Package ‘openssl’

May 26, 2025

Type Package

Title Toolkit for Encryption, Signatures and Certificates Based on
OpenSSL

Version 2.3.3
Description Bindings to OpenSSL libssl and liberypto, plus custom SSH key parsers.

Supports RSA, DSA and EC curves P-256, P-384, P-521, and curve25519. Cryptographic

signatures can either be created and verified manually or via x509 certificates.

AES can be used in cbc, ctr or gcm mode for symmetric encryption; RSA for asymmetric

(public key) encryption or EC for Diffie Hellman. High-level envelope functions
combine RSA and AES for encrypting arbitrary sized data. Other utilities include key
generators, hash functions (md5, shal, sha256, etc), base64 encoder, a secure random
number generator, and 'bignum' math methods for manually performing crypto
calculations on large multibyte integers.

License MIT + file LICENSE
URL https://jeroen.r-universe.dev/openssl

BugReports https://github.com/jeroen/openssl/issues
SystemRequirements OpenSSL >= 1.0.2

VignetteBuilder knitr

Imports askpass

Suggests curl, testthat (>= 2.1.0), digest, knitr, rmarkdown,
jsonlite, jose, sodium

RoxygenNote 7.3.2
Encoding UTF-8
NeedsCompilation yes

Author Jeroen Ooms [aut, cre] (ORCID: <https://orcid.org/0000-0002-4035-0289>),
Oliver Keyes [ctb]

Maintainer Jeroen Ooms <jeroenooms@gmail.com>
Repository CRAN
Date/Publication 2025-05-26 13:00:02 UTC

https://jeroen.r-universe.dev/openssl
https://github.com/jeroen/openssl/issues
https://orcid.org/0000-0002-4035-0289

2 aes_cbc

Contents
aeS_ChC . . L e 2
base64_encode L 3
berypt_pbkdf 4
bignum 4
cert_verify 5
curve25519 . . L 6
ec_dh . .o e 7
encrypt_envelope e e 8
fingerprint e 9
hashing e 10
keygeno e 12
my_Keyo e e 13
openssl . .. L e 14
openssl_config 14
PKCST_encrypt o e e e e e 15
rand_bytes 15
read_Key e e e 16
TSA_ENCTYPL .« o o v v o i e e e e e e e e e e e e e e e e e 18
SIGNATUIE_CIEALE+ v v i vt it e e e e e e e e e e e 19
SSLCEX . . . s 20
write_pl2 . . .o 22
WILE_PEIM . . . o o v it e e e e e e e e e e e e 23

Index 25

aes_chc Symmetric AES encryption
Description

Low-level symmetric encryption/decryption using the AES block cipher in CBC mode. The key is
a raw vector, for example a hash of some secret. When no shared secret is available, a random key
can be used which is exchanged via an asymmetric protocol such as RSA. See rsa_encrypt() for
a worked example or encrypt_envelope() for a high-level wrapper combining AES and RSA.

Usage

aes_ctr_encrypt(data, key, iv = rand_bytes(16))

aes_ctr_decrypt(data, key, iv = attr(data, "iv"))

aes_chc_encrypt(data, key, iv = rand_bytes(16))

aes_cbc_decrypt(data, key, iv = attr(data, "iv"))

aes_gcm_encrypt(data, key, iv = rand_bytes(12))

base64_encode 3

aes_gcm_decrypt(data, key, iv = attr(data, "iv"))

aes_keygen(length = 16)

Arguments
data raw vector or path to file with data to encrypt or decrypt
key raw vector of length 16, 24 or 32, e.g. the hash of a shared secret
iv raw vector of length 16 (aes block size) or NULL. The initialization vector is
not secret but should be random
length how many bytes to generate. Usually 16 (128-bit) or 12 (92-bit) for aes_gcm
Examples

aes-256 requires 32 byte key
passphrase <- charToRaw("This is super secret”)
key <- sha256(passphrase)

symmetric encryption uses same key for decryption
x <- serialize(iris, NULL)

y <- aes_cbc_encrypt(x, key = key)

x2 <- aes_cbc_decrypt(y, key = key)
stopifnot(identical(x, x2))

base64_encode Encode and decode base64

Description

Encode and decode binary data into a base64 string. Character vectors are automatically collapsed
into a single string.

Usage

base64_encode(bin, linebreaks = FALSE)

base64_decode(text)

Arguments
bin raw or character vector with data to encode into base64
linebreaks insert linebreaks in the base64 message to make it more readable

text string with base64 data to decode

4 bignum

Examples

input <- charToRaw("foo = bar + 5")
message <- base64_encode(input)
output <- base64_decode(message)
identical (output, input)

bcrypt_pbkdf Bcerypt PWKDF

Description
Password based key derivation function with berypt. This is not part of openssl. It is needed to
parse private key files which are encoded in the new openssh format.

Usage

bcrypt_pbkdf (password, salt, rounds = 16L, size = 32L)

Arguments
password string or raw vector with password
salt raw vector with (usually 16) bytes
rounds number of hashing rounds
size desired length of the output key
bignum Big number arithmetic
Description

Basic operations for working with large integers. The bignum function converts a positive integer,
string or raw vector into a bignum type. All basic Arithmetic and Comparison operators such as
+, =, %, N %%k, %/%, ==, 1=, <, <=, > and >= are implemented for bignum objects. The Modular

>

exponent (a*b %% m) can be calculated using bignum_mod_exp () when b is too large for calculating
a*b directly.

Usage
bignum(x, hex = FALSE)
bignum_mod_exp(a, b, m)

bignum_mod_inv(a, m)

https://cvsweb.openbsd.org/src/usr.bin/ssh/PROTOCOL.key?annotate=HEAD
https://en.wikipedia.org/wiki/Modular_exponentiation
https://en.wikipedia.org/wiki/Modular_exponentiation

cert_verify

Arguments

X

hex

Examples

create a bignum

an integer, string (hex or dec) or raw vector

set to TRUE to parse strings as hex rather than decimal notation
bignum value for (a*b %% m)

bignum value for (a*b %% m)

bignum value for (a*b %% m)

<- bignum("123456789123456789")
<- bignum("D41D8CDI98F00OB204E980Q998ECF8427E", hex = TRUE)

#
X <= bignum(123L)
y
z

Basic arithmetic

div <- z %/% y
mod <- z %%y

z2 <- div * y + mod
stopifnot(z2 == z)
stopifnot(div < z)

cert_verify

X509 certificates

Description

Read, download, analyze and verify X.509 certificates.

Usage

cert_verify(cert, root = ca_bundle())

download_ssl_cert(host = "localhost”, port = 443, ipv4_only = FALSE)

ca_bundle()

Arguments

cert
root
host
port
ipv4_only

certificate (or certificate-chain) to be verified. Must be cert or list or path.
trusted pubkey or certificate(s) e.g. CA bundle.

string: hostname of the server to connect to

string or integer: port or protocol to use, e.g: 443 or "https”

do not use IPv6 connections

6 curve25519

See Also

read_cert

Examples

Verify the r-project HTTPS cert

chain <- download_ssl_cert("cran.r-project.org"”, 443)
print(chain)

cert_data <- as.list(chain[[1]])
print(cert_data$pubkey)

print(cert_data$alt_names)

cert_verify(chain, ca_bundle())

Write cert in PEM format
cat(write_pem(chain[[1]]))

curve25519 Curve25519

Description

Curve25519 is a recently added low-level algorithm that can be used both for diffie-hellman (called
X25519) and for signatures (called ED25519). Note that these functions are only available when
building against version 1.1.1 or newer of the openssl library. The same functions are also available
in the sodium R package.

Usage
read_ed25519_key(x)
read_ed25519_pubkey (x)
read_x25519_key(x)
read_x25519_pubkey (x)
ed25519_sign(data, key)
ed25519_verify(data, sig, pubkey)

x25519_diffie_hellman(key, pubkey)

Arguments

X a 32 byte raw vector with (pub)key data

data raw vector with data to sign or verify

ec_dh 7

key private key as returned by read_ed25519_key or ed25519_keygen

sig raw vector of length 64 with signature as returned by ed25519_sign

pubkey public key as returned by read_ed25519_pubkey or key$pubkey
Examples

Generate a keypair
if(openssl_config()$x25519){
key <- ed25519_keygen()
pubkey <- as.list(key)$pubkey

Sign message
msg <- serialize(iris, NULL)
sig <- ed25519_sign(msg, key)

Verify the signature
ed25519_verify(msg, sig, pubkey)

Diffie Hellman example:
keyl <- x25519_keygen()
key2 <- x25519_keygen()

Both parties can derive the same secret
x25519_diffie_hellman(keyl, key2$pubkey)
x25519_diffie_hellman(key2, keyl$pubkey)

Import/export sodium keys

rawkey <- sodium::sig_keygen()

rawpubkey <- sodium::sig_pubkey(rawkey)
key <- read_ed25519_key(rawkey)

pubkey <- read_ed25519_pubkey (rawpubkey)

To get the raw key data back for use in sodium
as.list(key)$data

as.list(pubkey)$data

3

ec_dh Diffie-Hellman Key Agreement

Description

Key agreement is one-step method of creating a shared secret between two peers. Both peers can
independently derive the joined secret by combining his or her private key with the public key from
the peer.

Usage

ec_dh(key = my_key(), peerkey, password = askpass)

8 encrypt_envelope

Arguments

key your own private key

peerkey the public key from your peer

password passed to read_key for reading protected private keys
Details

Currently only Elliptic Curve Diffie Hellman (ECDH) is implemented.

References

https://wiki.openssl.org/index.php/EVP_Key_Agreement, https://wiki.openssl.org/index.
php/Elliptic_Curve_Diffie_Hellman

Examples

Not run:

Need two EC keypairs from the same curve
alice_key <- ec_keygen("P-521")

bob_key <- ec_keygen("P-521")

Derive public keys
alice_pub <- as.list(alice_key)$pubkey
bob_pub <- as.list(bob_key)$pubkey

Both peers can derive the (same) shared secret via each other's pubkey
ec_dh(alice_key, bob_pub)
ec_dh(bob_key, alice_pub)

End(Not run)

encrypt_envelope Envelope encryption

Description

An envelope contains ciphertext along with an encrypted session key and optionally and initializa-
tion vector. The encrypt_envelope() generates a random IV and session-key which is used to
encrypt the data with AES() stream cipher. The session key itself is encrypted using the given RSA
key (see rsa_encrypt()) and stored or sent along with the encrypted data. Each of these outputs
is required to decrypt the data with the corresponding private key.

Usage

encrypt_envelope(data, pubkey = my_pubkey())

decrypt_envelope(data, iv, session, key = my_key(), password)

https://wiki.openssl.org/index.php/EVP_Key_Agreement
https://wiki.openssl.org/index.php/Elliptic_Curve_Diffie_Hellman
https://wiki.openssl.org/index.php/Elliptic_Curve_Diffie_Hellman
https://wiki.openssl.org/index.php/EVP_Asymmetric_Encryption_and_Decryption_of_an_Envelope

fingerprint 9

Arguments
data raw data vector or file path for message to be signed. If hash == NULL then data
must be a hash string or raw vector.
pubkey public key or file path. See read_pubkey ().
iv 16 byte raw vector returned by encrypt_envelope.
session raw vector with encrypted session key as returned by encrypt_envelope.
key private key or file path. See read_key ().
password string or a function to read protected keys. See read_key ().
References

https://wiki.openssl.org/index.php/EVP_Asymmetric_Encryption_and_Decryption_of_an_
Envelope

Examples

Requires RSA key

key <- rsa_keygen()

pubkey <- key$pubkey

msg <- serialize(iris, NULL)

Encrypt
out <- encrypt_envelope(msg, pubkey)
str(out)

Decrypt
orig <- decrypt_envelope(out$data, out$iv, out$session, key)
stopifnot(identical(msg, orig))

fingerprint OpenSSH fingerprint

Description

Calculates the OpenSSH fingerprint of a public key. This value should match what you get to see
when connecting with SSH to a server. Note that some other systems might use a different algorithm
to derive a (different) fingerprint for the same keypair.

Usage

fingerprint(key, hashfun = sha256)

Arguments

key a public or private key

hashfun which hash function to use to calculate the fingerprint

https://wiki.openssl.org/index.php/EVP_Asymmetric_Encryption_and_Decryption_of_an_Envelope
https://wiki.openssl.org/index.php/EVP_Asymmetric_Encryption_and_Decryption_of_an_Envelope

10 hashing

Examples

mykey <- rsa_keygen()

pubkey <- as.list(mykey)$pubkey
fingerprint(mykey)
fingerprint(pubkey)

Some systems use other hash functions
fingerprint(pubkey, shal)
fingerprint(pubkey, sha256)

Other key types
fingerprint(dsa_keygen())

hashing Vectorized hash/hmac functions

Description

All hash functions either calculate a hash-digest for key == NULL or HMAC (hashed message au-
thentication code) when key is not NULL. Supported inputs are binary (raw vector), strings (character
vector) or a connection object.

Usage
shal(x, key = NULL)

sha224(x, key = NULL)
sha256(x, key = NULL)
sha384(x, key = NULL)
shab512(x, key = NULL)

keccak(x, size = 256, key = NULL)

sha2(x, size = 256, key = NULL)

sha3(x, size = 256, key = NULL)

md4(x, key = NULL)

md5(x, key = NULL)

blake2b(x, key = NULL)

blake2s(x, key = NULL)

hashing 11

ripemd160(x, key = NULL)

multihash(x, algos = c("md5", "shal"”, "sha256", "sha384", "sha512"))

Arguments
X character vector, raw vector or connection object.
key string or raw vector used as the key for HMAC hashing
size must be equal to 224 256 384 or 512
algos string vector with names of hashing algorithms
Details

The most efficient way to calculate hashes is by using input connections, such as a file() or url()
object. In this case the hash is calculated streamingly, using almost no memory or disk space,
regardless of the data size. When using a connection input in the multihash function, the data is
only read only once while streaming to multiple hash functions simultaneously. Therefore several
hashes are calculated simultanously, without the need to store any data or download it multiple
times.

Functions are vectorized for the case of character vectors: a vector with n strings returns n hashes.
When passing a connection object, the contents will be stream-hashed which minimizes the amount
of required memory. This is recommended for hashing files from disk or network.

The sha2 family of algorithms (sha224, sha256, sha384 and sha512) is generally recommended for
sensitive information. While shal and md5 are usually sufficient for collision-resistant identifiers,
they are no longer considered secure for cryptographic purposes.

In applications where hashes should be irreversible (such as names or passwords) it is often recom-
mended to use a random key for HMAC hashing. This prevents attacks where we can lookup hashes
of common and/or short strings. See examples. A common special case is adding a random salt to
a large number of records to test for uniqueness within the dataset, while simultaneously rendering
the results incomparable to other datasets.

The blake2b and blake2s algorithms are only available if your system has libssl 1.1 or newer.

NB R base file() function has a poor default raw = FALSE which causes files to get altereted (e.g.
decompressed) when reading. Use file(path, raw = TRUE) to get the hash of the file as it exists
on your disk.

References

Digest types: https://docs.openssl.org/1.1.1/man1/dgst/

Examples

Support both strings and binary
md5(c("foo"”, "bar"))
md5("foo", key = "secret")

hash <- md5(charToRaw("foo0"))

https://docs.openssl.org/1.1.1/man1/dgst/

12 keygen

as.character(hash, sep = ":")

Compare to digest
digest::digest("foo", "md5", serialize = FALSE)

Other way around
digest::digest(cars, skip = 0)
md5(serialize(cars, NULL))

Stream-verify from connections (including files)
myfile <- system.file("CITATION")

md5(file(myfile, raw = TRUE))

md5(file(myfile, raw = TRUE), key = "secret")

Not run: check md5 from: http://cran.r-project.org/bin/windows/base/0ld/3.1.1/md5sum. txt
md5(url("http://cran.r-project.org/bin/windows/base/0ld/3.1.1/R-3.1.1-win.exe"))
End(Not run)

Use a salt to prevent dictionary attacks
shal("admin") # googleable
shal("admin"”, key = "random_salt_value”) #not googleable

Use a random salt to identify duplicates while anonymizing values
sha256("john") # googleable
sha256(c("john", "mary", "john"), key = "random_salt_value")

keygen Generate Key pair

Description

The keygen functions generate a random private key. Use as.list(key)$pubkey to derive the
corresponding public key. Use write_pem to save a private key to a file, optionally with a password.

Usage
rsa_keygen(bits = 2048)
dsa_keygen(bits = 1024)

ec_keygen(curve = c("P-256", "P-384", "P-521"))
x25519_keygen()

ed25519_keygen()

Arguments

bits bitsize of the generated RSA/DSA key

curve which NIST curve to use

my_key 13

Examples

Generate keypair
key <- rsa_keygen()
pubkey <- as.list(key)$pubkey

Write/read the key with a passphrase
write_pem(key, "id_rsa”, password = "supersecret”)
read_key("id_rsa", password = "supersecret”)
unlink("id_rsa")

my_key Default key

Description

The default user key can be set in the USER_KEY variable and otherwise is ~/.ssh/id_rsa. Note
that on Windows we treat ~ as the windows user home (and not the documents folder).

Usage
my_key ()

my_pubkey ()

Details

The my_pubkey () function looks for the public key by appending . pub to the above key path. If this
file does not exist, it reads the private key file and automatically derives the corresponding pubkey.
In the latter case the user may be prompted for a passphrase if the private key is protected.

Examples

Set random RSA key as default

key <- rsa_keygen()

write_pem(key, tmp <- tempfile(), password = "")
rm(key)

Sys.setenv("USER_KEY" = tmp)

Check the new keys
print(my_key())
print(my_pubkey())

14 openssl_config

openssl Toolkit for Encryption, Signatures and Certificates based on OpenSSL

Description

Bindings to OpenSSL libssl and libcrypto, plus custom SSH pubkey parsers. Supports RSA, DSA
and NIST curves P-256, P-384 and P-521. Cryptographic signatures can either be created and ver-
ified manually or via x509 certificates. The AES block cipher is used in CBC mode for symmetric
encryption; RSA for asymmetric (public key) encryption. High-level envelope methods combine
RSA and AES for encrypting arbitrary sized data. Other utilities include key generators, hash func-
tions (md5(), shal(), sha256(), etc), base64() encoder, a secure random number generator, and
bignum() math methods for manually performing crypto calculations on large multibyte integers.

Author(s)

Jeroen Ooms, Oliver Keyes

See Also
Useful links:

* https://jeroen.r-universe.dev/openssl

* Report bugs at https://github.com/jeroen/openssl/issues

openssl_config OpenSSL Configuration Info

Description

Shows libssl version and configuration information.

Usage

openssl_config()

fips_mode()

Details

Note that the "fips" flag in openssl_config means that FIPS is supported, but it does not mean that
it is currently enforced. If supported, it can be enabled in several ways, such as a kernel option, or
setting an environment variable OPENSSL_FORCE_FIPS_MODE=1. The fips_mode () function shows
if FIPS is currently enforced.

https://jeroen.r-universe.dev/openssl
https://github.com/jeroen/openssl/issues

pkes7_encrypt 15

pkcs7_encrypt Encrypt/decrypt pkcs7 messages

Description

Encrypt or decrypt messages using PKCS7 smime format. Note PKCS7 only supports RSA keys.

Usage

pkcs7_encrypt(message, cert, pem = TRUE)

pkcs7_decrypt(input, key, der = is.raw(input))

Arguments
message text or raw vector with data to encrypt
cert the certificate with public key to use for encryption
pem convert output pkcs7 data to PEM format
input file path or string with PEM or raw vector with p7b data
key private key to decrypt data
der assume input is in DER format (rather than PEM)
See Also

encrypt_envelope

rand_bytes Generate random bytes and numbers with OpenSSL

Description

this set of functions generates random bytes or numbers from OpenSSL. This provides a crypto-
graphically secure alternative to R’s default random number generator. rand_bytes generates n
random cryptographically secure bytes

Usage

rand_bytes(n = 1)

rand_num(n = 1)

Arguments

n number of random bytes or numbers to generate

16 read_key

References

OpenSSL manual: https://docs.openssl.org/1.1.1/man3/RAND_bytes/

Examples

rnd <- rand_bytes(10)
as.numeric(rnd)
as.character(rnd)
as.logical(rawToBits(rnd))

bytes range from @ to 255
rnd <- rand_bytes(100000)
hist(as.numeric(rnd), breaks=-1:255)

Generate random doubles between @ and 1
rand_num(5)

Use CDF to map [@,1] into random draws from a distribution
x <= gnorm(rand_num(1000), mean=100, sd=15)
hist(x)

y <- gbinom(rand_num(1000), size=10, prob=0.3)
hist(y)

read_key Parsing keys and certificates

Description

The read_key function (private keys) and read_pubkey (public keys) support both SSH pubkey for-
mat and OpenSSL PEM format (base64 data with a -~-BEGIN and ---END header), and automatically
convert where necessary. The functions assume a single key per file except for read_cert_bundle
which supports PEM files with multiple certificates.

Usage

read_key(file, password = askpass, der = is.raw(file))
read_pubkey(file, der = is.raw(file))

read_cert(file, der = is.raw(file))
read_cert_bundle(file)

read_pem(file)

https://docs.openssl.org/1.1.1/man3/RAND_bytes/

read_key 17

Arguments
file Either a path to a file, a connection, or literal data (a string for pem/ssh format,
or a raw vector in der format)
password A string or callback function to read protected keys
der set to TRUE if file is in binary DER format
Details

Most versions of OpenSSL support at least RSA, DSA and ECDSA keys. Certificates must conform
to the X509 standard.

The password argument is needed when reading keys that are protected with a passphrase. It can
either be a string containing the passphrase, or a custom callback function that will be called by
OpenSSL to read the passphrase. The function should take one argument (a string with a message)
and return a string. The default is to use readline which will prompt the user in an interactive R
session.

Value

An object of class cert, key or pubkey which holds the data in binary DER format and can be
decomposed using as. list.

See Also

download_ssl_cert

Examples

Not run: # Read private key
key <- read_key("~/.ssh/id_rsa")
str(key)

Read public key
pubkey <- read_pubkey("~/.ssh/id_rsa.pub")
str(pubkey)

Read certificates

txt <- readLines("https://curl.haxx.se/ca/cacert.pem”)
bundle <- read_cert_bundle(txt)

print(bundle)

End(Not run)

18 rsa_encrypt

rsa_encrypt Low-level RSA encryption

Description

Asymmetric encryption and decryption with RSA. Because RSA can only encrypt messages smaller
than the size of the key, it is typically used only for exchanging a random session-key. This ses-
sion key is used to encipher arbitrary sized data via a stream cipher such as aes_cbc. See en-
crypt_envelope or pkcs7_encrypt for a high-level wrappers combining RSA and AES in this way.

Usage

rsa_encrypt(data, pubkey = my_pubkey(), oaep = FALSE)

rsa_decrypt(data, key = my_key(), password = askpass, oaep = FALSE)

Arguments
data raw vector of max 245 bytes (for 2048 bit keys) with data to encrypt/decrypt
pubkey public key or file path. See read_pubkey ().
oaep if TRUE, changes padding to EME-OAEP as defined in PKCS #1 v2.0
key private key or file path. See read_key ().
password string or a function to read protected keys. See read_key ().
Examples

Generate test keys
key <- rsa_keygen()
pubkey <- key$pubkey

Encrypt data with AES

tempkey <- rand_bytes(32)

iv <- rand_bytes(16)

blob <- aes_cbc_encrypt(system.file("CITATION"), tempkey, iv = iv)

Encrypt tempkey using receivers public RSA key
ciphertext <- rsa_encrypt(tempkey, pubkey)

Receiver decrypts tempkey from private RSA key
tempkey <- rsa_decrypt(ciphertext, key)

message <- aes_cbc_decrypt(blob, tempkey, iv)
out <- rawToChar(message)

signature_create 19

signature_create Signatures

Description

Sign and verify a message digest. RSA supports both MD5 and SHA signatures whereas DSA and
EC keys only support SHA. ED25591 can sign any payload so you can set hash to NULL to sign the
raw input data.

Usage

signature_create(data, hash = shal, key = my_key(), password = askpass)
signature_verify(data, sig, hash = shal, pubkey = my_pubkey())
ecdsa_parse(sig)

ecdsa_write(r, s)

Arguments
data raw data vector or file path for message to be signed. If hash == NULL then data
must be a hash string or raw vector.
hash the digest function to use. Must be one of md5(), shal(), sha256(), sha512()
or NULL.
key private key or file path. See read_key ().
password string or a function to read protected keys. See read_key ().
sig raw vector or file path for the signature data.
pubkey public key or file path. See read_pubkey ().
r bignum value for r parameter
s bignum value for s parameter
Details

The ecdsa_parse and ecdsa_write functions convert (EC)DSA signatures between the conven-
tional DER format and the raw (r,s) bignum pair. Most users won’t need this, it is mostly here to
support the JWT format (which does not use DER).

Examples

Generate a keypair
key <- rsa_keygen()
pubkey <- key$pubkey

Sign a file
data <- system.file("DESCRIPTION")

20 ssl ctx

sig <- signature_create(data, sha256, key = key)

stopifnot(signature_verify(data, sig, sha256, pubkey = pubkey))

Sign raw data

data <- serialize(iris, NULL)

sig <- signature_create(data, sha256, key = key)
stopifnot(signature_verify(data, sig, sha256, pubkey = pubkey))

Sign a hash

md <- md5(data)

sig <- signature_create(md, hash = sha256, key = key)
stopifnot(signature_verify(md, sig, hash = sha256, pubkey = pubkey))
#

ECDSA example

data <- serialize(iris, NULL)

key <- ec_keygen()

pubkey <- key$pubkey

sig <- signature_create(data, sha256, key = key)
stopifnot(signature_verify(data, sig, sha256, pubkey = pubkey))

Convert signature to (r, s) parameters and then back
params <- ecdsa_parse(sig)

out <- ecdsa_write(params$r, params$s)

identical(sig, out)

ssl_ctx Hooks to manipulate the SSL context for curl requests

Description

These functions allow for manipulating the SSL context from inside the CURLOPT_SSL_CTX_FUNCTION
callback using the curl R package. Note that this is not fully portable and will only work on instal-

lations that use matching versions of libssl (see details). It is recommended to only use this locally

and if what you need cannot be accomplished using standard libcurl TLS options, e.g. those listed

in curl::curl_options('ssl') orcurl::curl_options('tls').

Usage

ssl_ctx_add_cert_to_store(ssl_ctx, cert)
ssl_ctx_set_verify_callback(ssl_ctx, cb)

ssl_ctx_curl_version_match()

Arguments
ssl_ctx pointer object to the SSL context provided in the ssl_ctx_function callback.
cert certificate object, e.g from read_cert or download_ssl_cert.
cb callback function with 1 parameter (the server certificate) and which returns

TRUE (for proceed) or FALSE (for abort).

https://curl.se/libcurl/c/CURLOPT_SSL_CTX_FUNCTION.html

ssl ctx 21

Details

Curl allows for setting an option called ssl_ctx_function: this is a callback function that is
triggered during the TLS initiation, before any https connection has been made. This serves as
a hook to let you manipulate the TLS configuration (called SSL_CTX for historical reasons), in
order to control how to curl will validate the authenticity of server certificates for upcoming TLS
connections.

Currently we provide 2 such functions: ssl_ctx_add_cert_to_store injects a custom certificate into

the trust-store of the current TLS connection. But most flexibility is provided via ssl_ctx_set_verify_callback
which allows you to override the function that is used by validate if a server certificate should be

trusted. The callback will receive one argument cert and has to return TRUE or FALSE to decide if

the cert should be trusted.

By default libcurl re-uses connections, hence the cert validation is only performed in the first request
to a given host. Subsequent requests use the already established TLS connection. For testing, it can
be useful to set forbid_reuse in order to make a new connection for each request, as done in the
examples below.

System compatibility

Passing the SSL_CTX between the curl and openssl R packages only works if they are linked to
the same version of libssl. Use ssl_ctx_curl_version_match to test if this is the case. On Debian /
Ubuntu you need to build the R curl package against 1ibcurl4-openssl-dev, which is usually the
case. On Windows you would need to set CURL_SSL_BACKEND=openssl in your ~/.Renviron file.
On MacOS things are complicated because it uses LibreSSL instead of OpenSSL by default. You
can make it work by compiling the curl R package from source against the homebrew version of curl
and then then set CURL_SSL_BACKEND=openssl in your ~/.Renviron file. If your curl and openssl
R packages use different versions of libssl, the examples may segfault due to ABI incompatibility
of the SSL_CTX structure.

Examples

Not run:
Example 1: accept your local snakeoil https cert
mycert <- openssl::download_ssl_cert('localhost')[[1]]

Setup the callback

h <- curl::new_handle(ssl_ctx_function = function(ssl_ctx){
ssl_ctx_add_cert_to_store(ssl_ctx, mycert)

}, verbose = TRUE, forbid_reuse = TRUE)

Perform the request
req <- curl::curl_fetch_memory('https://localhost', handle = h)

Example 2 using a custom verify function
verify_cb <- function(cert){
id <- cert$pubkey$fingerprint
cat("Server cert from:", as.character(id), "\n")
TRUE # always accept cert
3

22 write_pl12

h <- curl::new_handle(ssl_ctx_function = function(ssl_ctx){
ssl_ctx_set_verify_callback(ssl_ctx, verify_cb)
}, verbose = TRUE, forbid_reuse = TRUE)

Perform the request
req <- curl::curl_fetch_memory('https://localhost', handle = h)

End(Not run)

write_p12 PKCS7/ PKCSI2 bundles

Description

PKCS7 and PKCS12 are container formats for storing multiple certificates and/or keys.

Usage

write_p12(
key = NULL,
cert = NULL,
ca = NULL,
name = NULL,
password = NULL,
path = NULL

)

write_p7b(ca, path = NULL)
read_p12(file, password = askpass)

read_p7b(file, der = is.raw(file))

Arguments
key a private key
cert certificate that matches key
ca a list of certificates (the CA chain)
name a friendly title for the bundle
password string or function to set/get the password.
path a file where to write the output to. If NULL the output is returned as a raw vector.
file path or raw vector with binary PKCS12 data to parse

der set to TRUE for binary files and FALSE for PEM files

write_pem 23

Details

The PKCS#7 or P7B format is a container for one or more certificates. It can either be stored in
binary form or in a PEM file. P7B files are typically used to import and export public certificates.

The PKCS#12 or PFX format is a binary-only format for storing the server certificate, any interme-
diate certificates, and the private key into a single encryptable file. PFX files are usually found with
the extensions .pfx and .p12. PFX files are typically used to import and export certificates with their
private keys.

The PKCS formats also allow for including signatures and CRLs but this is quite rare and these are
currently ignored.

write_pem Export key or certificate

Description

The write_pem functions exports a key or certificate to the standard base64 PEM format. For
private keys it is possible to set a password.

Usage

write_pem(x, path NULL, password = NULL)
write_der(x, path = NULL)

write_pkcs1(x, path = NULL, password = NULL)
write_ssh(pubkey, path = NULL)

write_openssh_pem(key, path = NULL)

Arguments
X a public/private key or certificate object
path file to write to. If NULL it returns the output as a string.
password string or callback function to set password (only applicable for private keys).
pubkey a public key
key a private key
Details

The pkesl format is the old legacy format used by OpenSSH. PKCS1 does not support the new
ed25519 keys, for which you need write_openssh_pem. For non-ssh clients, we recommend to
simply use write_pem to export keys and certs into the recommended formats.

24 write_pem

Examples

Generate RSA keypair
key <- rsa_keygen()
pubkey <- key$pubkey

Write to output formats
write_ssh(pubkey)

write_pem(pubkey)

write_pem(key, password = "super secret”)

Index

AES block cipher, 14 ecdsa_parse (signature_create), 19
AES(), 8 ecdsa_write (signature_create), 19
aes_cbc, 2, 18 ed25519_keygen (keygen), 12
aes_chc_decrypt (aes_cbc), 2 ed25519_sign (curve25519), 6
aes_chc_encrypt (aes_cbc), 2 ed25519_verify (curve25519), 6
aes_ctr_decrypt (aes_cbc), 2 encrypt (rsa_encrypt), 18
aes_ctr_encrypt (aes_cbc), 2 encrypt_envelope, 8, 15, I8
aes_gcm_decrypt (aes_cbc), 2 encrypt_envelope(), 2, 8
aes_gcm_encrypt (aes_chc), 2 envelope, 14
aes_keygen (aes_cbc), 2 envelope (encrypt_envelope), 8
Arithmetic, 4
asymmetric (public key), 14 file(D, 11

fingerprint, 9
base64(), 14 fips_mode (openssl_config), 14

base64_decode (base64_encode), 3
base64_encode, 3
bcrypt_pbkdf, 4

bignum, 4

bignum(), 14

bignum_mod_exp (bignum), 4
bignum_mod_exp(), 4

hash (hashing), 10
hashing, 10
hmac (hashing), 10

keccak (hashing), 10
key generators, 14

. . . keygen, 12
bignum_mod_inv (bignum), 4
blake2b (hashing), 10 mac (hashing), 10
blake2s (hashing), 10 md4 (hashing), 10
md5 (hashing), 10
ca_bundle (cert_verify), 5 md5(), 14, 19
cert_verify,> multihash, /1
certificates, /4 multihash (hashing), 10
certificates (cert_verify),5 my_key, 13
Comparison, 4 my_pubkey (my_key), 13
connections, /1
curve25519, 6 openssl, 14
openssl-package (openssl), 14
decrypt_envelope (encrypt_envelope), 8 openssl_config, 14
download_ssl_cert, 17, 20 option, 21
download_ssl_cert (cert_verify), 5
dsa_keygen (keygen), 12 pfx (write_p12), 22
pkcs12 (write_p12),22
ec_dh, 7 pkcs7_decrypt (pkcs7_encrypt), 15
ec_keygen (keygen), 12 pkcs7_encrypt, 15, 18

25

26 INDEX

pubkey, 14 url(), 11

rand_bytes, 15 write_der (write_pem), 23
rand_num (rand_bytes), 15 write_openssh_pem (write_pem), 23
random number generator, 14 write_p12,22

read cert.6.20 write_p7b (write_p12), 22

read_cert (read_key), 16 write_pem, /2,23

read_cert_bundle (read_key), 16 wr%te_pkcs1(write_pem),23
read_ed25519_key (curve25519), 6 write_ssh (write_pem), 23
read_ed25519_pubkey (curve25519), 6
read_key, 8, 16

read_key(), 9, 18, 19

read_p12 (write_p12), 22

read_p7b (write_p12),22

read_pem (read_key), 16

read_pubkey (read_key), 16
read_pubkey(), 9, I8, 19
read_x25519_key (curve25519), 6
read_x25519_pubkey (curve25519), 6
ripemd160 (hashing), 10
rsa(rsa_encrypt), 18

rsa_decrypt (rsa_encrypt), 18
rsa_encrypt, 18

rsa_encrypt(), 2, 8

rsa_keygen (keygen), 12

x25519_diffie_hellman (curve25519), 6
x25519_keygen (keygen), 12

shal (hashing), 10

shal(), 14, 19

sha2 (hashing), 10

sha224 (hashing), 10

sha256 (hashing), 10

sha256(), 14, 19

sha3 (hashing), 10

sha384 (hashing), 10

sha512 (hashing), 10

sha512(), 19

signature_create, 19

signature_verify (signature_create), 19

signatures, 14

signatures (signature_create), 19

ssl_ctx, 20

ssl_ctx_add_cert_to_store, 2/

ssl_ctx_add_cert_to_store (ssl_ctx), 20

ssl_ctx_curl_version_match, 2/

ssl_ctx_curl_version_match (ssl_ctx), 20

ssl_ctx_set_verify_callback, 27

ssl_ctx_set_verify_callback (ssl_ctx),
20

	aes_cbc
	base64_encode
	bcrypt_pbkdf
	bignum
	cert_verify
	curve25519
	ec_dh
	encrypt_envelope
	fingerprint
	hashing
	keygen
	my_key
	openssl
	openssl_config
	pkcs7_encrypt
	rand_bytes
	read_key
	rsa_encrypt
	signature_create
	ssl_ctx
	write_p12
	write_pem
	Index

