
Package ‘poweRbal’
August 16, 2024

Title Phylogenetic Tree Models and the Power of Tree Shape Statistics

Version 0.0.1.1

Author Sophie Kersting [aut, cre] (<https://orcid.org/0000-0002-1038-9246>),
Kristina Wicke [aut] (<https://orcid.org/0000-0002-4275-5546>),
Mareike Fischer [aut] (<https://orcid.org/0000-0002-9429-0859>)

Maintainer Sophie Kersting <sophie_kersting@gmx.de>

Description The first goal of this package is to provide a multitude of tree models,
i.e., functions that generate rooted binary trees with a given number of leaves.
Second, the package allows for an easy evaluation and comparison of tree shape
statistics by estimating their power to differentiate between different tree models.
Please note that this R package was developed alongside the manuscript
``Tree balance in phylogenetic models'' by
S. J. Kersting, K. Wicke, and M. Fischer (2024) <doi:10.48550/arXiv.2406.05185>,
which provides further background and the respective mathematical definitions.
This project was supported by the project ArtIGROW, which is a part of the
WIR!-Alliance ArtIFARM – Artificial Intelligence in Farming funded by the
German Federal Ministry of Education and Research (No. 03WIR4805).

License GPL (>= 3)

Depends R (>= 3.5.0)

Imports ape, scales, phytools, treebalance, R.utils, diversitree

Suggests memoise

Encoding UTF-8

NeedsCompilation no

RoxygenNote 7.3.1

Repository CRAN

Date/Publication 2024-08-16 11:00:02 UTC

Contents
enum2cladewise . 2
genAldousBetaTree . 3

1

https://orcid.org/0000-0002-1038-9246
https://orcid.org/0000-0002-4275-5546
https://orcid.org/0000-0002-9429-0859
https://doi.org/10.48550/arXiv.2406.05185

2 enum2cladewise

genAltBirthDeathTree . 4
genBiSSETree . 5
genCombTree . 6
genDensityTree . 7
genETMTree . 8
genFordsAlphaTree . 9
genGFBTree . 10
genGrowTree . 10
genMBTree . 15
genPDATree . 16
genTrees . 17
genYuleTree . 20
getAccRegion . 21
getPowerMultTSS . 24
getTSSdata . 25
getTSSnames . 27
plot.poweRbal_data . 28
powerComp . 30
print.poweRbal_data . 34
showTSSdata . 35
tssInfo . 36

Index 38

enum2cladewise Function to modify the node enumeration in rooted binary trees

Description

enum2cladewise - Changes the node enumeration to cladewise enumeration, i.e., starting from the
root we follow the rule:
Go to the left child; if that does not exist or was already visited go (up again and) to the right child.
The nodes in the rooted binary tree can be nearly arbitrarily enumerated (distinct nodes should have
distinct values and the values should be positive, i.e., >0).

Usage

enum2cladewise(phy, root = NULL)

Arguments

phy A rooted binary tree of class phylo.

root Integer value (default = NULL) that should only be specified if the root is known
precisely (not necessary, but speeds up computation).

Value

enum2cladewise A single tree of class phylo is returned with cladewise node enumeration.

genAldousBetaTree 3

Examples

Example with cladewise enumeration:
phy_alreadycladew <- list(edge = matrix(c(6,7, 7,8, 8,1, 8,2,

7,9, 9,3, 9,4, 6,5),
byrow = TRUE, ncol = 2),

tip.label = rep(" ",5), Nnode = 4)
attr(phy_alreadycladew, "class") <- "phylo"
enum2cladewise(phy_alreadycladew, root = 6)$edge
ape::plot.phylo(phy_alreadycladew)
Example with other node enumeration:
phy_example <- list(edge = matrix(c(1,55, 55,12, 12,2, 12,10, 55,9,

9,13, 9,60, 1,3),
byrow = TRUE, ncol = 2),

tip.label = rep(" ",5), Nnode = 4,
edge.length = rep(1, 8))

attr(phy_example, "class") <- "phylo"
The reenumeration works with and without specifying the root:
enum2cladewise(phy_example, root = 1)$edge
ape::plot.phylo(enum2cladewise(phy_example))

genAldousBetaTree Generation of rooted binary trees under Aldous’ beta splitting model

Description

genAldousBetaTree - Generates a rooted binary tree in phylo format with the given number of
n leaves under the Aldous beta model. The Aldous beta model is not a rate-based incremental
evolutionary (tree) construction and thus cannot generate edge lengths, only a topology. Instead, the
Aldous beta model works as follows: The idea is to start with the root and the set of its descendant
leaves, i.e., all n leaves. Then, this set is partitioned into two subsets according to a density function
dependent on the parameter beta. The two resulting subsets contain the leaves of the two maximal
pending subtrees of the root, respectively. The same procedure is then applied to the root’s children
and their respective subsets, and so forth.

Usage

genAldousBetaTree(n, BETA)

Arguments

n Integer value that specifies the desired number of leaves, i.e., vertices with in-
degree 1 and out-degree 0.
Due to the restrictions of the phylo or multiphylo format, the number of leaves
must be at least 2 since there must be at least one edge.

BETA Numeric value >=-2 which specifies how the leaf sets are partitioned. For cer-
tain choices of BETA the Aldous beta model coincides with known models:

4 genAltBirthDeathTree

• BETA = 0: Yule model

• BETA = -3/2: PDA model (all phylogenies equally probable)

• BETA = -2: Caterpillar with n leaves

Value

genAldousBetaTree A single tree of class phylo is returned.

References

• D. Aldous. Probability Distributions on Cladograms. In Random Discrete Structures, pages
1–18. Springer New York, 1996.

Examples

genAldousBetaTree(n = 5, BETA = 1)

genAltBirthDeathTree Generation of rooted binary trees under the alternative birth-death
model

Description

genAltBirthDeathTree - Generates a rooted binary tree in phylo format with the given number
of n leaves under the alternative birth-death model. In the alternative birth-death process all species
have the same speciation BIRTHRATE and extinction rates DEATHRATE. Extinct species remain as
fossils inside the tree with zero speciation and extinction rates.

Usage

genAltBirthDeathTree(n, BIRTHRATE = 1, DEATHRATE = 0, TRIES = 5)

Arguments

n Integer value that specifies the desired number of leaves, i.e., vertices with in-
degree 1 and out-degree 0.
Due to the restrictions of the phylo or multiphylo format, the number of leaves
must be at least 2 since there must be at least one edge.

BIRTHRATE Positive numeric value (default = 1) which specifies the rate at which the speci-
ation events occur.

DEATHRATE Positive numeric value (default = 0) which specifies the rate at which the extinc-
tion events occur.

TRIES Integer value (default = 5) that specifies the number of attempts to generate a
tree with n leaves.

genBiSSETree 5

Value

genAltBirthDeathTree A single tree of class phylo is returned.

References

• S. J. Kersting, K. Wicke, and M. Fischer. Tree balance in phylogenetic models. arXiv:2406.05185,
2024.

• S. J. Kersting, K. Wicke, and M. Fischer. Tree balance in phylogenetic models: Supplementary
material. https://tinyurl.com/278cwdh8, 2024.

Examples

genAltBirthDeathTree(n = 7, DEATHRATE = 1)

genBiSSETree Generation of rooted binary trees under the BiSSE model

Description

genBiSSETree - Generates a rooted binary tree in phylo format with the given number of n leaves
under the BiSSE model. In the BiSSE model all species have a state, either A or B, and depending
on the state a speciation rate BIRTHRATES, an extinction rate DEATHRATES as well as a transition rate
to the other state TRANSRATES.
Extinct species are removed from the tree, i.e., the generated tree contains only species living at the
present.

Usage

genBiSSETree(
n,
BIRTHRATES = c(1, 1),
DEATHRATES = c(0, 0),
TRANSRATES,
TRIES = 5,
TIMEperTRY = 0.1

)

Arguments

n Integer value that specifies the desired number of leaves, i.e., vertices with in-
degree 1 and out-degree 0.
Due to the restrictions of the phylo or multiphylo format, the number of leaves
must be at least 2 since there must be at least one edge.

BIRTHRATES Numeric vector (default = c(1,1)) which specifies the speciation rates in state A
and B (vector with 2 values >=0, one value >0).

DEATHRATES Numeric vector (default = c(0,0)) which specifies the extinction rates in state A
and B (vector with 2 values >=0).

6 genCombTree

TRANSRATES Numeric vector which specifies the transition rates from A to B and from B to
A (vector with 2 values >0).

TRIES Integer value (default = 5) that specifies the number of attempts to generate a
tree with n leaves.

TIMEperTRY Numeric value (default = 0.1) that specifies the maximum amount of time (in
seconds) invested per try.

Value

genBiSSETree A single tree of class phylo is returned.

References

• This function uses the tree.bisse function of the diversitree package (R. G. FitzJohn.
Diversitree: Comparative Phylogenetic Analyses of Diversification in R. Methods in Ecology
and Evolution, 3(6):1084-1092, 2012).

• W. P. Maddison, P. E. Midford, and S. P. Otto. Estimating a binary character’s effect on
speciation and extinction. Systematic Biology, 56(5):701–710, 2007.

Examples

if (requireNamespace("diversitree", quietly = TRUE)) {
genBiSSETree(n = 5, BIRTHRATES = c(1,2), DEATHRATES = c(0,0),

TRANSRATES = c(0.1,0.3))
}

genCombTree Generation of the comb or caterpillar tree

Description

genCombTree - Generates the rooted binary comb tree (also known as caterpillar tree) in phylo
format with the given number of n leaves.

Usage

genCombTree(n)

Arguments

n Integer value that specifies the desired number of leaves, i.e., vertices with in-
degree 1 and out-degree 0.
Due to the restrictions of the phylo or multiphylo format, the number of leaves
must be at least 2 since there must be at least one edge.

genDensityTree 7

Value

genCombTree A single tree of class phylo is returned.

References

• D. Aldous. Probability Distributions on Cladograms. In Random Discrete Structures, pages
1–18. Springer New York, 1996.

Examples

genCombTree(n = 6)

genDensityTree Generation of rooted binary trees under the density model

Description

genDensityTree - Generates a rooted binary tree in phylo format with the given number of n
leaves under the density-dependent model. In the density-dependent tree generation process all
species have the same speciation BIRTHRATE, but the extinction rates depend on the number of
species (it increases linearly with the number of co-existing lineages until an equilibrium number is
reached at which speciation and extinction rates are equal). Extinct species are removed from the
tree, i.e., the generated tree contains only species living at the present.

Usage

genDensityTree(n, BIRTHRATE = 1, EQUILIB, TRIES = 5, TIMEperTRY = 0.01)

Arguments

n Integer value that specifies the desired number of leaves, i.e., vertices with in-
degree 1 and out-degree 0.
Due to the restrictions of the phylo or multiphylo format, the number of leaves
must be at least 2 since there must be at least one edge.

BIRTHRATE Positive numeric value (default = 1) which specifies the rate at which the speci-
ation events occur.

EQUILIB Integer value that specifies the equilibrium number.

TRIES Integer value (default = 5) that specifies the number of attempts to generate a
tree with n leaves.

TIMEperTRY Numeric value (default = 0.01) that specifies the maximum amount of time (in
seconds) invested per try.

Value

genDensityTree A single tree of class phylo is returned.

8 genETMTree

References

• P. H. Harvey, R. M. May, and S. Nee. Phylogenies without fossils. Evolution, 48(3):523–529,
1994.

Examples

genDensityTree(n = 5, EQUILIB = 6)

genETMTree Generation of rooted binary trees under the equiprobable-types-model
(ETM)

Description

genETMTree - Generates a rooted binary tree in phylo format with the given number of n leaves
under the equiprobable-types-model. Given n, all tree shapes/topologies with n leaves are equiprob-
able under the ETM.

Usage

genETMTree(n)

Arguments

n Integer value that specifies the desired number of leaves, i.e., vertices with in-
degree 1 and out-degree 0.
Due to the restrictions of the phylo or multiphylo format, the number of leaves
must be at least 2 since there must be at least one edge.

Value

genETMTree A single tree of class phylo is returned.

References

• This function uses the rtree(..., equiprob = T) function of the ape package (E. Paradis,
K. Schliep. “ape 5.0: an environment for modern phylogenetics and evolutionary analyses in
R.” Bioinformatics, 35, 526-528, 2019).

Examples

genETMTree(n = 5)

genFordsAlphaTree 9

genFordsAlphaTree Generation of rooted binary trees under Ford’s alpha model

Description

genFordsAlphaTree - Generates a rooted binary tree in phylo format with the given number of
n leaves under Ford’s alpha model. Ford’s alpha model is not a rate-based evolutionary (tree)
construction and thus cannot generate edge lengths, only a topology. Instead, it works as follows:
The idea is to start with a cherry and incrementally increase the size of the tree by adding a new leaf
with a leaf edge to any edge (inner or leaf edge), one at a time. Given a tree with i leaves, then each
of the i-1 inner edges (includes an additional root edge) is chosen with probability ALPHA/(i-ALPHA).
Each of the i leaf edges is chosen with probability (1-ALPHA)/(i-ALPHA).

Usage

genFordsAlphaTree(n, ALPHA)

Arguments

n Integer value that specifies the desired number of leaves, i.e., vertices with in-
degree 1 and out-degree 0.
Due to the restrictions of the phylo or multiphylo format, the number of leaves
must be at least 2 since there must be at least one edge.

ALPHA Numeric value >=0 and <=1 which specifies the probabilities of picking an inner
or a leaf edge. For certain choices of ALPHA Ford’s alpha model coincides with
known models:

• ALPHA = 0: Yule model

• ALPHA = 1/2: PDA model (all phylogenies equally probable)

• ALPHA = 1: Caterpillar with n leaves

Value

genFordsAlphaTree A single tree of class phylo is returned.

References

• D. J. Ford. Probabilities on cladograms: introduction to the alpha model, 2005.

• G. Kaur, K. P. Choi, and T. Wu. Distributions of cherries and pitchforks for the Ford model.
Theoretical Population Biology, 149:27–38, 2023.

Examples

genFordsAlphaTree(n = 5, ALPHA = 0.3)

10 genGrowTree

genGFBTree Generation of the greedy from the bottom tree

Description

genGFBTree - Generates the rooted binary greedy from the bottom tree in phylo format with the
given number of n leaves.

Usage

genGFBTree(n)

Arguments

n Integer value that specifies the desired number of leaves, i.e., vertices with in-
degree 1 and out-degree 0.
Due to the restrictions of the phylo or multiphylo format, the number of leaves
must be at least 2 since there must be at least one edge.

Value

genGFBTree A single tree of class phylo is returned.

References

• S. J. Kersting, K. Wicke, and M. Fischer. Tree balance in phylogenetic models. arXiv:2406.05185,
2024.

• S. J. Kersting, K. Wicke, and M. Fischer. Tree balance in phylogenetic models: Supplementary
material. https://tinyurl.com/278cwdh8, 2024.

Examples

genGFBTree(n = 6)

genGrowTree Generation of rooted binary trees under tree growing models (no ex-
tinction)

genGrowTree 11

Description

genGrowTree - Generates a rooted binary tree in phylo format with the given number of n leaves
under a specified discrete-time tree growing model without extinction. These tree growing models
act at the leaves by varying their speciation rates according to a parameter ZETA or variance SIGMA.
They may also depend on so-called trait values of the leaves (e.g., continuous or discrete age, or
another numeric trait that affects fitness).
You may choose an already built-in model (see use_built_in) or specify a (new) model by defining
how the rates (and optionally traits) change in every time step (see parameters childRates and
otherRates as well as childTraits and otherTraits; see also Table 5 of the supplementary
material of the corresponding manuscript).

Usage

genGrowTree(
n,
STARTING_RATE = 1,
STARTING_TRAIT = 10,
ZETA = 1,
SIGMA = 0,
childRates,
otherRates,
childTraits = NULL,
otherTraits = NULL,
use_built_in = NULL

)

Arguments

n Integer value that specifies the desired number of leaves, i.e., vertices with in-
degree 1 and out-degree 0.
Due to the restrictions of the phylo or multiphylo format, the number of leaves
must be at least 2 since there must be at least one edge.

STARTING_RATE Positive numeric value (default = 1) which specifies the initial rate at which the
speciation events occur (has only influence on the edge length, not on the tree
topology).

STARTING_TRAIT Numeric value (default = 10) which specifies the initial state of a trait.

ZETA Constant non-negative numeric value (default = 1) which can influence the spe-
ciation rates. Can also be a vector if used as such when defining the functions
childRates, otherRates, childTraits, and otherTraits.

SIGMA Constant positive numeric value (default = 0) which can influence the specia-
tion rates. Can also be a vector if used as such when defining the functions
childRates, otherRates, childTraits, and otherTraits.

childRates A function that generates two speciation rates for the children emerging from a
speciation event based on various factors.
Necessary if use_built_in is not specified. childTraits works similarly but
is executed before childRates.

12 genGrowTree

All available parameters are:

• the starting rate sr,

• the starting trait value st,

• the parent’s rate pr,

• the parent’s trait value pt,

• the children’s trait values ct (vector ct[1] and ct[2]),

• the parameters zeta ze

• and sigma si.

All parameters have to appear in the function definition but not necessar-
ily in the body of the function. Trait values are NA, if childTraits and
otherTraits is not given.
Example:
function (sr, st, pr, pt, ct, ze, si) return(c(pr*ze,pr*(1-ze)))
for biased speciation.

otherRates A function that generates a new speciation rate for all leaves not affected by
the speciation event (all but parent and children) based on various factors. The
function is applied after the speciation event, i.e., after childRates/Traits.
Necessary if use_built_in is not specified. otherTraits works similarly.
All available parameters are:

• the starting rate sr,

• the starting trait value st,

• the leaf’s old rate or,

• the leaf’s old trait value ot,

• the parameters zeta ze

• and sigma si.

All parameters have to appear in the function definition but not necessar-
ily in the body of the function. Trait values are NA, if childTraits and
otherTraits is not given.
Example:
function (sr, st, or, ot, ze, si) return(or*ze) for age-step-based fer-
tility.

genGrowTree 13

childTraits An optional function (default = NULL) that generates two trait values for the
children emerging from a speciation event based on various factors.
See childRates for available parameters (except ct) and explanations. Not
necessary; is only applied if not NULL.
Example:
function (sr, st, pr, pt, ze, si) return(c(0, 0)) for age.

otherTraits An optional function (default = NULL) that generates a new trait value for all
leaves not affected by the speciation event (all but parent and children) based on
various factors.
See otherRates for available parameters and explanations.
Not necessary; is only applied if not NULL.
Example:
function (sr, st, or, ot, ze, si) return(ot+1) for discrete age (age in time
steps).

use_built_in Optional (default = NULL): Character specifying which of the already imple-
mented models should be used. Overwrites childRates, otherRates, childTraits,
and otherTraits.
Here is a list of available models with their (abbreviated) underlying functions
given in parentheses (in order childRates, otherRates; then childTraits
and otherTraits if necessary):

• "DCO_sym": Symmetric direct-children-only, ZETA>0 (c(sr ze, sr ze), sr)

• "DCO_asym": Asymmetric direct-children-only, ZETA>0 (c(sz, pr), sr)

• "IF_sym": Symmetric inherited fertility, ZETA>0 (c(pr ze, pr ze), or)

• "IF_asym": Asymmetric inherited fertility, ZETA>0 (c(pr ze, pr), or)

• "IF-diff": Unequal fertility inheritance, ZETA>=1 (c(2 pr ze / (ze+1), 2 pr /
(ze+1)), or)

• "biased": Biased speciation, ZETA >=0 and <=1 (c(pr ze, pr (1-ze)), or)

• "ASB": Age-step-based fertility, ZETA>0 (c(sr, sr), or ze)

• "simpleBrown_sym": Symmetric simple Brownian, SIGMA> =0 (c(max{pr+
rnorm(1, mean=0, sd=si),1e-100}, max{pr+ rnorm(1, mean=0, sd=si),1e-
100}), or)

• "simpleBrown_asym": Asymmetric simple Brownian, SIGMA>=0 (c(max{pr+
rnorm(1, mean=0, sd=si),1e-100}, pr), or)

• "lin-Brown_sym": Sym. punctuated(-intermittent) linear-Brownian, SIGMA
vector with two values >=0
(c(10^(log(ct[1])+ rnorm(1, mean=0, sd=si[1])), 10^(log(ct[2])+ rnorm(1,

14 genGrowTree

mean=0, sd=si[1]))), or;
c(max{pt + rnorm(1, mean=0, sd=si[2]),1e-100}, max{pt + rnorm(1, mean=0,
sd=si[2]),1e-100}), ot)

• "lin-Brown_asym": Asym. punctuated(-intermittent) linear-Brownian, SIGMA
vector with two values >=0
(c(10^(log(ct[1])+ rnorm(1, mean=0, sd=si[1])), pr), or;
c(max{pt + rnorm(1, mean=0, sd=si[2]),1e-100}, pt, ot)

• "lin-Brown-bounded_sym": Bounded sym. punctuated(-intermittent) linear-
Brownian, SIGMA vector with two values >=0, STARTING_TRAIT is automat-
ically set to 10
(c(10^(log(ct[1])+ rnorm(1, mean=0, sd=si[1])), 10^(log(ct[2])+ rnorm(1,
mean=0, sd=si[1]))), or;
c(min{max{pt + rnorm(1, mean=0, sd=si[2]),1e-100},20}, min{max{pt +
rnorm(1, mean=0, sd=si[2]),1e-100},20}), ot)

• "lin-Brown-bounded_asym": Bounded asym. punctuated(-intermittent) linear-
Brownian, SIGMA vector with two values >=0
(c(10^(log(ct[1])+ rnorm(1, mean=0, sd=si[1])), pr), or;
c(min{max{pt + rnorm(1, mean=0, sd=si[2]),1e-100},20}, pt), ot)

• "log-Brown_sym": Sym. punctuated(-intermittent) log-Brownian, SIGMA
vector with two values >=0
(c(10^(log(ct[1])+ rnorm(1, mean=0, sd=si[1])), 10^(log(ct[2])+ rnorm(1,
mean=0, sd=si[1]))), or;
c(10^(log(pt)+ rnorm(1, mean=0, sd=si[2])), 10^(log(pt)+ rnorm(1, mean=0,
sd=si[2]))), ot)

• "log-Brown_asym": Asym. punctuated(-intermittent) log-Brownian, SIGMA
vector with two values >=0
(c(10^(log(ct[1])+ rnorm(1, mean=0, sd=si[1])), pr), or;
10^(c(log(pt)+ rnorm(1, mean=0, sd=si[2])), pt), ot)

Value

genGrowTree A single tree of class phylo is returned.

References

• S. J. Kersting, K. Wicke, and M. Fischer. Tree balance in phylogenetic models. arXiv:2406.05185,
2024.

• S. J. Kersting, K. Wicke, and M. Fischer. Tree balance in phylogenetic models: Supplementary
material. https://tinyurl.com/278cwdh8, 2024.

• M. G. B. Blum and O. Francois. On statistical tests of phylogenetic tree imbalance: the Sackin
and other indices revisited. Mathematical Biosciences, 195(2):141–153, 2005.

• S. B. Heard. Patterns in phylogenetic tree balance with variable and evolving speciation rates.
Evolution, 50(6):2141–2148, 1996.

genMBTree 15

• S. J. Kersting. Genetic programming as a means for generating improved tree balance indices
(Master’s thesis, University of Greifswald), 2020.

• M. Kirkpatrick and M. Slatkin. Searching for evolutionary patterns in the shape of a phyloge-
netic tree. Evolution, 47(4):1171–1181, 1993.

Examples

genGrowTree(n = 5, use_built_in = "IF_sym", ZETA = 2)

genMBTree Generation of the maximally balanced tree

Description

genMBTree - Generates the rooted binary maximally balanced tree in phylo format with the given
number of n leaves.

Usage

genMBTree(n)

Arguments

n Integer value that specifies the desired number of leaves, i.e., vertices with in-
degree 1 and out-degree 0.
Due to the restrictions of the phylo or multiphylo format, the number of leaves
must be at least 2 since there must be at least one edge.

Value

genMBTree A single tree of class phylo is returned.

References

• S. J. Kersting, K. Wicke, and M. Fischer. Tree balance in phylogenetic models. arXiv:2406.05185,
2024.

• S. J. Kersting, K. Wicke, and M. Fischer. Tree balance in phylogenetic models: Supplementary
material. https://tinyurl.com/278cwdh8, 2024.

Examples

genMBTree(n = 6)

16 genPDATree

genPDATree Generation of rooted binary trees under the PDA model

Description

genPDATree - Generates a rooted binary tree in phylo format with the given number of n leaves
under the proportional-to-distinguishable-arrangements model. Given n, all phylogenies (trees with
labeled leaves) with n leaves are equiprobable under the PDA.

Usage

genPDATree(n)

Arguments

n Integer value that specifies the desired number of leaves, i.e., vertices with in-
degree 1 and out-degree 0.
Due to the restrictions of the phylo or multiphylo format, the number of leaves
must be at least 2 since there must be at least one edge.

Value

genPDATree A single tree of class phylo is returned.

References

• This function uses the rtopology(..., rooted = T) function of the ape package (E. Paradis,
K. Schliep. “ape 5.0: an environment for modern phylogenetics and evolutionary analyses in
R.” Bioinformatics, 35, 526-528, 2019).

• D. E. Rosen. Vicariant patterns and historical explanation in biogeography. Systematic Zool-
ogy, 27(2):159, 1978.

Examples

genPDATree(n = 5)

genTrees 17

genTrees Generation of rooted binary trees under a given tree model

Description

genTrees - Is a wrapper function that generates Ntrees-many rooted binary trees with the given
number of n leaves under any tree model tm contained in this package (more details on the available
models are given in the parameter information for tm).

Usage

genTrees(n, Ntrees = 1L, tm)

Arguments

n Integer value that specifies the desired number of leaves, i.e., vertices with in-
degree 1 and out-degree 0.
Due to the restrictions of the phylo or multiPhylo format, the number of leaves
must be at least 2 since there must be at least one edge.

Ntrees Integer value (default = 1) that specifies the desired number of generated trees.

tm Character or list specifying the tree model under which the trees should be gen-
erated as well as their parameters. Available are:

• "yule" - Yule model.

• "pda" - PDA model.

• "etm" - ETM.

• list("aldous", BETA) - Aldous’ beta splitting model with parameter BETA
>= -2.

• list("ford", ALPHA) - Ford’s alpha model with parameter ALPHA >= 0
and <= 1.

• list("alt-birth-death", BIRTHRATE, DEATHRATE) or
list("alt-birth-death", BIRTHRATE, DEATHRATE, TRIES) - Alternative
birth-death model with parameters BIRTHRATE >0 and DEATHRATE>= 0.

• list("density", BIRTHRATE, EQUILIB) or
list("density", BIRTHRATE, EQUILIB, TRIES, TIMEperTRY) - Density
dependent model with parameters BIRTHRATE >0 and EQULIB>= 1.

18 genTrees

• list("BiSSE", BIRTHRATES, DEATHRATES, TRANSRATES) or
list("BiSSE", BIRTHRATES, DEATHRATES, TRANSRATES, TRIES, TIMEperTRY)
- BiSSE model with parameters BIRTHRATES (vector with 2 values >=0, one
value >0), DEATHRATES (vector with 2 values >=0), and TRANSRATES (vec-
tor with 2 values >=0, one value >0).

• list("DCO_sym", ZETA) or
list("DCO_sym", ZETA, STARTING_RATE) - Symmetric direct-children-only
with parameter ZETA > 0 and optionally STARTING_RATE > 0 (default = 1).

• list("DCO_asym", ZETA) or
list("DCO_asym", ZETA, STARTING_RATE) - Asymmetric direct-children-
only with parameter ZETA > 0 and optionally STARTING_RATE > 0 (default
= 1).

• list("IF_sym", ZETA) or
list("IF_sym", ZETA, STARTING_RATE) - Symmetric inherited fertility
with parameter ZETA > 0 and optionally STARTING_RATE > 0 (default = 1).

• list("IF_asym", ZETA) or
list("IF_asym", ZETA, STARTING_RATE) - Asymmetric inherited fertil-
ity with parameter ZETA > 0 and optionally STARTING_RATE > 0 (default =
1).

• list("IF-diff", ZETA) or
list("IF-diff", ZETA, STARTING_RATE) - Unequal fertility inheritance
with parameter ZETA >= 1 and optionally STARTING_RATE > 0 (default = 1).

• list("biased", ZETA) or
list("biased", ZETA, STARTING_RATE) - Biased speciation with param-
eter ZETA >=0 and <=1 and optionally STARTING_RATE > 0 (default = 1).

• list("ASB", ZETA) or
list("ASB", ZETA, STARTING_RATE) - Age-step-based fertility with pa-
rameter ZETA > 0 and optionally STARTING_RATE > 0 (default = 1).

• list("simpleBrown_sym", SIGMA) or
list("simpleBrown_sym", SIGMA, STARTING_RATE) - Symmetric simple
Brownian with parameter SIGMA >= 0 and optionally STARTING_RATE > 0
(default = 1).

• list("simpleBrown_asym", SIGMA) or
list("simpleBrown_asym", SIGMA, STARTING_RATE) - Asymmetric sim-
ple Brownian with parameter SIGMA >= 0 and optionally STARTING_RATE >
0 (default = 1).

• list("lin-Brown_sym", SIGMA) or
list("lin-Brown_sym", SIGMA, STARTING_RATE, STARTING_TRAIT) - Sym.

genTrees 19

punctuated(-intermittent) linear-Brownian with parameter SIGMA (vector with
2 values >=0) and optionally STARTING_RATE > 0 (default = 1) and STARTING_TRAIT
(default = 10).

• list("lin-Brown_asym", SIGMA) or
list("lin-Brown_asym", SIGMA, STARTING_RATE, STARTING_TRAIT) -
Asym. punctuated(-intermittent) linear-Brownian with parameter SIGMA
(vector with 2 values >=0) and optionally STARTING_RATE > 0 (default =
1) and STARTING_TRAIT (default = 10).

• list("lin-Brown-bounded_sym", SIGMA) or
list("lin-Brown-bounded_sym", SIGMA, STARTING_RATE, STARTING_TRAIT)
- Bounded sym. punctuated(-intermittent) linear-Brownian with parameter
SIGMA (vector with 2 values >=0) and optionally STARTING_RATE > 0 (de-
fault = 1) and STARTING_TRAIT (default = 10).

• list("lin-Brown-bounded_asym", SIGMA) or
list("lin-Brown-bounded_asym", SIGMA, STARTING_RATE, STARTING_TRAIT)
- Bounded asym. punctuated(-intermittent) linear-Brownian with parame-
ter SIGMA (vector with 2 values >=0) and optionally STARTING_RATE > 0
(default = 1) and STARTING_TRAIT (default = 10).

• list("log-Brown_sym", SIGMA) or
list("log-Brown_sym", SIGMA, STARTING_RATE, STARTING_TRAIT) - Sym.
punctuated(-intermittent) log-Brownian with parameter SIGMA (vector with
2 values >=0) and optionally STARTING_RATE > 0 (default = 1) and STARTING_TRAIT
(default = 10).

• list("log-Brown_asym", SIGMA) or
list("log-Brown_asym", SIGMA, STARTING_RATE, STARTING_TRAIT) -
Asym. punctuated(-intermittent) log-Brownian with parameter SIGMA (vec-
tor with 2 values >=0) and optionally STARTING_RATE > 0 (default = 1) and
STARTING_TRAIT (default = 10).

More information on each model and their parameters can be found in the
description of each model, accessible with ?genYuleTree, ?genPDATree,
?genETMTree, ?genAldousBetaTree, ?genFordsAlphaTree,
?genBirthDeathTree, ?genAltBirthDeathTree, ?genGrowTree.

Value

genTrees If Ntrees is 1, then a single tree of class phylo is returned. If Ntrees is larger than 1, a
list of class multiPhylo containing the trees of class phylo is returned.

References

• S. J. Kersting, K. Wicke, and M. Fischer. Tree balance in phylogenetic models. arXiv:2406.05185,
2024.

20 genYuleTree

• S. J. Kersting, K. Wicke, and M. Fischer. Tree balance in phylogenetic models: Supplementary
material. https://tinyurl.com/278cwdh8, 2024.

Examples

genTrees(n = 5, Ntrees = 2, tm = list("aldous", 1))
genTrees(n = 5, tm = "pda")

genYuleTree Generation of rooted binary trees under the Yule model

Description

genYuleTree - Generates a rooted binary tree in phylo format with the given number of n leaves
under the Yule model. The Yule process is a simple birth-process in which all species have the same
speciation rate.

Usage

genYuleTree(n)

Arguments

n Integer value that specifies the desired number of leaves, i.e., vertices with in-
degree 1 and out-degree 0.
Due to the restrictions of the phylo or multiphylo format, the number of leaves
must be at least 2 since there must be at least one edge.

Value

genYuleTree A single tree of class phylo is returned.

References

• This function uses the rtree function of the ape package (E. Paradis, K. Schliep. “ape 5.0: an
environment for modern phylogenetics and evolutionary analyses in R.” Bioinformatics, 35,
526-528, 2019).

• G. U. Yule. A mathematical theory of evolution, based on the conclusions of Dr. J. C. Willis,
F. R. S. Philosophical Transactions of the Royal Society of London. Series B, Containing
Papers of a Biological Character, 213(402-410):21–87, 1925.

• E. F. Harding. The probabilities of rooted tree-shapes generated by random bifurcation. Ad-
vances in Applied Probability, 3(1):44–77, 1971.

Examples

genYuleTree(n = 5)

getAccRegion 21

getAccRegion Functions for computing the region of acceptance

Description

getAccRegion - Computes the region of acceptance based on quantiles for a specified level of
significance and method.

getAccRegion_sampled - Computes a sampling-based region of acceptance for the given null
model based on quantiles for a specified level of significance and method.

getAccRegion_exact - Computes the exact region of acceptance for the given null model based on
quantiles for a specified level of significance and method. Currently, this is only implemented for
null_model = "yule" or "pda", and n<=20.

computeAccRegion - Computes the bounds of the region of acceptance given the empirical dis-
tribution function (specified by the unique values and their probabilities under the null model) for
specified cut-offs (e.g., 0.025 on both sides for a symmetric two-tailed test). For values strictly
outside of the interval the null hypothesis is rejected.
This function also computes the probabilities to reject the null hypothesis if the value equals the
lower or upper bound of the region of acceptance. This probability is 0 for correction method
"none" and for "small-sample" it ensures that the probability of rejection exactly corresponds with
the specified cut-offs.

Usage

getAccRegion(
tss,
null_model = "yule",
n,
distribs = "exact_if_possible",
N_null = 10000L,
N_alt = 1000L,
N_intervals = 1000L,
test_type = "two-tailed",
correction = "small-sample",
sig_lvl = 0.05

)

getAccRegion_sampled(
tss,
null_model = "yule",
n,
N_null,
N_alt = 1000L,
N_intervals = 1000L,
test_type = "two-tailed",
correction = "small-sample",
sig_lvl = 0.05

22 getAccRegion

)

getAccRegion_exact(
tss,
null_model = "yule",
n,
N_alt = 1000L,
N_intervals = 1000L,
test_type = "two-tailed",
correction = "small-sample",
sig_lvl = 0.05

)

computeAccRegion(
unique_null_vals,
unique_null_probs,
correction,
cutoff_left,
cutoff_right

)

Arguments

tss Vector containing the names (as character) of the tree shape statistics that should
be compared. You may either use the short names provided in tssInfo to use
the already included TSS, or use the name of a list object containing similar in-
formation as the entries in tssInfo. Example:
Use "new_tss" as the name for the list object new_tss containing at least the
function new_tss$func = function(tree){...}, and optionally also the in-
formation new_tss$short, new_tss$simple, new_tss$name, new_tss$type,
new_tss$only_binary, and new_tss$safe_n.

null_model The null model that is to be used to determine the power of the tree shape statis-
tics. In general, it must be a function that produces rooted binary trees in phylo
format.
If the respective model is included in this package, then specify the model and
its parameters by using a character or list. Available are all options listed under
parameter tm in the documentation of function genTrees (type ?genTrees).
If you want to include your own tree model, then use the name of a list object
containing the function (with the two input parameters n and Ntrees). Example:
Use "new_tm" for the list object new_tm <- list(func = function(n, Ntrees){...}).

n Integer value that specifies the desired number of leaves, i.e., vertices with in-
degree 1 and out-degree 0.

distribs Determines how the distributions (and with that the bounds of the critical re-
gion) are computed. Available are:

• "exact_if_possible" (default): Tries to compute the exact distribution un-
der the null model if possible. Currently, this is only implemented for
null_model = "yule", "pda", or "etm", and n<=20. In all other cases the

getAccRegion 23

distribution is approximated by sampling N_null many trees under the null
model as in the option "sampled" below.

• "sampled": N_null many trees are sampled under the null model to approx-
imate the distribution.

N_null Sample size (integer >=10) if distributions are sampled (default = 10000L).

N_alt Sample size (integer >=10) for the alternative models to estimate the power (de-
fault = 1000L). Only needed here if the test_type is "two-tailed-unbiased".

N_intervals Number (integer >=3, default = 1000L) of different quantile/cut-off pairs inves-
tigated as potential bounds of the region of acceptance. This parameter is only
necessary if the test_type is "two-tailed-unbiased".

test_type Determines the method. Available are:

• "two-tailed" (default): The lower and upper bound of the region of accep-
tance are determined based on the (empirical) distribution function such
that P(TSS < lower bound) <= sig_lvl/2 and P(TSS > upper bound) <=
sig_lvl/2. See parameter correction for specifying how conservative the
test should be: the null hypothesis can either be rejected only if the values
are strictly outside of this region of acceptance (can be too conservative)
or it can also be rejected (with certain probabilities) if the value equals the
lower or upper bound.

• "two-tailed-unbiased": Experimental - Use with caution!
The region of acceptance is optimized to yield an unbiased test, i.e., a test
that identifies non-null models with a probability of at least sig_lvl. The
region of acceptance is determined similar to the default method. However,
it need not be symmetrical, i.e., not necessarily cutting off sig_lvl/2 on
both sides. Also see parameter correction for specifying how conserva-
tive the test should be.

correction Specifies the desired correction method. Available are:

• "small-sample" (default): This method tries to ensure that the critical re-
gion, i.e., the range of values for which the null hypothesis is rejected, is as
close to sig_lvl as possible (compared with "none" below, which can be
too conservative). The idea is that the null hypothesis is also rejected with
certain probabilities if the value matches a bound of the region of accep-
tance.

• "none": No correction method is applied. With that the test might be
slightly too conservative as the null hypothesis is maintained if the values
are >= the lower and <= the upper bound.

sig_lvl Level of significance (default=0.05, must be >0 and <1).

unique_null_vals

Numeric vector containing all the unique values under the null model.

24 getPowerMultTSS

unique_null_probs

Numeric vector containing the corresponding probabilities of the unique values
under the null model.

cutoff_left Numeric value (>=0, <1) specifying the cut-off of the distribution for the lower
bound of the region of acceptance. The sum of the two cut-offs must be <1.

cutoff_right Numeric value (>=0, <1) specifying the cut-off of the distribution for the upper
bound of the region of acceptance. The sum of the two cut-offs must be <1.

Value

getAccRegion Numeric matrix (one row per TSS) with four columns: The first two columns con-
tain the interval limits of the region of acceptance, i.e., we reject the null hypothesis for values
strictly outside of this interval. The third and fourth columns contain the probabilities to reject the
null hypothesis if values equal the lower or upper bound, respectively.

getAccRegion_sampled Numeric matrix (one row per TSS) with four columns - similar as getAccRegion.

getAccRegion_exact Numeric matrix (one row per TSS) with four columns - similar as getAccRegion.

computeAccRegion Numeric vector with four columns - similar as getAccRegion.

Examples

getAccRegion(tss = c("Sackin", "Colless", "B1I"), n = 6L)
getAccRegion(tss = c("Sackin", "Colless", "B1I"), n = 6L, null_model = "etm",

N_null = 20L, correction = "none", distribs = "sampled")
getAccRegion(tss = c("Sackin", "Colless", "B1I"), n = 6L, N_null = 20L,

test_type = "two-tailed-unbiased", N_intervals = 5L,
N_alt = 10L)

getAccRegion_sampled(tss = c("Sackin", "Colless", "B1I"), n = 6L,
N_null = 20L, correction = "none")

getAccRegion_exact(tss = c("Sackin", "Colless", "B1I"),
null_model = "etm", n = 8L)

computeAccRegion(unique_null_vals = c(1,2,3,4,5),
unique_null_probs = c(0.1,0.4,0.1,0.2,0.2),
correction = "small-sample",
cutoff_left = 0.15, cutoff_right = 0.15)

getPowerMultTSS Function for computing the power given the region of acceptance

Description

getPowerMultTSS - Computes the power of one or multiple TSS by calculating the proportion of
values outside the region of acceptance for a single alternative model.

Usage

getPowerMultTSS(accept_regions, alt_data)

getTSSdata 25

Arguments

accept_regions Numeric matrix (one row per TSS) with two or four columns: The first two
columns contain the interval limits of the region of acceptance, i.e., we reject the
null hypothesis for values strictly outside of this interval. The third and fourth
columns contain the probabilities to reject the null hypothesis if values equal the
lower or upper bound, respectively. If the last two columns are missing they are
interpreted as zeroes. See return value of getAccRegion().

alt_data Numeric matrix (one row per TSS) with values under the alternative model. If
there is only one TSS, then it can be a simple vector of values instead (returns a
single unnamed value).

Value

getPowerMultTSS A vector containing the power regarding the given TSS (retains row names of
accept_regions).

Examples

Example with small data (with/without third and fourth column):
getPowerMultTSS(accept_regions = c(2,3, 0,0), alt_data = c(1,2,4,5))
getPowerMultTSS(accept_regions = c(2,3, 0.5,1), alt_data = c(1,2,4,5))
Example with multiple rows/TSS:
getPowerMultTSS(accept_regions = matrix(c(2,3,0,0,

20,30,0.5,0.5),
nrow = 2, byrow = TRUE,
dimnames = list(c("TSS1", "TSS2"), NULL)),

alt_data = matrix(c(1,2,3,4,
10,20,30,40),

nrow = 2, byrow = TRUE,
dimnames = list(c("TSS1", "TSS2"), NULL)))

Example with generated TSS data:
getPowerMultTSS(accept_regions = getAccRegion(tss = c("Colless","SNI"),

n = 6L),
alt_data = getTSSdata(tss = c("Colless", "SNI"), n = 6L,

Ntrees = 20L, tm = list("aldous", -1)))

getTSSdata Functions for generating the TSS data under a tree model

Description

getTSSdata - Compute the tree shape statistics of trees generated under a tree model for each given
TSS.

getTSSdata_trees - Compute the tree shape statistics for each given TSS and all given trees.

26 getTSSdata

Usage

getTSSdata(tss, n, Ntrees = 1L, tm)

getTSSdata_trees(tss, treeList)

Arguments

tss Vector containing the names (as character) of the tree shape statistics that should
be compared. You may either use the short names provided in tssInfo to use
the already included TSS, or use the name of a list object containing similar in-
formation as the entries in tssInfo. Example:
Use "new_tss" as the name for the list object new_tss containing at least the
function new_tss$func = function(tree){...}, and optionally also the in-
formation new_tss$short, new_tss$simple, new_tss$name, new_tss$type,
new_tss$only_binary, and new_tss$safe_n.

n Integer value that specifies the desired number of leaves, i.e., vertices with in-
degree 1 and out-degree 0.

Ntrees Integer value (default = 1) that specifies the desired number of generated trees.

tm If the respective model is included in this package, then specify the model and
its parameters by using a character or list. Available are all options listed under
parameter tm in the documentation of function genTrees (type ?genTrees).
If you want to include your own tree model, then use the name of a list object
containing the function (with the two input parameters n and Ntrees). Example:
Use "new_tm" for the list object new_tm <- list(func = function(n, Ntrees){...}).

treeList List of trees of class multiphylo.

Value

getTSSdata Numeric matrix of TSS values (one row per TSS).

getTSSdata_trees Numeric matrix of TSS values (one row per TSS).

Examples

Example using tree models and TSS included in this package:
getTSSdata(tss = c("Colless", "Sackin"), n = 5L, Ntrees = 3L,

tm = list("aldous", -1))
Example using a "new" tree model and a "new" TSS provided by the user:
my_aldous <- list(func = function(n, Ntrees){

trees <- lapply(1:Ntrees,
function(x){genAldousBetaTree(n = n, BETA =5L)})

attr(trees, "class") <- "multiPhylo"
return(trees)})

my_avd <- list(func = treebalance::avgVertDep, short = "My AVD")
getTSSdata(tss = c("Colless", "my_avd"), n = 5L, Ntrees = 3L,

tm = "my_aldous")
Example using TSS provided in tssInfo.
getTSSdata_trees(tss = c("Colless", "Sackin"),

treeList = genTrees(n = 5L, Ntrees = 3L, tm = "yule"))

getTSSnames 27

Example using a "new" TSS provided by the user.
my_avd <- list(func = treebalance::avgVertDep, short = "My AVD")
getTSSdata_trees(tss = c("Colless", "my_avd"),

treeList = genTrees(n = 5L, Ntrees = 3L,
tm = list("IF_sym", 2)))

getTSSnames Get information on included tree shape statistics

Description

getTSSnames - Returns the full names (character/expression) of the TSS.

getTSSsimple - Returns the simple names (character/expression) of the TSS.

getTSScolors - Returns the colors of the TSS.

getTSSsafe_n - Returns the ranges of n that can be safely used.

getTSStype - Returns the types of the TSS, i.e., whether they are balance or imbalance indices, or
simple tree shape statistics.

getTSSonly_bin - Returns TRUE/FALSE vector: TRUE if TSS is only for binary trees and FALSE
otherwise.

getAllTSS - Returns the short names of all TSS that are safe to use for the specified n, have one of
the specified types and can be applied to (non-)binary trees (not_only_bin).

Usage

getTSSnames(tss_shorts)

getTSSsimple(tss_shorts)

getTSScolors(tss_shorts)

getTSSsafe_n(tss_shorts)

getTSStype(tss_shorts)

getTSSonly_bin(tss_shorts)

getAllTSS(n = NULL, not_only_bin = FALSE, types = c("tss", "bali", "imbali"))

Arguments

tss_shorts Vector of short names (characters) of TSS contained in tssInfo.

n Integer value or vector of integer values, that specifies the number(s) of leaves.
If NULL (default), then getAllSafeTSS returns the short names of all TSS con-
tained in tssInfo.

28 plot.poweRbal_data

not_only_bin Select TRUE if you also want to analyze non-binary trees and therefore want
to filter out any TSS that only work on binary trees. Otherwise, select FALSE
(default) if all TSS are applicable.

types Character vector, that specifies all permissible TSS types. The vector may con-
tain a subset of c("tss", "bali", "imbali") to indicate if balance indices,
imbalance indices or mere TSS should be included. By default all types are
permissible.

Value

getTSSnames Vector of characters/expressions.

getTSSsimple Vector of characters/expressions.

getTSScolors Vector of characters (color names).

getTSSsafe_n Numeric matrix, one row per TSS and two columns with lower and upper limit.

getTSStype Vector of characters (types as factors).

getTSSonly_bin Logical vector.

getAllTSS Character vector of short names of TSS contained in tssInfo.

Examples

getTSSnames(tss_shorts = c("Sackin", "Colless", "B1I"))
getTSSsimple(tss_shorts = c("Sackin", "Colless", "B1I"))
getTSScolors(tss_shorts = c("Sackin", "Colless", "B1I"))
getTSSsafe_n(tss_shorts = c("Sackin", "Colless", "B1I"))
getTSStype(tss_shorts = c("Sackin", "Colless", "B1I"))
getTSSonly_bin(tss_shorts = c("Sackin", "Colless", "B1I"))
getAllTSS(n = c(3,30))

plot.poweRbal_data Plot method for poweRbal_data objects

Description

This function generates a plot for an object of class poweRbal_data. Creates a bar plot if alt_model_params
and x$alt_model_params = NULL and a line plot otherwise if this information is given.

Usage

S3 method for class 'poweRbal_data'
plot(
x,
tss_names = NULL,
tss_colors = NULL,
sig_lvl = NULL,
legend_pos = "topright",
alt_model_names = NULL,

plot.poweRbal_data 29

alt_model_params = NULL,
tss_ltys = NULL,
alt_model_family = NULL,
...

)

Arguments

x An object of class poweRbal_data, which is a list containing one mandatory
element, power, and several optional elements:

• power: A numeric matrix containing the power values (one row per TSS
and one column per alternative model).

• accept_regions: A numeric matrix containing information on the region
of acceptance (one row per TSS and four columns).

• CIradius: A numeric matrix containing the confidence interval radii (one
row per TSS and one column per alternative model).

• actual_sample_sizes: A numeric vector containing the actual sample
sizes under each alternative model, as some models do not always success-
fully generate trees.

• alt_model_params: A numeric vector (one element per alternative model)
containing the values of a tree model parameter. This is only suitable if the
alternative models all belong to the same tree model family and differ only
in one parameter.

• Other input data from the powerComp() function, such as tss, null_model,
alt_models, n, distribs, N_null, N_alt, test_type, correction, and
sig_lvl.

tss_names Vector of characters/expression of the TSS names (default = NULL). If none are
provided, x$tss is used for the names of the TSS if existent and otherwise the
row names of x$power are used.

tss_colors Vector of colors for the TSS (default = NULL).

sig_lvl Level of significance (default=0.05, must be >0 and <1) depicted as a dashed
horizontal line. Not depicted if set to NULL.

legend_pos Character specifying where the legend is displayed (default = "topright"). No
legend is displayed if set to NULL.

alt_model_names

Vector of characters/expression of the model names (default = NULL). If none
are provided, the column names of x$power are used as names for the models.
Only used if alt_model_params and x$alt_model_params = NULL.

30 powerComp

alt_model_params

Numeric vector containing the parameter values of the representatives of the tree
model (default = NULL). If none are provided, x$alt_model_params is used if
existent.

tss_ltys Vector of line types for the TSS (default = NULL).
Not used if alt_model_params and x$alt_model_params = NULL.

alt_model_family

Vector of characters/expressions of the name of the tree model family and of
the parameter (default = NULL), e.g. c("Aldous\'", expression(beta)). If
none is provided, the first column name of x$power is used.
Not used if alt_model_params and x$alt_model_params = NULL.

... Additional arguments passed to the plot function.

Value

plot.poweRbal_data No return value, as the primary purpose of this function is the side effect
(plotting).

Examples

Plotting a 'poweRbal_data' object:
pc1 <- powerComp(tss = c("Sackin", "Colless", "B1I"),

alt_models = list(list("aldous",-1), "pda", "etm"),
n = 8L, N_null = 40L, N_alt = 20L)

plot(pc1)
Plotting a power comparison with a tree model family
pc2 <- powerComp(tss = c("Sackin", "Colless", "B1I"),

alt_models = list(list("aldous", -1.5),
list("aldous", -1),list("aldous", -0.5),
list("aldous", 0),list("aldous", 0.5)),

n=20L, N_null = 20L, N_alt = 10L, distribs = "sampled")
Create a bar plot or ...
plot(pc2)
... a line plot by specifying 'alt_model_params'.
plot(pc2, alt_model_params = c(-1.5,-1,-0.5,0,0.5),

tss_names = getTSSnames(c("Sackin", "Colless", "B1I")),
tss_colors = getTSScolors(c("Sackin", "Colless", "B1I")),
alt_model_family = c("Aldous\'", expression(beta)),
ylim = c(0,1))

powerComp Comparison of the power of TSS under different models

Description

powerComp - Compare the power of a set of TSS to identify trees generated under different alterna-
tive models given a null model.

powerComp_RegAcc - Compare the power of a set of TSS to identify trees generated under different
alternative models given a the region(s) of acceptance.

powerComp 31

Usage

powerComp(
tss,
null_model = "yule",
alt_models,
n,
distribs = "exact_if_possible",
N_null = 10000L,
N_alt = 1000L,
test_type = "two-tailed",
correction = "small-sample",
sig_lvl = 0.05

)

powerComp_RegAcc(
tss,
accept_regions,
null_model,
alt_models,
n,
distribs = "exact_if_possible",
N_null = 10000L,
N_alt = 1000L,
test_type = "two-tailed",
correction = "small-sample",
sig_lvl = 0.05

)

Arguments

tss Vector containing the names (as character) of the tree shape statistics that should
be compared. You may either use the short names provided in tssInfo to use
the already included TSS, or use the name of a list object containing similar in-
formation as the entries in tssInfo. Example:
Use "new_tss" as the name for the list object new_tss containing at least the
function new_tss$func = function(tree){...}, and optionally also the in-
formation new_tss$short, new_tss$simple, new_tss$name, new_tss$type,
new_tss$only_binary, and new_tss$safe_n.

null_model The null model that is to be used to determine the power of the tree shape statis-
tics. In general, it must be a function that produces rooted binary trees in phylo
format.
If the respective model is included in this package, then specify the model and
its parameters by using a character or list. Available are all options listed under
parameter tm in the documentation of function genTrees (type ?genTrees).
If you want to include your own tree model, then use the name of a list object
containing the function (dependent on one parameter n). Example:
Use "new_tm" for the list object
new_tm <- list(func = function(n, Ntrees){...}).

32 powerComp

alt_models List containing the alternative models that are to be used to determine the power
of the tree shape statistics. Functions that produce rooted binary trees in phylo
format. The information of each single model must be in the format described
for null_model.

n Integer value that specifies the desired number of leaves, i.e., vertices with in-
degree 1 and out-degree 0.

distribs Determines how the distributions (and with that the bounds of the critical re-
gion) are computed. Available are:

• "exact_if_possible" (default): Tries to compute the exact distribution un-
der the null model if possible. Currently, this is only implemented for
null_model = "yule", "pda", or "etm", and n<=20. In all other cases the
distribution is approximated by sampling N_null many trees under the null
model as in the option "sampled" below.

• "sampled": N_null many trees are sampled under the null model to approx-
imate the distribution.

N_null Sample size (integer >=10) if distributions are sampled (default = 10000L).

N_alt Sample size (integer >=10) for the alternative models to estimate the power (de-
fault = 1000L).

test_type Determines the method. Available are:

• "two-tailed" (default): The lower and upper bound of the region of accep-
tance are determined based on the (empirical) distribution function such
that P(TSS < lower bound) <= sig_lvl/2 and P(TSS > upper bound) <=
sig_lvl/2. See parameter correction for specifying how conservative the
test should be: the null hypothesis can either be rejected only if the values
are strictly outside of this region of acceptance (can be too conservative)
or it can also be rejected (with certain probabilities) if the value equals the
lower or upper bound.

• "two-tailed-unbiased": Experimental - Use with caution!
The region of acceptance is optimized to yield an unbiased test, i.e., a test
that identifies non-null models with a probability of at least sig_lvl. The
region of acceptance is determined similar to the default method. However,
it need not be symmetrical, i.e., not necessarily cutting off sig_lvl/2 on
both sides. Also see parameter correction for specifying how conserva-
tive the test should be.

correction Specifies the desired correction method. Available are:

• "small-sample" (default): This method tries to ensure that the critical re-
gion, i.e. the range of values for which the null hypothesis is rejected, is as
close to sig_lvl as possible (compared with "none" below, which can be
too conservative). The idea is that the null hypothesis is also rejected with
certain probabilities if the value matches the value of a quantile.

powerComp 33

• "none": No correction method is applied. With that the test might be
slightly too conservative as the null hypothesis is maintained if the values
is >= the lower and <= the upper quantile.

sig_lvl Level of significance (default = 0.05, must be >0 and <1).
accept_regions Numeric matrix (one row per TSS) with two or four columns: The first two

columns contain the interval limits of the region of acceptance, i.e., we reject the
null hypothesis for values strictly outside of this interval. The third and fourth
columns contain the probabilities to reject the null hypothesis if values equal the
lower or upper bound, respectively. If the last two columns are missing they are
interpreted as zeroes. See return value of getAccRegion().

Value

powerComp Returns an object of class ’poweRbal_data’ which is a list containing the following ob-
jects:

• power: Numeric matrix containing the power values (one row per TSS and one column per
alternative model).

• accept_regions: Numeric matrix containing the information on the region of acceptance (one
row per TSS and four columns).

• CIradius: Numeric matrix containing the confidence interval radii (one row per TSS and one
column per alternative model).

• actual_sample_sizes: Numeric vector containing the actual sample sizes under each alterna-
tive model as some models do not always successfully generate trees.

• other input data.

powerComp_RegAcc Returns an object of class ’poweRbal_data’ similar to powerComp.

References

• S. J. Kersting, K. Wicke, and M. Fischer. Tree balance in phylogenetic models. arXiv:2406.05185,
2024.

Examples

powerComp(tss = c("Sackin", "Colless", "B1I"),
alt_models = list(list("aldous",-1), "pda", "etm"), n = 10L,
distribs = "sampled", N_null = 40L, N_alt = 20L)

powerComp_RegAcc(tss = c("Sackin", "Colless", "B1I"),
accept_regions = getAccRegion(tss = c("Sackin", "Colless", "B1I"),

n = 6L, null_model = "etm",
N_null = 20L, distribs = "sampled"),

null_model = "etm", distribs = "sampled",
alt_models = list(list("aldous",-1), "pda", "yule"), n = 6L,
N_null = 20L, N_alt = 20L)

34 print.poweRbal_data

print.poweRbal_data Print and summary method for poweRbal_data objects

Description

This function prints the contents of an object of class poweRbal_data. It provides a brief summary
of the object structure and its contents.

This function provides a summary of an object of class poweRbal_data. It offers a high-level
overview of the contents and their structure.

Usage

S3 method for class 'poweRbal_data'
print(x, ...)

S3 method for class 'poweRbal_data'
summary(object, ...)

Arguments

x An object of class poweRbal_data, which is a list containing one mandatory
element, power, and several optional elements:

• power: A numeric matrix containing the power values (one row per TSS
and one column per alternative model).

• accept_regions: A numeric matrix containing information on the region
of acceptance (one row per TSS and four columns).

• CIradius: A numeric matrix containing the confidence interval radii (one
row per TSS and one column per alternative model).

• actual_sample_sizes: A numeric vector containing the actual sample
sizes under each alternative model, as some models do not always success-
fully generate trees.

• alt_model_params: A numeric vector (one element per alternative model)
containing the values of a tree model parameter. This is only suitable if the
alternative models all belong to the same tree model family and differ only
in one parameter.

• Other input data from the powerComp() function, such as tss, null_model,
alt_models, n, distribs, N_null, N_alt, test_type, correction, and
sig_lvl.

... Additional arguments passed to the print or summary function.
object An object of class poweRbal_data (see x for more details).

showTSSdata 35

Value

print.poweRbal_data No return value, as the primary purpose of this function is the side effect
(printing).

summary.poweRbal_data No return value, as the primary purpose of this function is the side effect
(printing summary).

Examples

Printing a 'poweRbal_data' object:
pc1 <- powerComp(tss = c("Sackin", "Colless", "B1I"),

alt_models = list(list("aldous",-1), "pda", "etm"),
n = 8L, N_null = 40L, N_alt = 20L)

pc1
Summary of a 'poweRbal_data' object:
summary(pc1)

showTSSdata Function for displaying TSS distributions

Description

showTSSdata - This function plots histograms of TSS data.

Usage

showTSSdata(tss_data, main = NULL, xlab = NULL, sig_lvl = 0.05, ...)

Arguments

tss_data Numeric matrix of TSS values (one row per TSS). The row names are used as
names for the TSS.

main Title (default = NULL). A generic title is created by default.

xlab Label of x-axis (default = NULL). A generic label is created by default.

sig_lvl Level of significance (default=0.05, must be >0 and <1).

... Add further specifications for plot().

Value

showTSSdata No return value, called for side effects (plotting).

Examples

showTSSdata(tss_data = getTSSdata_trees(tss = c("Colless", "Sackin"),
treeList = lapply(1:20L, function(x) genYuleTree(10))),
breaks=15)

36 tssInfo

tssInfo Tree shape statistics

Description

tssInfo - List that provides information on available tree shape statistics (TSS) from the package
’treebalance’. Most of them are either balance or imbalance indices. The indices are grouped by
their families and otherwise sorted alphabetically by their full names.
The following information is provided:

• short: Abbreviation of the name (plain characters).

• simple: Simplified full name (plain characters).

• name: Full name (partly expressions as some names use special symbols).

• func: Function of the TSS.

• type: Either "tss", "bali", or "imbali" expressing what type of tree shape statistic it is.

• only_binary: TRUE if TSS is suitable only for binary trees, FALSE if also applicable to arbi-
trary rooted trees.

• safe_n : Integer vector with two entries specifying the range of leaf numbers n for which the
TSS can be (safely) used, without warnings for too few leaves or values reaching Inf for too
many leaves.
c(4,800), for example means that this TSS should only be applied on trees with 4 to 800 leaves.
’Inf’ as the second entry means that there is no specific upper limit, but that the size of the tree
itself and the computation time are the limiting factors.

• col: Color for the TSS (related TSS have similar colors).

Usage

tssInfo

Format

An object of class list of length 29.

References

• M. Fischer, L.Herbst, S. J. Kersting, L. Kühn, and K. Wicke, Tree Balance Indices - A Com-
prehensive Survey. Springer, 2023. ISBN: 978-3-031-39799-8

tssInfo 37

Examples

tssInfoALDname
tssInfoALDfunc(genYuleTree(6))

Index

∗ datasets
tssInfo, 36

computeAccRegion (getAccRegion), 21

enum2cladewise, 2

genAldousBetaTree, 3
genAltBirthDeathTree, 4
genBiSSETree, 5
genCombTree, 6
genDensityTree, 7
genETMTree, 8
genFordsAlphaTree, 9
genGFBTree, 10
genGrowTree, 10
genMBTree, 15
genPDATree, 16
genTrees, 17
genYuleTree, 20
getAccRegion, 21
getAccRegion_exact (getAccRegion), 21
getAccRegion_sampled (getAccRegion), 21
getAllTSS (getTSSnames), 27
getPowerMultTSS, 24
getTSScolors (getTSSnames), 27
getTSSdata, 25
getTSSdata_trees (getTSSdata), 25
getTSSnames, 27
getTSSonly_bin (getTSSnames), 27
getTSSsafe_n (getTSSnames), 27
getTSSsimple (getTSSnames), 27
getTSStype (getTSSnames), 27

plot.poweRbal_data, 28
powerComp, 30
powerComp_RegAcc (powerComp), 30
print.poweRbal_data, 34

showTSSdata, 35

summary.poweRbal_data
(print.poweRbal_data), 34

tssInfo, 36

38

	enum2cladewise
	genAldousBetaTree
	genAltBirthDeathTree
	genBiSSETree
	genCombTree
	genDensityTree
	genETMTree
	genFordsAlphaTree
	genGFBTree
	genGrowTree
	genMBTree
	genPDATree
	genTrees
	genYuleTree
	getAccRegion
	getPowerMultTSS
	getTSSdata
	getTSSnames
	plot.poweRbal_data
	powerComp
	print.poweRbal_data
	showTSSdata
	tssInfo
	Index

