
Package ‘pedprobr’
May 7, 2025

Type Package

Title Probability Computations on Pedigrees

Version 1.0.1

Description An implementation of the Elston-Stewart algorithm for
calculating pedigree likelihoods given genetic marker data (Elston and
Stewart (1971) <doi:10.1159/000152448>). The standard algorithm is
extended to allow inbred founders. 'pedprobr' is part of the
'pedsuite', a collection of packages for pedigree analysis in R. In
particular, 'pedprobr' depends on 'pedtools' for pedigree
manipulations and 'pedmut' for mutation modelling. For more
information, see 'Pedigree Analysis in R' (Vigeland, 2021,
ISBN:9780128244302).

License GPL (>= 2)

URL https://github.com/magnusdv/pedprobr

BugReports https://github.com/magnusdv/pedprobr/issues

Depends pedtools (>= 2.8.1), R (>= 4.2.0)

Imports pedmut (>= 0.9.0)

Suggests testthat

Encoding UTF-8

Language en-GB

RoxygenNote 7.3.2

SystemRequirements MERLIN (https://csg.sph.umich.edu/abecasis/merlin/)
for calculations involving multiple linked markers.

NeedsCompilation no

Author Magnus Dehli Vigeland [aut, cre] (ORCID:
<https://orcid.org/0000-0002-9134-4962>)

Maintainer Magnus Dehli Vigeland <m.d.vigeland@medisin.uio.no>

Repository CRAN

Date/Publication 2025-05-07 12:50:06 UTC

1

https://doi.org/10.1159/000152448
https://github.com/magnusdv/pedprobr
https://github.com/magnusdv/pedprobr/issues
https://orcid.org/0000-0002-9134-4962

2 allGenotypes

Contents

allGenotypes . 2
genoCombinations . 3
haldane . 3
HWprob . 4
likelihood . 5
lumpAlleles . 8
merlin . 9
oneMarkerDistribution . 12
setMutationModel . 14
twoMarkerDistribution . 16

Index 18

allGenotypes Genotype matrix

Description

An autosomal marker with n alleles has choose(n+1, 2) possible unordered genotypes. This func-
tion returns these as rows in a matrix.

Usage

allGenotypes(n)

Arguments

n A positive integer.

Value

An integer matrix with two columns and choose(n+1, 2) rows.

Examples

allGenotypes(3)

genoCombinations 3

genoCombinations Genotype combinations

Description

Returns the possible genotype combinations in a pedigree, given partial marker data. This function
is mainly for internal use.

Usage

genoCombinations(x, partialmarker = x$MARKERS[[1]], ids, make.grid = TRUE)

Arguments

x a pedtools::ped() object.

partialmarker a pedtools::marker() object compatible with x.

ids a vector with ID labels of one or more pedigree members.

make.grid a logical indicating if the result should be simplified to a matrix.

Value

If make.grid = FALSE (the default) the function returns a list of integer vectors, one vector for each
element of ids. Each integer represents a genotype, in the form of a row number of the matrix
allGenotypes(n), where n is the number of alleles of the marker.

If make.grid = TRUE, the Cartesian product of the vectors is taken, resulting in a matrix with one
column for each element of ids.

haldane Genetic map functions

Description

Simple implementations of the classical map functions of Haldane and Kosambi, relating the genetic
distance and the recombination rate between two linked loci.

Usage

haldane(cM = NULL, rho = NULL)

kosambi(cM = NULL, rho = NULL)

Arguments

cM A numeric vector with genetic distances in centiMorgan, or NULL.

rho A numeric vector with recombination rates, or NULL.

4 HWprob

Value

A numeric of the same length as the input.

Examples

cM = 0:200
dat = cbind(Haldane = haldane(cM = cM),

Kosambi = kosambi(cM = cM))
matplot(cM, dat, ylab = "Recombination rate", type = "l")
legend("topleft", legend = colnames(dat), col = 1:2, lty = 1:2)

rho = seq(0, 0.49, length = 50)
dat2 = cbind(Haldane = haldane(rho = rho),

Kosambi = kosambi(rho = rho))
matplot(rho, dat2, xlab = "Recombination rate", ylab = "cM", type = "l")
legend("topleft", legend = colnames(dat), col = 1:2, lty = 1:2)

HWprob Hardy-Weinberg probabilities

Description

Hardy-Weinberg probabilities

Usage

HWprob(allele1, allele2, afreq, f = 0)

Arguments

allele1, allele2
Vectors of equal length, containing alleles in the form of indices of afreq

afreq A numeric vector with allele frequencies

f A single number in [0, 1]; the inbreeding coefficient

Value

A numeric vector of the same length as allele1 and allele2

Examples

p = 0.1; q = 1-p
hw = HWprob(c(1,1,2), c(1,2,2), c(p, q))
stopifnot(all.equal(hw, c(p^2, 2*p*q, q^2)))

likelihood 5

likelihood Pedigree likelihood

Description

The likelihood() and likelihood2() functions constitute the heart of pedprobr. The former
computes the pedigree likelihood for each indicated marker. The latter computes the likelihood for
a pair of linked markers separated by a given recombination rate.

Usage

likelihood(x, ...)

S3 method for class 'ped'
likelihood(
x,
markers = NULL,
peelOrder = NULL,
lump = TRUE,
special = FALSE,
alleleLimit = Inf,
logbase = NULL,
loopBreakers = NULL,
allX = NULL,
verbose = FALSE,
theta = 0,
...

)

S3 method for class 'list'
likelihood(x, markers = NULL, logbase = NULL, ...)

likelihood2(x, ...)

S3 method for class 'ped'
likelihood2(
x,
marker1,
marker2,
rho = NULL,
peelOrder = NULL,
lump = TRUE,
special = TRUE,
alleleLimit = Inf,
logbase = NULL,
loopBreakers = NULL,
verbose = FALSE,

6 likelihood

...
)

S3 method for class 'list'
likelihood2(x, marker1, marker2, logbase = NULL, ...)

Arguments

x A ped object, a singleton object, or a list of such objects.

... Further arguments.

markers One or several markers compatible with x. Several input forms are possible:

• A marker object compatible with x.
• A list of marker objects.
• A vector of names or indices of markers attached to x. If x is a list, this is

the only valid input.

peelOrder For internal use.

lump Activate allele lumping, i.e., merging unobserved alleles. This is an important
time saver, and should be applied in nearly all cases. (The parameter exists
mainly for debugging purposes.) If any markers use a non-lumpable mutation
model, the special argument may be used to apply more advanced methods.

special A logical indicating if special lumping procedures should be attempted if the
mutation model is not generally lumpable. By default FALSE in likelihood()
and TRUE in likelihood2().

alleleLimit A positive number or Inf (default). If the mutation model is not generally
lumpable, and the allele count exceeds this limit, switch to an equal model
with the same rate and reapply lumping.

logbase Either NULL (default) or a positive number indicating the basis for logarithmic
output. Typical values are exp(1) and 10.

loopBreakers A vector of ID labels indicating loop breakers. If NULL (default), automatic
selection of loop breakers will be performed. See pedtools::breakLoops().

allX For internal use; set to TRUE if all markers are X-chromosomal.

verbose A logical.

theta Theta correction.
marker1, marker2

Single markers compatible with x.

rho The recombination rate between marker1 and marker2. To make biological
sense rho should be between 0 and 0.5.

Details

The implementation is based on the peeling algorithm of Elston and Stewart (1971). A variety of
situations are covered; see the Examples section for some demonstrations.

• autosomal and X-linked markers

• complex inbred pedigrees

likelihood 7

• markers with mutation models

• pedigrees with inbred founders

• single markers or two linked markers

For more than two linked markers, see likelihoodMerlin().

Allele lumping can significantly reduce computation time with highly polymorphic STR markers
and many untyped pedigree members. This is particularly important in likelihood2() which is
prone to run out of memory without lumping. If a non-lumpable mutation model is used, specialised
lumping may still be possible in some situations. This is attempted if special = TRUE, which is the
default in likelihood2() but not in likelihood().

Value

A numeric with the same length as the number of markers indicated by markers. If logbase is a
positive number, the output is log(likelihood, logbase).

Author(s)

Magnus Dehli Vigeland

References

Elston and Stewart (1971). A General Model for the Genetic Analysis of Pedigree Data. doi:10.1159/
000152448

See Also

likelihoodMerlin(), for likelihoods involving more than 2 linked markers.

Examples

Simple likelihoods
p = 0.1
q = 1 - p
afr = c("1" = p, "2" = q)

Singleton
s = singleton() |> addMarker(geno = "1/2", afreq = afr)
stopifnot(all.equal(likelihood(s), 2*p*q))

Trio
x = nuclearPed() |> addMarker(geno = c("1/1", "1/2", "1/1"), afreq = afr)
lik = likelihood(x, verbose = TRUE)
stopifnot(all.equal(lik, p^2 * 2*p*q * 0.5))

Example with inbred founder

Set 100% inbreeding for the father in the previous example
y = setFounderInbreeding(x, ids = 1, value = 1)

https://doi.org/10.1159/000152448
https://doi.org/10.1159/000152448

8 lumpAlleles

Plot (notice the inbreeding coefficient)
plot(y, marker = 1)

stopifnot(all.equal(likelihood(y), p * 2*p*q * 0.5))

Example with two linked markers

Add a second marker, highly polymorphic
x = addMarker(x, geno = c(NA, NA, "1/1"), alleles = 1:10)

Likelihood assuming complete linkage
likelihood2(x, 1, 2, rho = 0, verbose = TRUE)

lumpAlleles Allele lumping

Description

Perform allele lumping (i.e., merging unobserved alleles) for all markers attached to the input pedi-
gree.

Usage

lumpAlleles(
x,
markers = NULL,
always = FALSE,
special = TRUE,
alleleLimit = Inf,
verbose = FALSE

)

Arguments

x A ped object or a list of such.
markers A vector of names or indices referring to markers attached to x. (Default: All

markers.)
always A logical. If TRUE, lumping is always attempted. By default (FALSE) lumping

is skipped for markers where no individuals, or all individuals, are genotyped.
special A logical. If TRUE, special lumping procedures (depending on the pedigree)

will be attempted if the marker has a mutation model that is not generally
lumpable (in the Kemeny-Snell sense).

alleleLimit A positive number or Inf (default). If the mutation model is not generally
lumpable, and the allele count exceeds this limit, switch to an equal model
with the same rate and reapply lumping.

verbose A logical.

merlin 9

Value

An object similar to x, but whose attached markers have reduced allele set.

Examples

x = nuclearPed() |> addMarker(geno = c(NA, NA, "1/1"), alleles = 1:5)

Before lumping
afreq(x, 1)

Lump
y = lumpAlleles(x, verbose = TRUE)
afreq(y, 1)

With lumpable mutation model
x2 = setMutmod(x, model = "equal", rate = 0.1)
mutmod(x2, 1)

y2 = lumpAlleles(x2, verbose = TRUE)
mutmod(y2, 1)

Mutation model requiring special lumping
x3 = setMutmod(x, model = "random", rate = 0.1, seed = 1)
mutmod(x3, 1)

Lump
y3 = lumpAlleles(x3, verbose = TRUE)

mutmod(y3, 1)

stopifnot(all.equal(likelihood(x), likelihood(y)),
all.equal(likelihood(x2), likelihood(y2)),
all.equal(likelihood(x3), likelihood(y3)))

merlin Pedigree likelihoods computed by MERLIN

Description

These functions enable users to call MERLIN (Abecasis et al., 2002) from within R.

Usage

merlin(
x,
options,
markers = NULL,
linkageMap = NULL,

10 merlin

verbose = TRUE,
generateFiles = TRUE,
cleanup = TRUE,
dir = tempdir(),
logfile = NULL,
merlinpath = NULL,
checkpath = TRUE

)

likelihoodMerlin(
x,
markers = NULL,
linkageMap = NULL,
rho = NULL,
logbase = NULL,
perChrom = FALSE,
options = "--likelihood --bits:100 --megabytes:4000 --quiet",
...

)

checkMerlin(program = NULL, version = TRUE, error = FALSE)

Arguments

x A pedtools::ped() object.

options A single string containing all arguments to merlin except for the input file indi-
cations.

markers A vector of names or indices of markers attached to x. (Default: all markers).

linkageMap A data frame with three columns (chromosome; marker name; centiMorgan po-
sition) to be used as the marker map by MERLIN.

verbose A logical.

generateFiles A logical. If TRUE (default), input files to MERLIN named ’_merlin.ped’,
’_merlin.dat’, ’_merlin.map’, and ’_merlin.freq’ are created in the directory in-
dicated by dir. If FALSE, no files are created.

cleanup A logical. If TRUE (default), the MERLIN input files are deleted after the call
to MERLIN.

dir The name of the directory where input files should be written.

logfile A character. If this is given, the MERLIN screen output will be dumped to a file
with this name.

merlinpath The path to the folder containing the merlin executables. If the executables are
on the system’s search path, this can be left as NULL (default).

checkpath A logical indicating whether to check that the merlin executable is found.

rho A vector of length one less than the number of markers, specifying the recom-
bination rate between each consecutive pair.

logbase Either NULL (default) or a positive number indicating the basis for logarithmic
output. Typical values are exp(1) and 10.

merlin 11

perChrom A logical; if TRUE, likelihoods are reported per chromosome.

... Further arguments passed on to merlin().

program A character containing "merlin", "minx" or both (default), optionally including
full paths.

version A logical. If TRUE (default), it is checked that running program produces a
printout starting with "MERLIN 1.1.2".

error A logical, indicating if an error should be raised if program is not found. De-
fault: FALSE.

Details

For these functions to work, the program MERLIN must be installed (see link in the Reference
section below) and correctly pointed to in the PATH variable. The merlin() function is a general
wrapper which runs MERLIN with the indicated options, after creating the appropriate input files.
For convenience, MERLIN’s "–likelihood" functionality is wrapped in a separate function.

The merlin() function creates input files "_merlin.ped", "_merlin.dat", "_merlin.map" and "_mer-
lin.freq" in the dir directory, and then runs the following command through a call to system():

merlin -p _merlin.ped -d _merlin.dat -m _merlin.map -f
_merlin.freq <options>

likelihoodMerlin() first runs merlin() with options = "--likelihood --bits:100 --megabytes:4000
--quiet", and then extracts the likelihood values from the MERLIN output. Note that the output
is the total likelihood including all markers.

For likelihood computations with linked markers, the argument rho should indicate the recombi-
nation fractions between each consecutive pair of markers (i.e., rho[i] is the recombination rate
between markers i-1 and i). These will be converted to centiMorgan distances using Haldane’s
map function, and used to create genetic marker map in a MERLIN-friendly format.

Value

merlin() returns the screen output of MERLIN invisibly.

likelihoodMerlin() returns a single number; the total likelihood using all indicated markers.

checkMerlin() returns TRUE if the MERLIN executable indicated by program is found on the
system. Otherwise FALSE, or (if error = TRUE) an error is raised.

Author(s)

Magnus Dehli Vigeland

References

Abecasis et al. (2002) Nat Gen 30:97-101. https://csg.sph.umich.edu/abecasis/merlin/.

https://csg.sph.umich.edu/abecasis/merlin/

12 oneMarkerDistribution

Examples

if(checkMerlin()) {

Trivial example for validation
x = nuclearPed(1) |>

addMarker("1" = "1/2") |> # likelihood = 1/2
addMarker("1" = "1/1", "3" = "1/2") # likelihood = 1/8

MERLIN likelihoods
lik1 = likelihoodMerlin(x, markers = 1, verbose = FALSE)
lik2 = likelihoodMerlin(x, markers = 2, verbose = FALSE)
likTot = likelihoodMerlin(x, verbose = FALSE)
stopifnot(all.equal(

round(c(lik1, lik2, likTot), c(3,3,4)), c(1/2, 1/8, 1/16)))

Example with ped lists
y = singletons(1:2) |>

addMarker(`1` = "1/2", `2` = "1/1", alleles = 1:2)
lik = likelihoodMerlin(y, verbose = FALSE)
stopifnot(all.equal(round(lik, 3), 1/8))

Linked markers
z = nuclearPed(2)
m = marker(z, geno = c("1/1", "1/2", "1/2", "1/2"))
z = setMarkers(z, list(m, m))

By MERLIN...
L1 = likelihoodMerlin(z, markers = 1:2, rho = 0.25, verbose = FALSE)

...and by pedprobr
L2 = likelihood2(z, marker1 = 1, marker2 = 2, rho = 0.25)

stopifnot(all.equal(signif(L1, 3), signif(L2, 3)))
}

oneMarkerDistribution Genotype distribution for a single marker

Description

Computes the genotype probability distribution of one or several pedigree members, possibly con-
ditional on known genotypes for the marker.

Usage

oneMarkerDistribution(
x,
ids,

oneMarkerDistribution 13

marker = 1,
loopBreakers = NULL,
grid.subset = NULL,
partialmarker = NULL,
output = c("array", "table", "sparse"),
verbose = TRUE

)

Arguments

x A ped object or a list of such.

ids A vector of ID labels of one or more members of x.

marker Either a marker object or the name (or index) of a marker attached to x. If x has
multiple components, only the latter is allowed.

loopBreakers (Only relevant if the pedigree has loops). A vector with ID labels of individu-
als to be used as loop breakers. If NULL (default) loop breakers are selected
automatically. See pedtools::breakLoops().

grid.subset (Optional; not relevant for most users.) A numeric matrix describing a subset
of all marker genotype combinations for the ids individuals. The matrix should
have one column for each of the ids individuals, and one row for each combina-
tion: The genotypes are described in terms of the matrix M = allGenotypes(n),
where n is the number of alleles for the marker. If the entry in column j is the
integer k, this means that the genotype of individual ids[j] is row k of M.

partialmarker (Deprecated) An alias for marker.

output A character string, either "array" (default), "table" or "sparse". See Value.

verbose A logical.

Value

The output format depends on the output argument:

• "array": A named k-dimensional array, where k = length(ids), with the joint genotype dis-
tribution for the ids individuals, conditional on the known genotypes if present.

• "table": A data frame with k+1 columns, where each row corresponds to a genotype combina-
tion, and the last column prob gives the probability.

• "sparse": A data frame with the same structure as the "table" output, but only combinations
with non-zero probability are included.

See Also

twoMarkerDistribution()

Examples

Trivial example: Hardy-Weinberg probabilities for an equifrequent SNP
s = singleton(id = 1) |> addMarker(alleles = 1:2, afreq = c(0.5, 0.5))
oneMarkerDistribution(s, ids = 1)

14 setMutationModel

Conditioning on a partial genotype
s = setGenotype(s, ids = 1, geno = "1/-")
oneMarkerDistribution(s, ids = 1)

Genotype distribution for a child of heterozygous parents
trio = nuclearPed(father = "fa", mother = "mo", child = "ch") |>

addMarker(fa = "1/2", mo = "1/2")
oneMarkerDistribution(trio, ids = "ch")

Joint distribution of the parents, given that the child is heterozygous
trio = addMarker(trio, ch = "1/2")
ids = c("fa", "mo")
oneMarkerDistribution(trio, ids = ids, marker = 2)

Table output of the previous example
oneMarkerDistribution(trio, ids = ids, marker = 2, output = "table")
oneMarkerDistribution(trio, ids = ids, marker = 2, output = "sparse")

A different example: The genotype distribution of an individual (id = 8)
whose half cousin (id = 9) is homozygous for a rare allele.
y = halfCousinPed(degree = 1) |>

addMarker("9" = "a/a", afreq = c(a = 0.01, b = 0.99))

oneMarkerDistribution(y, ids = 8)

Multi-component (trivial) example
z = singletons(1:2) |> addMarker(`1` = "1/2", `2` = "1/2", alleles = 1:2)
oneMarkerDistribution(z, 1:2)
oneMarkerDistribution(z, 1:2, output = "sparse")

setMutationModel Set a mutation model

Description

NB: This function has been replaced by pedtools::setMutmod(). This function attaches mu-
tation models to a pedigree with marker data, calling pedmut::mutationModel() for creating the
models.

Usage

setMutationModel(x, model, markers = NULL, ...)

Arguments

x A ped object or a list of such.

model A model name implemented by pedmut::mutationModel() (see Details), or
NULL.

setMutationModel 15

markers A vector of names or indices referring to markers attached to x. (Default: All
markers.)

... Arguments forwarded to pedmut::mutationModel(), e.g., rate.

Details

Currently, the following models are handled:

• equal : All mutations equally likely; probability 1− rate of no mutation

• proportional : Mutation probabilities are proportional to the target allele frequencies

• onestep: A mutation model for microsatellite markers, allowing mutations only to the nearest
neighbours in the allelic ladder. For example, ’10’ may mutate to either ’9’ or ’11’, unless ’10’
is the lowest allele, in which case ’11’ is the only option. This model is not applicable to loci
with non-integral microvariants.

• stepwise: A common model in forensic genetics, allowing different mutation rates between
integer alleles (like ’16’) and non-integer "microvariants" like ’9.3’). Mutations also depend
on the size of the mutation if the parameter ’range’ differs from 1.

• custom : Allows any mutation matrix to be provided by the user, in the matrix parameter

• random : This produces a matrix of random numbers, where each row is normalised so that it
sums to 1

• trivial : The identity matrix; i.e. no mutations are possible.

Value

An object similar to x.

Examples

Example requires the pedmut package
if (requireNamespace("pedmut", quietly = TRUE)){

A pedigree with data from a single marker
x = nuclearPed(1) |>

addMarker(geno = c("a/a", NA, "b/b")) # mutation!

Set `equal` model
y = setMutationModel(x, marker = 1, model = "equal", rate = 0.01)

Inspect model
mutmod(y, 1)

Likelihood
likelihood(y, 1)

Remove mutation model
z = setMutationModel(y, model = NULL)
stopifnot(identical(z, x))
}

16 twoMarkerDistribution

twoMarkerDistribution Genotype distribution for two linked markers

Description

Computes the joint genotype distribution of two markers for a specified pedigree member, condi-
tional on known genotypes and the recombination rate between the markers.

Usage

twoMarkerDistribution(
x,
id,
marker1 = 1,
marker2 = 2,
rho = NULL,
loopBreakers = NULL,
lumpSpecial = TRUE,
partialmarker1 = NULL,
partialmarker2 = NULL,
verbose = TRUE

)

Arguments

x A ped object or a list of such.

id A single ID label.
marker1, marker2

Either marker objects, or the names (or indices) of markers attached to x.

rho A single numeric in the interval [0, 0.5]: the recombination fraction between
the two markers.

loopBreakers (Only relevant if the pedigree has loops). A vector with ID labels of individu-
als to be used as loop breakers. If NULL (default) loop breakers are selected
automatically. See pedtools::breakLoops().

lumpSpecial A logical, passed on to likelihood2().
partialmarker1, partialmarker2

(Deprecated) Aliases for marker1 and marker2.

verbose A logical.

Value

A named matrix giving the joint genotype distribution.

See Also

oneMarkerDistribution()

twoMarkerDistribution 17

Examples

A sib-pair with two SNPs. The first child is homozygous 1/1.
x = nuclearPed(children = c("bro1", "bro2")) |>

addMarker(bro1 = "1/1", alleles = 1:2, afreq = c(0.5, 0.5)) |>
addMarker(bro1 = "1/1", alleles = 1:2, afreq = c(0.5, 0.5))

plot(x, marker = 1:2)

Genotype distribution for the brother depends on linkage
twoMarkerDistribution(x, id = "bro2", rho = 0)
twoMarkerDistribution(x, id = "bro2", rho = 0.5)

Same example on X
y = setChrom(x, marker = 1:2, chrom = "X")

plot(y, marker = 1:2)

twoMarkerDistribution(y, id = "bro2", rho = 0)
twoMarkerDistribution(y, id = "bro2", rho = 0.5)

Index

allGenotypes, 2

checkMerlin (merlin), 9

genoCombinations, 3

haldane, 3
HWprob, 4

kosambi (haldane), 3

likelihood, 5
likelihood2 (likelihood), 5
likelihood2(), 16
likelihoodMerlin (merlin), 9
likelihoodMerlin(), 7
lumpAlleles, 8

merlin, 9

oneMarkerDistribution, 12
oneMarkerDistribution(), 16

pedmut::mutationModel(), 14, 15
pedtools::breakLoops(), 6, 13, 16
pedtools::marker(), 3
pedtools::ped(), 3, 10
pedtools::setMutmod(), 14

setMutationModel, 14
system(), 11

twoMarkerDistribution, 16
twoMarkerDistribution(), 13

18

	allGenotypes
	genoCombinations
	haldane
	HWprob
	likelihood
	lumpAlleles
	merlin
	oneMarkerDistribution
	setMutationModel
	twoMarkerDistribution
	Index

