standard deviation,
0.025 and 0.975 quantiles for the second scaling parameter (beta_2)

#-- Examine behaviour of MCMC chains --#

par(mfrow= c(2,1))

plot(modM$chains$ALPHA_c[,3], type = "1",

xlab = "Iteration (after burnin)", ylab = expression(alphal[3]))
abline(h = mean(modM$chains$ALPHA_c[,3]1), lwd = 2, col = "darkred")

plot(modM$chains$BETA_c[,2], type = "1",
xlab = "Iteration (after burnin)”, ylab = expression(betal[2]))
abline(h = mean(modM$chains$BETA_c[,2]1), lwd = 2, col = "darkred")

compute Effective Sample Size

library(LaplacesDemon)

ESS(modM$chains$ALPHA_c[,3]) # effective sample size for alpha_3 MCMC chain
ESS(modM$chains$BETA_c[,2]) # effective sample size for beta_2 MCMC chain

par(oldpar)

predict.multiMarker 7

predict.multiMarker A latent variable model to infer food intake from multiple biomarker
data alone.

Description

Implements the multiMarker model via an MCMC algorithm.

Usage

S3 method for class 'multiMarker'
predict(object, vy,
niter = 10000, burnIn = 3000,

posteriors = FALSE, ...)
Arguments
object An object of class inheriting from 'multiMarker'.
y A matrix of dimension (n* x P) storing P biomarker measurements on a set of
n* observations. Missing values (NA) are allowed.
niter The number of MCMC iterations. The default value is niter = 10000.
burnIn A numerical value, the number of iterations of the chain to be discarded when
computing the posterior estimates. The default value is burnIn = 3000.
posteriors A logical value indicating if the full parameter chains should also be returned in
output. The default value is posteriors = FALSE.
Further arguments passed to or from other methods.
Details

The function facilitates inference on food intake from multiple biomarkers alone via MCMC, ac-
cording to the multiMarker model (D’ Angelo et al., 2020).

A Bayesian framework is employed for the modelling process, allowing quantification of the uncer-
tainty associated with inferred intake. The framework is implemented through an MCMC algorithm.

For more details, see D’ Angelo et al. (2020).

Value

A list with 2 components:

inferred_E a list with 2 components, storing estimates of medians, standard deviations and
95% credible interval lower and upper bounds for:

* inferred_intakes is a matrix of dimension (4 x n*), storing the estimates
of medians (1st row), standard deviations (2nd row) and 95% credible in-
terval lower (3rd row) and upper bounds (4th row) from the conditional
distribution of the n* latent intakes, (27, ..., z,+).

8 predict. multiMarker

* inferred_Prob is an array of dimension (n* x D X 4), storing estimated
median (1st matrix), standard deviation (2nd matrix) and 95% credible in-
terval lower (3rd matrix) and upper bound (4th matrix) values for the food
quantity probabilities, for each one of the new n* observations.

chains If posteriors = TRUE, it contains a list with conditional distributions for:

e ZINF is a matrix of dimension n* X niter containing samples from the
conditional distributions of the latent intakes, (27, ..., zp«).

* PROBS is an array of n* x D xniter dimensions containing samples from the
conditional distribution for food quantity probabilities, for each observation
and food quantity.

References

D’Angelo, S. and Brennan, L. and Gormley, I.C. (2020). Inferring food intake from multiple
biomarkers using a latent variable model. arXiv.

Examples

library(truncnorm)
oldpar <- par(no.readonly =TRUE)

#-- Simulate intervention study biomarker and food quantity data --#

P <-D<-3; n<-50

alpha <- rtruncnorm(P, @, Inf, 4, 1)

beta <- rtruncnorm(P, @, Inf, 0.001, 0.1)

x <- c(50, 100, 150)

labels_z <- sample(c(1,2,3), n, replace = TRUE)

quantities <- x[labels_z]

sigma_d <- 8

z <- rtruncnorm(n, @, Inf, x[labels_z], sigma_d)

Y <- sapply(1:P, function(p) sapply(1:n, function(i)
max (@, alphalp] + betalpl*z[i]l + rnorm(1, @, 5))))

#-- Simulate Biomarker data only --#

nNew <- 20

labels_zNew <- sample(c(1,2,3), nNew, replace = TRUE)

zNew <- rtruncnorm(nNew, @, Inf, x[labels_zNew], sigma_d)

YNew <- sapply(1:P, function(p) sapply(1:nNew, function(i)
max (@, alphalp] + betalpl*zNew[i] + rnorm(1, @, 5))))

#-- Fit the multiMarker model to the intervention study data --#
Number of iterations (and burnIn) set small for example.
modM <- multiMarker(y = Y, quantities = quantities,
niter = 100, burnIn = 30,
posteriors = TRUE)
niter and burnIn values are low only for example purposes

#-- Extract summary statistics for model parameters --#
modM$estimates$ALPHA_E[, 3] #estimated median, standard deviation,

https://arxiv.org/abs/2006.02995

predict.multiMarker

0.025 and 0.975 quantiles for the third intercept parameter (alpha_3)

modM$estimates$BETA_E[,2] #estimated median, standard deviation,
0.025 and 0.975 quantiles for the second scaling parameter (beta_2)

#-- Examine behaviour of MCMC chains --#

par(mfrow= c(2,1))

plot(modM$chains$ALPHA_c[,3], type = "1",

xlab = "Iteration (after burnin)”, ylab = expression(alphal[3]))
abline(h = mean(modM$chains$ALPHA_c[,3]), lwd = 2, col = "darkred")

plot(modM$chains$BETA_c[,2], type = "1",
xlab = "Iteration (after burnin)", ylab = expression(betal[2]))
abline(h = mean(modM$chains$BETA_c[,2]), lwd = 2, col = "darkred")

compute Effective Sample Size

library(LaplacesDemon)

ESS(modM$chains$ALPHA_c[,3]) # effective sample size for alpha_3 MCMC chain
ESS(modM$chains$BETA_c[,2]) # effective sample size for beta_2 MCMC chain

#-- Infer intakes from biomarker only data --#

Number of iterations (and burnIn) set small for example.

infM <- predict(modM, y = YNew, niter = 100, burnIn = 30,
posteriors = TRUE)

niter and burnIn values are low only for example purpose

#-- Extract summary statistics for a given intake --#

obs_j <- 2 # choose which observation to look at
infM$inferred_E$inferred_intakes[, obs_j] #inferred median, standard deviation,
0.025 and 0.975 quantiles for the intake of observation obs_j

#-- Example of plot --#
par(mfrow = c(1,1))
hist(infM$chains$ZINF[obs_j,], breaks = 50,
ylab = "Density”, xlab = "Intake",
main = "Intake's conditional distribution”,
cex.main = 0.7,
freq = FALSE) # Inferred condtional distribution of intake for observation obs_j

abline(v = infM$inferred_E$inferred_intakes[1,obs_j], col = "darkred",
lwd = 2) # median value

abline(v = infM$inferred_E$inferred_intakes[3,0bs_j], col = "grey”,

lwd = 2)

abline(v = infM$inferred_E$inferred_intakes[4,0bs_j], col = "grey”,

lwd = 2)

legend(x = "topleft”, fill = c("grey"”, "darkred”), title = "quantiles:",

legend = c("(0.025, 0.975)", "0.5"), bty = "n", cex = 0.7)

mtext(paste("Observation”, obs_j, sep = " "), outer = TRUE, cex = 1.5)
par(oldpar)

Index

multiMarker, 2

predict.multiMarker, 6
print.multiMarker (multiMarker), 2

10

	multiMarker
	predict.multiMarker
	Index

