Package ‘réqualitytools’

October 3, 2024
Type Package
Title R6-Based Statistical Methods for Quality Science
Version 1.0.1

Description A comprehensive suite of statistical tools for Quality Management, de-
signed around the Define, Measure, Analyze, Improve, and Control (DMAIC) cy-
cle used in Six Sigma methodology. Based on the discontinued CRAN package 'quality-
tools', this package refactors its original design by incorporating 'R6' object-oriented program-
ming for increased flexibility and performance. It replaces traditional graphics with modern, in-
teractive visualizations using 'ggplot2' and 'plotly'. Built on 'tidyverse' principles, it simpli-
fies data manipulation and visualization, offering an intuitive approach to quality science.

License GPL (>=3)
URL https://github.com/Fabianenc/réqualitytools

BugReports https://github.com/Fabianenc/réqualitytools/issues

Imports dplyr, EnvStats, ggplot2, graphics, grid, gridExtra, MASS,
methods, patchwork, plotly, R6, RColorBrewer, Rsolnp, scales,
stats, tibble, tidyr, utils

Encoding UTF-8
RoxygenNote 7.3.1
NeedsCompilation no

Author Andrea Barahona [aut],
Fabian Encarnacion [aut, cre, cph],
Miguel Flores [aut],
Javier Tarrio-Saavedra [ctb],
Salvador Naya [ctb]

Maintainer Fabian Encarnacion <fab.encarnacion@outlook.com>
Repository CRAN
Date/Publication 2024-10-03 19:30:02 UTC

https://github.com/Fabianenc/r6qualitytools
https://github.com/Fabianenc/r6qualitytools/issues

2 Contents

Contents
adSim e e e e 3
aliasTable e 5
as.data.frame_facDesign 5
blocking 6
CE o e e e e e e 7
cg_ HistChart e 9
cg_ RunChart e 11
cg_ToleranceChart 13
code2real e 15
confounds L e 15
contourPlot L e e e 16
contourPlot3 L e e e e 18
desirability e 20
desirability.c e 21
desOpt e 23
dgamma3 L e 24
Distr e e e 25
DistrCollection e e e e 28
distribution L. e e e e e 31
dlnorm3 e e e e 32
doeFactor e e e e 33
dotPlot e e 35
dweibull3 e 36
facDesign 37
facDesign.c 39
FitDistr e 44
fracChoose e e e 46
fracDesign e e e 46
gageLin e 48
gageLinDesign 49
gageRR e 50
gageRR.c e 51
gageRRDesign 61
interactionPlot L e e e e 62
mixDesign e e e e 63
mixDesign.c e 65
MSALinearity e 68
mvPlot e e e 69
normalPlot. 71
0aChooSe e e e e e 73
OPHIMUIM v o v v o e 74
overall L e e e e 75
paretoChart e e 76
paretoPlot 78
pbDesign 80

pbDesign.c 81

adSim 3
pbFactor e e e 83
PCT . o o e 84
pPgamMmMa3 L e e e 87
plnorm3 e e e 88
ppPlot . . e 89
print_adtest L. e e e e e e 91
pweibull3 92
dgamma3 e e e e 93
glnorm3 e e 94
qqPlot . . . 95
gweibull3o 97
randomizZe e e e e e e 98
rsmChoose 99
rsmDESIZN e e e e e e 100
SIMProco 101
snPlot 102
starDesign e e e e 103
SEEPASCENL e e 105
SEEPASCENL.C v i e e e e e e e e e e e 106
summaryFits 107
taguchiChoose o e e e 108
taguchiDesign 109
taguchiDesign.c 111
taguchiFactor 114
wirePlot L 115
wirePlot3 118

Index 120

adSim adSim: Bootstrap-based Anderson-Darling Test for Univariate
Description

Performs the Anderson-Darling test for univariate distributions with an option for bootstrap-based
p-value determination. It also allows p-value determination using tabled critical values.

Usage

adSim(x, distribution = "normal”, b = 10000)

Arguments

X

A numeric vector.

distribution A character string specifying the distribution to test. Recognized distributions

include "~ cauchy’, ~exponential~, “gumbel”, “gamma~, ~log-normal~, ~lognormal~,

“logistic™, “normal”, and “weibull™.

4 adSim

b A numeric value indicating the number of bootstraps to perform. Allowed values
range from 1000 to 1,000,000. If b is set to NA, the Anderson-Darling test will
be applied without simulation. Note that higher values of b can significantly in-
crease computation time, potentially taking hours depending on the distribution,
sample size, and computer system.

Details

The function first estimates the parameters for the tested distribution, typically using Maximum-
Likelihood Estimation (MLE) via the FitDistr function. For normal and log-normal distributions,
parameters are estimated by the mean and standard deviation. Cauchy distribution parameters are
fitted by the sums of the weighted order statistic when using tabled critical values. The Anderson-
Darling statistic is then calculated based on these estimated parameters.

Parametric bootstrapping generates the distribution of the Anderson-Darling test statistic, which is
used to determine the p-value. This simulation-based Anderson-Darling distribution and its cor-
responding critical values for selected quantiles can be printed. If simulation is not performed, a
p-value is obtained from tabled critical values, although no exact expressions exist except for the
log-normal, normal, and exponential distributions.

Value

A list containing the following components:

distribution The distribution for which the Anderson-Darling test was applied.
parameter_estimation The estimated parameters for the distribution.
Anderson_Darling The value of the Anderson-Darling test statistic.

p_value The corresponding p-value, either simulated or from tabled values.

critical_values The critical values corresponding to the 0.75, 0.90, 0.95, 0.975, and 0.99 quan-
tiles, either simulated or from tables.

simAD The bootstrap-based Anderson-Darling distribution.

Examples

x <- rnorm(25, 32, 2)
adSim(x)

adSim(x, "logistic”, 2000)
adSim(x, "cauchy"”, NA)
adSim(x, "exponential”, 2000)
adSim(x, "gumbel”, 2000)

aliasTable 5

aliasTable aliasTable: Display an alias table

Description

This function generates an alias table for a factorial design object.

Usage

aliasTable(fdo, degree, print = TRUE)

Arguments
fdo An object of class facDesign.c.
degree Numeric value specifying the degree of interaction i.e. degree=3 means up to
threeway interactions.
print If TRUE, the alias table will be printed. By default print is set to TRUE.
Value

The function aliasTable returns a matrix indicating the aliased effects.

See Also

fracDesign, fracChoose

Examples

Create a fractional factorial design

dfrac <- fracDesign(k = 3, gen = "C = AB")

Display the alias table for the fractional factorial design
aliasTable(dfrac)

as.data.frame_facDesign
as.data.frame_facDesign: Coerce to a data.frame

Description

Converts an object of class facDesign.c into a data frame.

Usage

as.data.frame_facDesign(dfac)

6 blocking

Arguments

dfac An object of class facDesign.c that you want to convert to a data frame.

Value

The function as.data. frame_facDesign returns a data frame.

Examples

fdo <- fracDesign(k = 2, replicates = 3, centerCube = 4)
as.data.frame_facDesign(fdo)

blocking blocking: Blocking

Description

Blocks a given factorial or response surface design.

Usage
blocking(fdo, blocks, random.seed, useTable = "rsm”, gen)
Arguments
fdo An object of class facDesign.c.
blocks Numeric value giving the number of blocks.
random. seed Numeric value to generate repeatable results for randomization within blocks.
useTable Character indicating which table to use. The following options will be accepted:
* “rms”: table from reference
e “calc’: table calculated by package
gen Giving the generator that will be used.
Value

The function blocking returns an object of class facDesign.c with blocking structure.

See Also

facDesign.

cg 7

Examples

Example 1

#Create a 2”3 full factorial design

fdo <- facDesign(k = 3)

Apply blocking to the design with 2 blocks
blocking(fdo, 2)

Example 2
#Create a response surface design for 3 factors
fdo <- rsmDesign(k = 3)

Apply blocking to the design with 3 blocks (1 block for star part and 2 blocks for the cube part)
blocking(fdo, 3)

cg cg: Function to calculate and visualize the gage capability.

Description

Function visualize the given values of measurement in a run chart and in a histogram. Furthermore
the centralized Gage potential index Cg and the non-centralized Gage Capability index
Cgk are calculated and displayed.

Usage

cg(
X,
target,
tolerance,
ref.interval,
facCg,
facCgk,
n=2a.2,
col,
pch,
xlim,
ylim,
conf.level = 0.95

Arguments

X A vector containing the measured values.
target A numeric value giving the expected target value for the x-values.

tolerance Vector of length 2 giving the lower and upper specification limits.

ref.interval

facCg

facCgk

col

pch

xlim

ylim

conf.level

Details

g

Numeric value giving the confidence interval on which the calculation is based.
By default it is based on 6 sigma methodology. Regarding the normal distri-
bution this relates to pnorm(3) - pnorm(-3) which is exactly 99.73002 per-
cent. If the calculation is based on another sigma value ref.interval needs
to be adjusted. To give an example: If the sigma-level is given by 5.15 the
ref.interval relates to pnorm(5.15/2)-pnorm(-5.15/2) which is exactly
0.989976 percent.

Numeric value as a factor for the calculation of the gage potential index. The
default value for facCgis 0. 2.

Numeric value as a factor for the calculation of the gage capability index. The
default value for facCgk is 0. 1.

Numeric value between @ and 1 giving the percentage of the tolerance field
(values between the upper and lower specification limits given by tolerance)
where the values of x should be positioned. Limit lines will be drawn. Default
value is 0. 2.

Character or numeric value specifying the color of the curve in the run chart.
Default is “black™.

Numeric or character specifying the plotting symbol. Default is 19 (filled circle).

Numeric vector of length 2 specifying the limits for the x-axis. Default is NULL
which means the limits are set automatically.

Numeric vector of length 2 specifying the limits for the y-axis. Default is NULL
which means the limits are set automatically.

Confidence level for internal t.test checking the significance of the bias be-
tween target and mean of x. The default value is ©@.95. The result of the
t.test is shown in the histogram on the left side.

The calculation of the potential and actual gage capability are based on the following formula:

e Cg = (facCg * tolerance[2]-tolerance[1])/ref.interval

e Cgk = (facCgk * abs(target-mean(x))/(ref.interval/2)

If the usage of the historical process variation is preferred the values for the tolerance tolerance
must be adjusted manually. That means in case of the 6 sigma methodology for example, that
tolerance = 6 * sigma[process].

Value

The function cg returns a list of numeric values. The first element contains the calculated centralized
gage potential index Cg and the second contains the non-centralized gage capability index Cgk.

See Also

cg_RunChart, cg_HistChart, cg_ToleranceChart.

cg_HistChart

Examples

x <- ¢(9.991, 10

.013, 10.001, 10.007, 10.010, 10.013, 10.008,9.992,

10.017, 10.005, 10.005, 10.002, 10.017, 10.005, 10.002, 9.996,
10.011, 10.009, 10.006, 10.008, 10.003, 10.002, 10.006, 10.010, 10.013)

cg(x = x, target

= 10.003, tolerance = ¢(9.903, 10.103))

cg_HistChart

cg_HistChart

Description

Function visualize the given values of measurement in a histogram

Usage

cg_HistChart(
X,
target,
tolerance,
ref.interval,
facCg,
facCgk,
n=2a.2,
col,
xlim,
ylim,
main,
conf.level =
cgOut = TRUE

Arguments

X
target
tolerance

ref.interval

facCg

0.95,

A vector containing the measured values.
A numeric value giving the expected target value for the x-values.
Vector of length 2 giving the lower and upper specification limits.

Numeric value giving the confidence interval on which the calculation is based.
By default it is based on 6 sigma methodology. Regarding the normal distri-
bution this relates to pnorm(3) - pnorm(-3) which is exactly 99.73002 per-
cent. If the calculation is based on another sigma value ref.interval needs
to be adjusted. To give an example: If the sigma-level is given by 5.15 the
ref.interval relates to pnorm(5.15/2)-pnorm(-5.15/2) which is exactly
0.989976 percent.

Numeric value as a factor for the calculation of the gage potential index. The
default Value for facCgis 0. 2.

10

facCgk

col

x1lim

ylim

main

conf.level

cglOut

Details

cg_HistChart

Numeric value as a factor for the calculation of the gage capability index. The
default value for facCgk is @.1.

Numeric value between @ and 1 giving the percentage of the tolerance field
(values between the upper and lower specification limits given by tolerance)
where the values of x should be positioned. Limit lines will be drawn. Default
value is 0. 2.

Character or numeric value specifying the color of the histogram. Default is
“black™.

Numeric vector of length 2 specifying the limits for the x-axis. Default is NULL
which means the limits are set automatically.

Numeric vector of length 2 specifying the limits for the y-axis. Default is NULL
which means the limits are set automatically.

Character string specifying the title of the plot. Default is “Histogram of x -
target”.

Confidence level for internal t.test checking the significance of the bias be-
tween target and mean of x. The default value is @. 95.

Logical value deciding whether the Cg and Cgk values should be plotted in a
legend. Default is TRUE.

The calculation of the potential and actual gage capability are based on the following formulae:

e Cg = (facCg * tolerance[2]-tolerance[1])/ref.interval
e Cgk = (facCgk * abs(target-mean(x))/(ref.interval/2)

If the usage of the historical process variation is preferred the values for the tolerance tolerance
must be adjusted manually. That means in case of the 6 sigma methodology for example, that
tolerance = 6 x sigma[process].

Value

The function cg_HistChart returns a list of numeric values. The first element contains the calcu-
lated centralized gage potential index Cg and the second contains the non-centralized gage capability

index Cgk.

See Also

cg_RunChart, cg_ToleranceChart, cg

Examples

x <- c(9.991, 10.013, 10.001, 10.007, 10.010, 10.013, 10.008,9.992,
10.017, 10.005, 10.005, 10.002, 10.017, 10.005, 10.002, 9.996,
10.011, 10.009, 10.006, 10.008, 10.003, 10.002, 10.006, 10.010, 10.013)

cg_HistChart(x = x, target = 10.003, tolerance = c(9.903, 10.103))

cg_RunChart 11

cg_RunChart cg_RunChart

Description

Function visualize the given values of measurement in a Run Chart

Usage
cg_RunChart(
X ’
target,
tolerance,
ref.interval,
facCg,
facCgk,
n=2.2,
col = "black",
pch = 19,
xlim = NULL,
ylim = NULL,
main = "Run Chart”,
conf.level = 0.95,
cgOut = TRUE
)
Arguments
X A vector containing the measured values.
target A numeric value giving the expected target value for the x-values.
tolerance Vector of length 2 giving the lower and upper specification limits.

ref.interval Numeric value giving the confidence interval on which the calculation is based.
By default it is based on 6 sigma methodology. Regarding the normal distri-
bution this relates to pnorm(3) - pnorm(-3) which is exactly 99.73002 per-
cent. If the calculation is based on another sigma value ref.interval needs
to be adjusted. To give an example: If the sigma-level is given by 5.15 the
ref.interval relates to pnorm(5.15/2)-pnorm(-5.15/2) which is exactly

0.989976 percent.

facCg Numeric value as a factor for the calculation of the gage potential index. The
default Value for facCgis @. 2.

facCgk Numeric value as a factor for the calculation of the gage capability index. The

default value for facCgk is 0. 1.

n Numeric value between @ and 1 giving the percentage of the tolerance field
(values between the upper and lower specification limits given by tolerance)
where the values of x should be positioned. Limit lines will be drawn. Default
value is 0. 2.

12

col

pch

x1lim

ylim

main

conf.level

cglOut

Details

cg_RunChart

Character or numeric value specifying the color of the curve in the run chart.
Default is “black™.

Numeric or character specifying the plotting symbol. Default is 19 (filled circle).

Numeric vector of length 2 specifying the limits for the x-axis. Default is NULL
which means the limits are set automatically.

Numeric vector of length 2 specifying the limits for the y-axis. Default is NULL
which means the limits are set automatically.

Character string specifying the title of the plot. Default is “Run Chart".

Confidence level for internal t.test checking the significance of the bias be-
tween target and mean of x. The default value is @.95. The result of the
t.test is shown in the histogram on the left side.

Logical value deciding whether the Cg and Cgk values should be plotted in a
legend. Default is TRUE.

The calculation of the potential and actual gage capability are based on the following formulae:

e Cg = (facCg * tolerance[2]-tolerance[1])/ref.interval

e Cgk = (facCgk * abs(target-mean(x))/(ref.interval/2)

If the usage of the historical process variation is preferred the values for the tolerance tolerance
must be adjusted manually. That means in case of the 6 sigma methodology for example, that
tolerance = 6 x sigma[process].

Value

The function cg_RunChart returns a list of numeric values. The first element contains the calculated
centralized gage potential index Cg and the second contains the non-centralized gage capability

index Cgk.

See Also

cg_HistChart, cg_ToleranceChart, cg

Examples

x <- ¢(9.991, 10.013, 10.001, 10.007, 10.010, 10.013, 10.008,9.992,
10.017, 10.005, 10.005, 10.002, 10.017, 10.005, 10.002, 9.996,
10.011, 10.009, 10.006, 10.008, 10.003, 10.002, 10.006, 10.010, 10.013)

cg_RunChart(x = x, target = 10.003, tolerance = c(9.903, 10.103))

cg_ToleranceChart

13

cg_ToleranceChart cg_ToleranceChart

Description

Function visualize the given values of measurement in a Tolerance View.

Usage

cg_ToleranceChart(

X,

target,
tolerance,
ref.interval,
facCg,
facCgk,
n=2.2,
col,

pch,

xlim,

ylim,

main,
conf.level =
cgOut = TRUE

Arguments

X
target
tolerance

ref.interval

facCg

facCgk

.95,

A vector containing the measured values.
A numeric value giving the expected target value for the x-values.
Vector of length 2 giving the lower and upper specification limits.

Numeric value giving the confidence interval on which the calculation is based.
By default it is based on 6 sigma methodology. Regarding the normal distri-
bution this relates to pnorm(3) - pnorm(-3) which is exactly 99.73002 per-
cent. If the calculation is based on another sigma value ref.interval needs
to be adjusted. To give an example: If the sigma-level is given by 5.15 the
ref.interval relates to pnorm(5.15/2)-pnorm(-5.15/2) which is exactly
0.989976 percent.

Numeric value as a factor for the calculation of the gage potential index. The
default value for facCg is 0. 2.

Numeric value as a factor for the calculation of the gage capability index. The
default value for facCgk is 0. 1.

Numeric value between @ and 1 giving the percentage of the tolerance field
(values between the upper and lower specification limits given by tolerance)
where the values of x should be positioned. Limit lines will be drawn. Default
value is 0. 2.

14 cg_ToleranceChart

col Character or numeric value specifying the color of the line and points in the
tolerance view. Default is ~black".

pch Numeric or character specifying the plotting symbol. Default is 19 (filled circle).

x1lim Numeric vector of length 2 specifying the limits for the x-axis. Default is NULL
which means the limits are set automatically.

ylim Numeric vector of length 2 specifying the limits for the y-axis. Default is NULL
which means the limits are set automatically.

main Character string specifying the title of the plot. Default is “Tolerance View™.

conf.level Confidence level for internal t.test checking the significance of the bias be-

tween target and mean of x. The default value is 0. 95.

cgOut Logical value deciding whether the Cg and Cgk values should be plotted in a
legend. Default is TRUE.

Details

The calculation of the potential and actual gage capability are based on the following formulae:

e Cg = (facCg * tolerance[2]-tolerance[1])/ref.interval
* Cgk = (facCgk * abs(target-mean(x))/(ref.interval/2)

If the usage of the historical process variation is preferred the values for the tolerance tolerance
must be adjusted manually. That means in case of the 6 sigma methodology for example, that
tolerance = 6 * sigma[process].

Value

The function cg_ToleranceChart returns a list of numeric values. The first element contains the
calculated centralized gage potential index Cg and the second contains the non-centralized gage
capability index Cgk.

See Also

cg_RunChart, cg_HistChart, cg

Examples

x <- ¢(9.991, 10.013, 10.001, 10.007, 10.010, 10.013, 10.008,9.992,
10.017, 10.005, 10.005, 10.002, 10.017, 10.005, 10.002, 9.996,
10.011, 10.009, 10.006, 10.008, 10.003, 10.002, 10.006, 10.010, 10.013)

cg_ToleranceChart(x = x, target = 10.003, tolerance = c(9.903, 10.103))

codeZreal 15

code2real code2real: Coding

Description

Function to calculate the real value of a coded value.

Usage

code2real(low, high, codedValue)

Arguments

low Numeric value giving the lower boundary.

high Numeric value giving the higher boundary.

codedValue Numeric value giving the coded value that will be calculated.
Value

The function return a real value of a coded value

Examples

code2real (160, 200, 0)

confounds confounds: Confounded Effects

Description

Function to display confounded effects of a fractional factorial design in a human readable way.

Usage

confounds(x, depth = 2)

Arguments

X An object of class facDesign.c.

depth numeric value - up to depth-way confounded interactions are printed
Value

The function returns a summary of the factors confounded.

16 contourPlot

Examples

vp.frac = fracDesign(k = 4, gen = "D=ABC")
confounds(vp.frac,depth=5)

contourPlot contourPlot: Contour Plot

Description

Creates a contour diagram for an object of class facDesign.c.

Usage

contourPlot(

X ’

Y,

Z ’

data = NULL,

xlim,

ylim,

main,

xlab,

ylab,

form = "fit",

col =1,

steps,

fun,

plot = TRUE,

show.scale = TRUE
)

Arguments

X Name providing the Factor A for the plot.
y Name providing the Factor B for the plot.
z Name giving the Response variable.
data Needs to be an object of class facDesign.c and contains the names of x, y, z.
x1lim Vector giving the range of the x-axis.
ylim Vector giving the range of the y-axis.
main Character string: title of the plot.
xlab Character string: label for the x-axis.
ylab Character string: label for the y-axis.
form A character string or a formula with the syntax ‘y~ x4y + x*y‘. If form is a

character it has to be one out of the following:

contourPlot

col

steps

fun

plot

show. scale

Value

17

e “quadratic”

e ~full®

* “interaction”

e “linear-

o “fit”
“fit" takes the formula from the fit in the facDesign.c object fdo. Quadratic
or higher orders should be given as I(Variable’2). By default form is set as
“fite.
A predefined (1, 2, 3 or 4) or self defined colorRampPalette or color to be used
(i.e. “red”).
Number of grid points per factor. By default steps = 25.
Function to be applied to z desirability.
Logical value indicating whether to display the plot. Default is TRUE.

Logical value indicating whether to display the color scale on the plot. Default
is TRUE.

The function contourPlot returns an invisible list containing:

* X - locations of grid lines for x at which the values in z are measured.

* y - locations of grid lines for y at which the values in z are measured.

* 7z - a matrix containing the values of z to be plotted.

* plot - The generated plot.

See Also

wirePlot, paretoChart

Examples

fdo = rsmDesign(k = 3, blocks = 2)
fdo$.response(data.frame(y = rnorm(fdo$nrow())))

#I - display linear fit

contourPlot(A,B,y, data = fdo, form = "linear")

#II - display full fit (i.e. effect, interactions and quadratic effects
contourPlot(A,B,y, data = fdo, form = "full")

#III - display a fit specified before
fdo$set.fits(fdo$lm(y ~ B + I(A*2)))

contourPlot(A,B,y, data = fdo, form = "fit")

#IV - display a fit given directly

contourPlot(A,B,y, data = fdo, form = "y ~ A*B + I(A*2)")
#V - display a fit using a different colorRamp
contourPlot(A,B,y, data = fdo, form = "full”, col = 2)
#VI - display a fit using a self defined colorRamp

myColour =

colorRampPalette(c("green”, "gray”,"blue"))

contourPlot(A,B,y, data = fdo, form = "full”, col = myColour)

18 contourPlot3

contourPlot3 contourPlot3: Ternary plot

Description

This function creates a ternary plot (contour plot) for mixture designs (i.e. object of class mixDesign).

Usage
contourPlot3(
X ’
Y,
Z ’
response,
data = NULL,
main,
xlab,
ylab,
zlab,
form = "linear”,
col =1,
col.text,
axes = TRUE,
steps,
plot = TRUE,
show.scale = TRUE
)
Arguments
X Factor 1 of the mixDesign object.
y Factor 2 of the mixDesign object.
z Factor 3 of the mixDesign object.
response the response of the mixDesign object.
data The mixDesign object from which x,y,z and the response are taken.
main Character string specifying the main title of the plot.
xlab Character string specifying the label for the x-axis.
ylab Character string specifying the label for the y-axis.
zlab Character string specifying the label for the z-axis.
form A character string or a formula with the syntax ‘y ~ A + B + C*. If form is a

character string, it has to be one of the following:
* ‘linear*

* ‘quadratic*

contourPlot3

col

col.text

axes

steps

plot

show.scale

Value

19

How the form influences the output is described in the reference listed below.
By default, formis set to ‘linear*.

A predefined value (1, 2, 3, or 4) or a self-defined colorRampPalette specify-
ing the colors to be used in the plot.

A character string specifying the color of the axis labels. The default value
col.textis’I’.

A logical value specifying whether the axes should be plotted. By default, axes
is set to TRUE.

A numeric value specifying the resolution of the plot, i.e., the number of rows
for the square matrix, which also represents the number of grid points per factor.
By default, steps is set to 25.

Logical value indicating whether to display the plot. Default is TRUE.

Logical value indicating whether to display the color scale on the plot. Default
is TRUE.

The function contourPlot3 returns an invisible list containing:

* mat - A matrix containing the response values as NA’s and numerics.

* plot - The generated plot.

See Also

mixDesign.c, mixDesign, wirePlot3.

Examples

mdo = mixDesign(3,2, center
replicates = c¢(1,1,2,3))

FALSE, axial = FALSE, randomize = FALSE,

mdo$names(c("polyethylene”, "polystyrene”, "polypropylene”))
mdo$units("percent”)

elongation =

c(11.0, 12.4, 15.0, 14.8, 16.1, 17.7, 16.4, 16.6, 8.8, 10.0, 10.0,
9.7, 11.8, 16.8, 16.0)

mdo$. response(elongation)

contourPlot3(A, B, C, elongation, data = mdo, form = "linear")
contourPlot3(A, B, C, elongation, data = mdo, form = "quadratic”, col = 2)
contourPlot3(A, B, C, elongation, data = mdo,

form = "elongation ~ I(A*2) - B:A + I(C*2)",
col = 3, axes = FALSE)

contourPlot3(A, B, C, elongation, data = mdo,

form = "quadratic”,
col = c("yellow”, "white"”, "red"),

= FALSE)

20 desirability

desirability desirability: Desirability Function.

Description

Creates desirability functions for use in the optimization of multiple responses.

Usage
desirability(
response,
low,
high,
target = "max",

scale = c(1, 1),
importance = 1

)
Arguments
response Name of the response.
low Lowest acceptable value for the response.
high Highest acceptable value for the response.
target Desired target value of the response. target can be “max™, “min~, or any spe-
cific numeric value.
scale Numeric value giving the scaling factors for one and two-sided transformations.
Defaultis c(1, 1).
importance A value ranging from 0.1 to 10, used to calculate a weighted importance, i.e.,
with importances 1, 2, and 4, D = [(d1)*1, (d2)"2, (d3)"4]*(1/7). Default is ‘1°.
Details

For a product to be developed, different values of responses are desired, leading to multiple response
optimization. Minimization, maximization, as well as a specific target value, are defined using
desirability functions. A desirability function transforms the values of a response into [0,1], where
0 stands for a non-acceptable value of the response and 1 for values where higher/lower (depending
on the direction of the optimization) values of the response have little merit. This function builds
upon the desirability functions specified by Harrington (1965) and the modifications by Derringer
and Suich (1980) and Derringer (1994). Castillo, Montgomery, and McCarville (1996) further
extended these functions, but these extensions are not implemented in this version.

Value

This function returns a desirability.c object.

desirability.c 21

See Also

overall, optimum

Examples

Example 1: Maximization of a response

Define a desirability for response y where higher values of y are better
as long as the response is smaller than high

d = desirability(y, low = 6, high = 18, target = "max")

Show and plot the desirability function

d

plot(d)

Example 2: Minimization of a response including a scaling factor

Define a desirability for response y where lower values of y are better
as long as the response is higher than low

d = desirability(y, low = 6, high = 18, scale = c(2), target = "min”

Show and plot the desirability function

d

plot(d)

Example 3: Specific target of a response is best including a scaling factor
Define a desirability for response y where desired value is at 8 and

values lower than 6 as well as values higher than 18 are not acceptable

d = desirability(y, low = 6, high = 18, scale = c(0.5, 2), target = 12)

Show and plot the desirability function

d

plot(d)

Example 4:

y1 <- c(102, 120, 117, 198, 103, 132, 132, 139, 102, 154, 96, 163, 116, 153,
133, 133, 140, 142, 145, 142)

y2 <- c(470, 410, 570, 240, 640, 270, 410, 380, 590, 260, 520, 380, 520, 290,
380, 380, 430, 430, 390, 390)

dl <- desirability(y1, 120, 170, scale = c(1, 1), target = "max")

d3 <- desirability(y2, 400, 600, target = 500)

d1

plot(d1)

d3

plot(d3)

desirability.c desirability-class: Class ‘desirability*

Description

A class representing the desirability metrics for responses in a design.

22 desirability.c

Public fields

response A numeric vector specifying the responses for which desirability is calculated.

low A numeric vector representing the lower bounds of the desirable range for each response.
high A numeric vector representing the upper bounds of the desirable range for each response.
target A numeric vector or character string indicating the target values or goals for each response.
scale A numeric vector specifying the scaling factors used in the desirability calculation.

importance A numeric vector indicating the importance of each response in the desirability cal-
culation.

Methods

Public methods:

e desirability.c$new()

e desirability.c$print()
* desirability.c$plot()
e desirability.c$clone()

Method new(): Initializes a new desirability.c object with specified parameters.

Usage:
desirability.c$new(
response = NULL,

low = NULL,

high = NULL,
target = NULL,
scale = NULL,
importance = NULL

)

Arguments:

response A numeric or character vector specifying the responses for which desirability is cal-
culated.

low A numeric vector representing the lower bounds of the desirable range for each response.

high A numeric vector representing the upper bounds of the desirable range for each response.

target A numeric vector or character string indicating the target values or goals for each re-
sponse.

scale A numeric vector specifying the scaling factors used in the desirability calculation.

importance A numeric vector indicating the importance of each response in the desirability

calculation.
Method print(): Prints the details of a desirability.c object.
Usage:
desirability.c$print()
Method plot(): Plots the desirability functions based on the specified parameters.
Usage:

desOpt 23

desirability.c$plot(scale, main, xlab, ylab, line.width, col, numPoints = 500)

Arguments:

scale A numeric vector specifying the scaling factors used in the plot.

main A character string specifying the main title of the plot.

xlab A character string specifying the label for the x-axis.

ylab A character string specifying the label for the y-axis.

line.width A numeric value specifying the width of the plot lines.

col A vector of colors for the plot lines.

numPoints An integer specifying the number of points to plot (default is 500).

Method clone(): The objects of this class are cloneable with this method.

Usage:
desirability.c$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

desirability, overall, optimum

desOpt desOpt-class: Class ‘desOpt*

Description

The desOpt class represents an object that stores optimization results for factorial design exper-
iments. It includes coded and real factors, responses, desirabilities, overall desirability, and the
design object.

Public fields

facCoded A list containing the coded values for the factors in the design.

facReal A list containing the real (actual) values for the factors in the design.

responses A list of response variables obtained from the design.

desirabilities A list of desirability scores for each response variable.

overall Numeric value representing the overall desirability score.

all A data frame containing all the relevant data from the design and optimization process.

fdo The factorial design object used in the optimization process.

24 dgamma3

Methods

Public methods:

e desOpt$as.data.frame()
e desOpt$print()
e desOpt$clone()

Method as.data.frame(): Convert the object to a data frame.
Usage:
desOpt$as.data.frame()
Method print(): Print a summary of the object.
Usage:
desOpt$print()
Method clone(): The objects of this class are cloneable with this method.

Usage:
desOpt$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

optimum, facDesign, desirability

dgamma3 dgamma3: The gamma Distribution (3 Parameter)

Description

Density function, distribution function, and quantile function for the Gamma distribution.

Usage

dgamma3(x, shape, scale, threshold)

Arguments
X A numeric vector of quantiles.
shape The shape parameter, default is 1.
scale The scale parameter, default is 1.

threshold The threshold parameter, default is 0.

Distr 25

Details

The Gamma distribution with scale parameter alpha, shape parameter ¢, and threshold parameter
zeta has a density given by:

055 (- (59)

The cumulative distribution function is given by:

Flz)=1—exp < (z - <>)

Value

dgamma3 gives the density, pgamma3 gives the distribution function, and qgamma3 gives the quantile
function.

Examples

dgamma3(x = 1, scale = 1, shape = 5, threshold = 0)

temp <- pgamma3(q = 1, scale = 1, shape = 5, threshold = 0)
temp

ggamma3(p = temp, scale = 1, shape = 5, threshold = 0)

Distr Distr-class: Class ‘Distr*

Description

R6 Class for Distribution Objects

Public fields

x Numeric vector of data values.

name Character string representing the name of the distribution.
parameters List of parameters for the distribution.

sd Numeric value representing the standard deviation of the distribution.
n Numeric value representing the sample size.

loglik Numeric value representing the log-likelihood.

26 Distr

Methods

Public methods:

e Distr$new()
e Distr$plot()
e Distr$clone()

Method new(): Initialize the fiels of the ‘Distribution‘ object

Usage:
Distr$new(x, name, parameters, sd, n, loglik)

Arguments:

x Numeric vector of data values.

name Character string representing the name of the distribution.
parameters List of parameters for the distribution.

sd Numeric value representing the standard deviation of the distribution.
n Numeric value representing the sample size.

loglik Numeric value representing the log-likelihood.

Method plot(): Plot the distribution with histogram and fitted density curve.

Usage:

Distr$plot(
main = NULL,
xlab = NULL,
xlim = NULL,
xlim.t = TRUE,
ylab = NULL,
line.col = "red”,

fill.col = "lightblue”,
border.col = "black”,

box = TRUE,
line.width

)

Arguments:

1

main Character string for the main title of the plot. Defaults to the name of the distribution.

xlab Character string for the x-axis label. Defaults to "x".

x1lim Numeric vector specifying the x-axis limits.

x1lim.t Logical value specifyind to change the xlim default.

ylab Character string for the y-axis label. Defaults to "Density".

line.col Character string for the color of the plot line. Default is "red".

fill.col Character string for the color of the fill histogram plot line. Default is "lightblue".

border.col Character string for the color of the border of the fill histogram plot line. Default
is "black".

box Logical value indicating whether to draw a box with the parameters in the plot. Default is
TRUE.

Distr

line.width Numeric value specifying the width of the plot line. Default is 1.

Method clone(): The objects of this class are cloneable with this method.

Usage:
Distr$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

distribution, FitDistr, DistrCollection

Examples

Normal

set.seed(123)

datal <- rnorm(100, mean = 5, sd = 2)

parametersl <- list(mean = 5, sd = 2)

distr1 <- Distr$new(x = datal, name = "normal”, parameters = parametersl,
sd = 2, n =100, loglik = -120)

distri$plot()

Log-normal

data2 <- rlnorm(100, meanlog = 1, sdlog = 0.5)

parameters2 <- list(meanlog = 1, sdlog = 0.5)

distr2 <- Distr$new(x = data2, name = "log-normal”, parameters = parameters2,
sd = 0.5, n = 100, loglik = -150)

distr2$plot()

Geometric

data3 <- rgeom(100, prob = 0.3)

parameters3 <- list(prob = 0.3)

distr3 <- Distr$new(x = data3, name = "geometric"”, parameters = parameters3,
sd = sqrt((1 - 0.3) / (0.3%2)), n = 100, loglik = -80)

distr3splot()

Exponential

data4 <- rexp(100, rate = 0.2)

parameters4 <- list(rate = 0.2)

distr4 <- Distr$new(x = data4, name = "exponential”, parameters = parameters4,
sd=17/0.2, n=100, loglik = -110)

distr4s$plot()

Poisson

data5 <- rpois(100, lambda = 3)
parameters5 <- list(lambda = 3)

distr5 <- Distr$new(x = data5, name = "poisson”, parameters = parameters5,
sd = sqrt(3), n = 100, loglik = -150)
distr5$plot()

Chi-square

DistrCollection

data6é <- rchisq(10e0, df = 5)

parameters6 <- list(df = 5)

distr6 <- Distr$new(x = data6, name = "chi-squared”, parameters = parameters6,
sd = sqrt(2 * 5), n = 100, loglik = -130)

distré6$plot()

Logistic

data7 <- rlogis(100, location = @, scale = 1)

parameters7 <- list(location = @, scale = 1)

distr7 <- Distr$new(x = data7, name = "logistic", parameters = parameters7,
sd = 1 * sqrt(pi*2 / 3), n = 100, loglik = -140)

distr7$plot()

Gamma

data8 <- rgamma(100, shape = 2, rate = 0.5)

parameters8 <- list(shape = 2, rate = 0.5)

distr8 <- Distr$new(x = data8, name = "gamma"”, parameters = parameters8,
sd = sqrt(2 / (0.5%2)), n = 100, loglik = -120)

distr8$plot()

f
data9 <- rf(100, df1 = 5, df2 = 10)
parameters9 <- list(df1 = 5, df2 = 10)

df1 <- 5
df2 <- 10
distr9 <- Distr$new(x = data9, name = "f", parameters = parameters9,
sd = sqrt(((df2*2 * (df1 + df2 - 2)) /
(df1 * (df2 - 2)*2 x (df2 - 4)))),
n = 100, loglik = -150)
distr9s$plot()
#t

datale <- rt(100, df = 10)

parameters1@ <- list(df = 10)

distr1@ <- Distr$new(x = datal@, name = "t", parameters = parametersio,
sd = sqrt(10 / (1@ - 2)), n = 100, loglik = -120)

distrio$plot()

negative binomial
datall <- rnbinom(100, size = 5, prob
parameters11 <- list(size = 5, prob = 0.3)
distr11 <- Distr$new(x = datall, name "negative binomial”,
parameters = parametersii,
sd = sqrt(5 * (1 - 0.3) / (0.3"2)),
n = 100, loglik = -130)

0.3)

I o 1

distr11$plot()

DistrCollection DistrCollection-class: Class ‘DistrCollection’

DistrCollection 29

Description

R6 Class for Managing a Collection of Distribution Objects

Public fields

distr List of Distr objects.

Methods
Public methods:

e DistrCollection$new()

e DistrCollection$add()

e DistrCollection$get()

e DistrCollection$print()

e DistrCollection$summary()
e DistrCollection$plot()

e DistrCollection$clone()

Method new(): Initialize the fields of the DistrCollection object.

Usage:
DistrCollection$new()

Method add(): Add a Distr object to the collection.

Usage:
DistrCollection$add(distr)

Arguments:
distr A Distr object to add to the collection.

Method get(): GetaDistr object from the collection by its index.
Usage:
DistrCollection$get(i)
Arguments:

i Integer index of the Distr object to retrieve.

Returns: A Distr object.

Method print(): Print the summary of all distributions in the collection.

Usage:
DistrCollection$print()

Method summary(): Summarize the goodness of fit for all distributions in the collection.
Usage:
DistrCollection$summary()

Returns: A data frame with distribution names, Anderson-Darling test statistics, and p-values.

30 DistrCollection

Method plot(): Plot all distributions in the collection.

Usage:
DistrCollection$plot(
xlab = NULL,
ylab = NULL,
xlim = NULL,
ylim = NULL,
line.col = "red",

fill.col = "lightblue”,
border.col = "black”,
line.width = 1,
box = TRUE
)
Arguments:
xlab Character string for the x-axis label.
ylab Character string for the y-axis label.
x1im Numeric vector specifying the x-axis limits.
ylim Numeric vector specifying the y-axis limits.
line.col Character string for the color of the plot line. Default is "red".
fill.col Character string for the color of the histogram fill. Default is "lightblue".
border.col Character string for the color of the histogram border. Default is "black".
line.width Numeric value specifying the width of the plot line. Default is 1.

box Logical value indicating whether to draw a box with the parameters in the plot. Default is
TRUE.

Method clone(): The objects of this class are cloneable with this method.
Usage:
DistrCollection$clone(deep = FALSE)
Arguments:
deep Whether to make a deep clone.

See Also

Distr, distribution, FitDistr

Examples

set.seed(123)

datal <- rnorm(100, mean = 5, sd = 2

parametersl <- list(mean = 5, sd = 2

distr1 <- Distr$new(x = datal, name = "normal”,
parameters = parametersl, sd = 2,
n = 100, loglik = -120)

)
)

data2 <- rpois(100, lambda = 3)
parameters2 <- list(lambda = 3)
distr2 <- Distr$new(x = data2, name = "poisson”,

distribution 31

parameters = parameters2, sd = sqrt(3),
n = 100, loglik = -150)

collection <- DistrCollection$new()

collection$add(distr1)

collection$add(distr2)

collection$summary()

collection$plot()

distribution distribution: Distribution

Description

Calculates the most likely parameters for a given distribution.

Usage
distribution(x = NULL, distrib = "weibull”, ...)
Arguments
X Vector of distributed values from which the parameter should be determined.
distrib Character string specifying the distribution of x. The function distribution
will accept the following character strings for distribution:
* “normal”
e “chi-squared”
* “exponential®
e “logistic"
e “gamma’
e “weibull”
e “cauchy”
* “beta”
o« “f"
e “t°
e “geometric”
* “poisson”
* “negative binomial~
e “log-normal”
By default, distribution is set to “weibull ™.
Additional arguments to be passed to the fitting function.
Value

distribution() returns an object of class DistrCollection.

32 dInorm3

See Also

Distr,DistrCollection

Examples

datal <- rnorm(100, mean = 5, sd = 2)

distribution(datal, distrib = "normal”)
dlnorm3 dinorm3: The Lognormal Distribution (3 Parameter)
Description

Density function, distribution function, and quantile function for the Lognormal distribution.

Usage

dlnorm3(x, meanlog, sdlog, threshold)

Arguments

X A numeric vector of quantiles.

meanlog, sdlog The mean and standard deviation of the distribution on the log scale with default
values of @ and 1 respectively.

threshold The threshold parameter, default is 0.

Details

The Lognormal distribution with meanlog parameter zeta, sdlog parameter sigma, and threshold
parameter theta has a density given by:

(s —0) -0
R rrser) p(-)

The cumulative distribution function is given by:

Flo)= (log(:c—@) —<>

a

where ® is the cumulative distribution function of the standard normal distribution.

Value

dlnorm3 gives the density, plnorm3 gives the distribution function, and qlnorm3 gives the quantile
function.

doeFactor 33

Examples

dlnorm3(x = 2, meanlog = @, sdlog = 1/8, threshold = 1)

temp <- plnorm3(q = 2, meanlog = @, sdlog = 1/8, threshold = 1)
temp

glnorm3(p = temp, meanlog = @, sdlog = 1/8, threshold = 1)

doeFactor doeFactor-class: Class ‘doeFactor’

Description

An R6 class representing a factor in a design of experiments (DOE).

Public fields

low Numeric value specifying the lower bound of the factor. Default is “-1°.
high Numeric value specifying the upper bound of the factor. Default is ‘1°.

name Character string specifying the name of the factor. Default is an empty string ™ ~.

unit Character string specifying the unit of measurement for the factor. Default is an empty string

type Character string specifying the type of the factor. Can be either ~numeric™ or ~categorical".
Default is “numeric”.

Methods

Public methods:

* doeFactor$attributes()
e doeFactor$.low()

e doeFactor$.high()

* doeFactor$. type()

e doeFactor$.unit()

¢ doeFactor$names()

e doeFactor$print()

e doeFactor$clone()

Method attributes(): Get the attributes of the factor.
Usage:
doeFactor$attributes()

Method .1low(): Get and set the lower bound for the factor.

Usage:
doeFactor$.low(value)

Arguments:

34 doeFactor
value Numeric value to set as the lower bound. If missing, the current lower bound is returned.
Method .high(): Get and set the upper bound for the factor.
Usage:
doeFactor$.high(value)
Arguments:
value Numeric value to set as the upper bound. If missing, the current upper bound is returned.
Method . type(): Get and set the type of the factor.
Usage:
doeFactor$. type(value)
Arguments:
value Character string specifying the type of the factor. Can be ‘"numeric"* or ‘"categorical".
If missing, the current type is returned.
Method .unit(): Get and set the unit of measurement for the factor.
Usage:
doeFactor$.unit(value)
Arguments:
value Character string specifying the unit of measurement. If missing, the current unit is re-
turned.
Method names(): Get and set the name of the factor.
Usage:
doeFactor$names(value)
Arguments:
value Character string specifying the name of the factor. If missing, the current name is re-
turned.
Method print(): Print the characteristics of the factors.
Usage:
doeFactor$print()
Method clone(): The objects of this class are cloneable with this method.
Usage:
doeFactor$clone(deep = FALSE)
Arguments:
deep Whether to make a deep clone.
See Also

taguchiFactor

dotPlot

35

dotPlot

dotPlot: Function to create a dot plot

Description

Creates a dot plot. For data in groups, the dot plot can be displayed stacked or in separate regions.

Usage

dotPlot(
X,
group,
xlim,
ylim,
col,
xlab,
ylab,
pch,
cex,
breaks,

stacked = TRUE,

main,
showPlot =

Arguments

X

group

x1lim

ylim

col

xlab
ylab
pch

cex

breaks

TRUE

A numeric vector containing the values to be plotted.

(Optional) A vector for grouping the values. This determines the grouping of
the data points in the dot plot.

A numeric vector of length 2 specifying the limits of the x-axis (lower and upper
limits).

A numeric vector of length 2 specifying the limits of the y-axis (lower and upper
limits).

A vector containing numeric values or strings specifying the colors for the dif-
ferent groups in the dot plot.

A title for the x-axis.
A title for the y-axis.

A vector of integers specifying the symbols or a single character to be used for
plotting points for the different groups in the dot plot.

The amount by which points and symbols should be magnified relative to the
default.

A numeric vector specifying the breakpoints for binning the values in x.

36 dweibull3

stacked A logical value indicating whether the groups should be plotted in a stacked dot
plot (default is TRUE).
main A title for the plot.
showPlot A logical value indicating whether to display the plot. Default is TRUE.
Details

Values in x are assigned to the bins defined by breaks. The binning is performed using hist.

Value
A list cointaining:
* An invisible matrix containing NAs and numeric values representing values in a bin. The

number of bins is given by the number of columns of the matrix.

* The graphic.

Examples

Create some data and grouping
set.seed(1)

x <= rnorm(28)

g <- rep(1:2, 14)

Dot plot with groups and no stacking
dotPlot(x, group = g, stacked = FALSE, pch = c(19, 20), main = "Non stacked dot plot”)

Dot plot with groups and stacking
dotPlot(x, group = g, stacked = TRUE, pch = c(19, 20), main = "Stacked dot plot")

dweibull3 dweibull3: The Weibull Distribution (3 Parameter)

Description
Density function, distribution function, and quantile function for the Weibull distribution with a
threshold parameter.

Usage
dweibull3(x, shape, scale, threshold)

Arguments
X A numeric vector of quantiles.
shape The shape parameter of the Weibull distribution. Default is 1.
scale The scale parameter of the Weibull distribution. Default is 1.

threshold The threshold (or location) parameter of the Weibull distribution. Default is 0.

facDesign

Details

37

The Weibull distribution with the scale parameter alpha, shape parameter ¢, and threshold pa-

rameter zeta has a density function given by:

= (55 (- (559)

The cumulative distribution function is given by:

F(z) =1—exp (- (x - C))

Value

dweibull3 returns the density, pweibull3 returns the distribution function, and qweibull3 returns

the quantile function for the Weibull distribution with a threshold.

Examples

dweibull3(x = 1, scale = 1, shape = 5, threshold = 0)

temp <- pweibull3(q = 1, scale = 1, shape = 5, threshold = 0)
temp

gweibull3(p = temp, scale = 1, shape = 5, threshold = 0)

facDesign facDesign

Description

Generates a 2"k full factorial design.

Usage

facDesign(
k = 3,
p =0,
replicates = 1,
blocks = 1,
centerCube = 0,
random.seed = 1234

38

Arguments

k

p

replicates

blocks

centerCube

random. seed

Value

facDesign

Numeric value giving the number of factors. By default k is set to ‘3°.

Numeric integer between ‘0‘ and “7¢. p is giving the number of additional factors
in the response surface design by aliasing effects. For further information see
fracDesign and fracChoose. By default p is set to ‘0°.

Numeric value giving the number of replicates per factor combination. By
default replicates is set to ‘1°.

Numeric value giving the number of blocks. By default blocks is set to ‘1°.
Blocking is only performed for k greater 2.

Numeric value giving the number of centerpoints within the 27k design. By
default centerCube is set to ‘0.

Numeric value for setting the random seed for reproducibility.

The function facDesign returns an object of class facDesign.c.

See Also

fracDesign, fracChoose, rsmDesign, pbDesign, taguchiDesign

Examples

Example 1

vp.full <- facDesign(k = 3)
vp.full$.response(rnorm(243))

vp.full$summary ()

Example 2

vp.rep <- facDesign(k = 2, replicates = 3, centerCube = 4)
vp.rep$names(c(”Name 1", "Name 2"))
vp.rep$unit(c("min”, "F"))

vp.rep$lows(c(20,

40, 60))

vp.rep$highs(c(40, 60, 80))

vp.rep$summary ()

Example 3

dfac <- facDesign(k = 3, centerCube = 4)
dfac$names(c('Factor 1', 'Factor 2', 'Factor 3'))
dfac$names()

dfac$lows(c(80, 120, 1))

dfac$lows()

dfac$highs(c(120, 140, 2))

dfacs$highs()

dfac$summary ()

facDesign.c 39

facDesign.c facDesign-class: Class ‘facDesign "

Description

The facDesign.c class is used to represent factorial designs, including their factors, responses,
blocks, and design matrices. This class supports various experimental designs and allows for the
storage and manipulation of data related to the design and analysis of factorial experiments.

Public fields

name Character string representing the name of the factorial design.

factors List of factors involved in the factorial design, including their levels and settings.

cube Data frame containing the design matrix for the cube portion of the factorial design.

star Data frame containing the design matrix for the star portion of the factorial design.
centerCube Data frame containing the center points within the cube portion of the factorial design.
centerStar Data frame containing the center points within the star portion of the factorial design.
generator List of generators used to create the fractional factorial design.

response Data frame containing the responses or outcomes measured in the design.

block Data frame specifying the block structures if the design is blocked.

blockGen Data frame specifying the block generators for the design.

runOrder Data frame specifying the order in which runs are performed.

standardOrder Data frame specifying the standard order of the runs.

desireVal List of desired values or targets for the response variables.

desirability List of desirability scores or metrics based on the desired values.

fits Data frame containing the fitted model parameters and diagnostics for the responses in the
design.

Methods
Public methods:

e facDesign.c$nrow()

e facDesign.c$ncol()

e facDesign.c$print()

e facDesign.c$.clear()

e facDesign.c$names()

» facDesign.c$as.data.frame()
» facDesign.c$get()

e facDesign.c$lows()

e facDesign.c$highs()

e facDesign.c$.nfp()

40

facDesign.c

e facDesign.c$identity()

e facDesign.c$summary ()

» facDesign.c$.response()

e facDesign.c$effectPlot()
e facDesign.c$1m()

* facDesign.c$desires()

e facDesign.c$set.fits()

e facDesign.c$types()

e facDesign.c$unit()

e facDesign.c$.star()

» facDesign.c$.blockGen()

e facDesign.c$.block()

» facDesign.c$.centerCube()
* facDesign.c$.centerStar()
e facDesign.c$.generators()
e facDesign.c$clone()

Method nrow(): Get the number of rows Design.

Usage:
facDesign.c$nrow()

Method ncol(): Get the number of columns Design.

Usage:
facDesign.c$ncol()

Method print(): Prints a formatted representation of the factorial design object, including
design matrices and responses.

Usage:
facDesign.c$print()

Method .clear(): Clears the factorial design object.

Usage:
facDesign.c$.clear()

Method names(): Get or set the names of the factors in the factorial design.
Usage:
facDesign.c$names(value)

Arguments:

value Character vector with new names for the factors. If missing, retrieves the current names.

Method as.data.frame(): Converts the factorial design object to a data frame.

Usage:
facDesign.c$as.data.frame()

facDesign.c 41

Method get(): Retrieves elements from the factorial design object.
Usage:
facDesign.c$get(i, j)

Arguments:
i Row index.
j Column index.

Method lows(): Get or set the lower bounds of the factors in the factorial design.
Usage:
facDesign.c$lows(value)

Arguments:

value Numeric vector with new lower bounds. If missing, retrieves the current lower bounds.

Method highs(): Get or set the upper bounds of the factors in the factorial design.
Usage:
facDesign.c$highs(value)

Arguments:

value Numeric vector with new upper bounds. If missing, retrieves the current upper bounds.

Method .nfp(): Prints a summary of the factors attributes including their low, high, name, unit,
and type.

Usage:
facDesign.c$.nfp()

Method identity(): Returns the factorial design object itself, used to verify or return the
object.

Usage:
facDesign.c$identity()

Method summary(): Summarizes the factorial design object.

Usage:
facDesign.c$summary ()

Method . response(): Get or set the response data in the factorial design object.

Usage:
facDesign.c$.response(value)

Arguments:

value Data frame or numeric vector with new responses. If missing, retrieves the current re-
sponses.

Method effectPlot(): Plots the effects of factors on the response variables.

Usage:

facDesign.c

facDesign.c$effectPlot(
factors,
fun = mean,
response = NULL,
1ty,
xlab,
ylab,
main,
ylim
)
Arguments:
factors Factors to be plotted.
fun Function applied to the response variables (e.g., mean).
response Optional; specifies which response variables to plot.
1ty Line type for plotting.
xlab Label for the x-axis.
ylab Label for the y-axis.
main Main title for the plot.
ylim Limits for the y-axis.

Method 1m(): Fits a linear model to the response data in the factorial design object.

Usage:
facDesign.c$lm(formula)

Arguments:

formula Formula specifying the model to be fitted.

Method desires(): Get or set the desirability values for the response variables.

Usage:
facDesign.c$desires(value)

Arguments:

value List of new desirability values. If missing, retrieves the current desirability values.

Method set.fits(): Set the fits for the response variables in the factorial design object.
Usage:
facDesign.c$set.fits(value)

Arguments:

value New fits.

Method types(): Get or set the types of designs used in the factorial design object.
Usage:
facDesign.c$types(value)
Arguments:

value New design types. If missing, retrieves the current types.

facDesign.c 43

Method unit(): Get or set the units for the factors in the factorial design object.
Usage:
facDesign.c$unit(value)
Arguments:
value New units. If missing, retrieves the current units.

Method .star(): Get or set the star points in the factorial design object.
Usage:
facDesign.c$.star(value)
Arguments:
value New star points. If missing, retrieves the current star points.

Method .blockGen(): Get or set the block generators in the factorial design object.
Usage:
facDesign.c$.blockGen(value)
Arguments:
value New block generators. If missing, retrieves the current block generators.

Method .block(): Get or set the blocks in the factorial design object.
Usage:
facDesign.c$.block(value)
Arguments:
value New blocks. If missing, retrieves the current blocks.

Method .centerCube(): Get or set the center points in the cube portion of the factorial design.
Usage:
facDesign.c$.centerCube(value)
Arguments:
value New center points for the cube. If missing, retrieves the current center points.

Method .centerStar(): Get or set the center points in the star portion of the factorial design.
Usage:
facDesign.c$.centerStar(value)
Arguments:
value New center points for the star. If missing, retrieves the current center points.

Method .generators(): Get or set the generators for the factorial design.
Usage:
facDesign.c$.generators(value)
Arguments:
value New generators. If missing, retrieves the current generators.

Method clone(): The objects of this class are cloneable with this method.
Usage:
facDesign.c$clone(deep = FALSE)
Arguments:
deep Whether to make a deep clone.

44 FitDistr

See Also

mixDesign.c, taguchiDesign.c.

FitDistr FitDistr: Maximum-likelihood Fitting of Univariate Distributions

Description

Maximum-likelihood fitting of univariate distributions, allowing parameters to be held fixed if de-

sired.
Usage
FitDistr(x, densfun, start, ...)
Arguments
X A numeric vector of length at least one containing only finite values. Either a
character string or a function returning a density evaluated at its first argument.
densfun character string specifying the density function to be used for fitting the dis-
tribution. Distributions ‘"beta"‘, ‘"cauchy"‘, ‘"chi-squared", ‘"exponential",
“"gamma"‘, ‘"geometric"‘, ‘"log-normal"‘, ‘"lognormal"‘, ‘"logistic"‘, ‘"nega-
tive binomial"*, “"normal"‘, *"Poisson"*, *"t"* and "weibull" are recognised, case
being ignored.
start A named list giving the parameters to be optimized with initial values. This
can be omitted for some of the named distributions and must be for others (see
Details).
Additional parameters, either for ‘densfun‘ or for ‘optim°‘. In particular, it can be
used to specify bounds via ‘lower* or ‘upper* or both. If arguments of ‘densfun’
(or the density function corresponding to a character-string specification) are
included they will be held fixed.
Details

For the Normal, log-Normal, geometric, exponential and Poisson distributions the closed-form
MLEs (and exact standard errors) are used, and ‘start* should not be supplied.

For all other distributions, direct optimization of the log-likelihood is performed using ‘optim°‘. The
estimated standard errors are taken from the observed information matrix, calculated by a numerical
approximation. For one-dimensional problems the Nelder-Mead method is used and for multi-
dimensional problems the BFGS method, unless arguments named ‘lower‘ or ‘upper* are supplied
(when ‘L-BFGS-B° is used) or ‘method‘ is supplied explicitly.

For the “"t"‘ named distribution the density is taken to be the location-scale family with location
‘m*‘ and scale ‘s‘.

For the following named distributions, reasonable starting values will be computed if ‘start* is omit-
ted or only partially specified: ‘"

ne n ne en

cauchy"‘, “"gamma"*, “"logistic"*, ‘"negative binomial"* (parametrized

FitDistr 45

by mu and size), ‘"t"‘ and ‘"weibull"‘. Note that these starting values may not be good enough if the
fit is poor: in particular they are not resistant to outliers unless the fitted distribution is long-tailed.

There are ‘print’, ‘coef*, ‘vcov‘ and ‘logLik* methods for class ‘"FitDistr"*.

Value

The function ‘FitDistr* returns an object of class ‘fitdistr‘, which is a list containing:

estimate a named vector of parameter estimates.
sd a named vector of the estimated standard errors for the parameters.
vcov the estimated variance-covariance matrix of the parameter estimates.
loglik the log-likelihood of the fitted model.
n length vector.

See Also

distribution, Distr, DistrCollection.

Examples

set.seed(123)
X = rgamma(100, shape = 5, rate = 0.1)
FitDistr(x, "gamma")

Now do this directly with more control.
FitDistr(x, dgamma, list(shape = 1, rate = 0.1), lower = 0.001)

set.seed(123)
x2 = rt(250, df = 9)
FitDistr(x2, "t", df = 9)

Allow df to vary: not a very good idea!
FitDistr(x2, "t")

Now do fixed-df fit directly with more control.
mydt = function(x, m, s, df) dt((x-m)/s, df)/s
FitDistr(x2, mydt, list(m = @, s = 1), df = 9, lower = c(-Inf, 0))

set.seed(123)
x3 = rweibull (100, shape = 4, scale = 100)
FitDistr(x3, "weibull”)

46 fracDesign

fracChoose fracChoose: Choosing a fractional or full factorial design from a ta-
ble.

Description

Designs displayed are the classic minimum abberation designs. Choosing a design is done by
clicking with the mouse into the appropriate field.

Usage

fracChoose()

Value

fracChoose returns an object of class facDesign.c.

See Also

fracDesign, facDesign, rsmChoose, rsmDesign

Examples

fracChoose()

fracDesign fracDesign

Description

Generates a 2"k-p fractional factorial design.

Usage

fracDesign(

k = 3,

p =209,
gen = NULL,
replicates = 1,
blocks = 1,
centerCube = 0,
random.seed = 1234

S

fracDesign 47

Arguments

k Numeric value giving the number of factors. By default k is set to ‘3°.

p Numeric integer between ‘0‘ and ‘7°. p is giving the number of additional factors
in the response surface design by aliasing effects. A 2”k-p factorial design will
be generated and the generators of the standard designs available in fracChoose()
will be used. By default p is set to ‘0°. Any other value will cause the function
to omit the argument gen given by the user and replace it by the one out of the
table of standard designs (see: fracChoose). Replicates and blocks can be set
anyway!

gen One or more defining relations for a fractional factorial design, for example:
“C=AB". By default gen is set to NULL.

replicates Numeric value giving the number of replicates per factor combination. By de-
fault replicatesis setto ‘1°.

blocks Numeric value giving the number of blocks. By default blocks is set to ‘1°.

centerCube Numeric value giving the number of center points within the 22k design. By
default centerCube is set to ‘0°.

random. seed Seed for randomization of the design

Value

The function fracDesign returns an object of class facDesign.c.

See Also

facDesign, fracChoose, rsmDesign, pbDesign, taguchiDesign

Examples

#Example 1

#Returns a 2%4-1 fractional factorial design. Factor D will be aliased with
vp.frac = fracDesign(k = 4, gen = "D=ABC")

#the three-way-interaction ABC (i.e. I = ABCD)
vp.frac$.response(rnorm(2*(4-1)))

summary of the fractional factorial design

vp.frac$summary ()

#Example 2

#Returns a full factorial design with 3 replications per factor combination and 4 center points
vp.rep = fracDesign(k = 3, replicates = 3, centerCube = 4)

#Summary of the replicated fractional factorial design

vp.rep$summary ()

48 gageLin

gagelin gageLin: Function to visualize and calucalte the linearity of a gage.

Description

Function visualize the linearity of a gage by plotting the single and mean bias in one plot and
intercalate them with a straight line. Furthermore the function deliver some characteristic values of
linearity studies according to MSA (Measurement System Analysis).

Usage
gageLin(
object,
conf.level = 0.95,
ylim,
col,
pch,
Ity = c(1, 2),
stats = TRUE,
plot = TRUE
)
Arguments
object An object of class MSALinearity containing the data and model for the linearity
analysis. To create such an object see gageLinDesign.
conf.level A numeric value between ‘0 and ‘1°, giving the confidence intervall for the
analysis. Default value: ‘0.95°.
ylim A numeric vector of length 2 specifying the y-axis limits for the plot. If not
specified, the limits are set automatically based on the data.
col A vector with four numeric entries. The first gives the color of the single points,
the second gives the color of the points for the mean bias, the third gives the
color fo the straight interpolation line and the fourth gives the color for the lines
representing the confidence interval. If one of the values is missing or negative
the points or lines are not plotted. col is by default ‘c(1,2,1,4)°.
pch A vector with two numeric or single character entries giving the symbols for the
single points (1st entry) and the mean bias (2nd entry). The default vector is
‘c(20,18)°
1ty a vector with two entries giving the line-style for the interpolating line and the
confidence interval lines. For detailed information to the entries please see par.
The default value for Ity is ‘c(1,2)°.
stats Logical value. If ‘TRUE® (default) the function returns all calculated informa-
tion.
plot Logical value indicating whether to generate a plot of the linearity analysis.

Default is TRUE.

gageLinDesign 49

Value

The function returns an object of class MSALinearity which can be used with e.g. plot or summary.

See Also

cg, gageRR, gagelLinDesign, MSALinearity.

Examples

Results of single runs
A=c(2.7,2.5,2
B=c(5.1,3.9,4
C=c(5.8,5.7,5
D=c(7.6,7.7,7
E=c(9.1,9.3,9

create Design
test=gagelinDesign(ref=c(2,4,6,8,10),n=12)
create data.frame for results
results=data.frame(rbind(A,B,C,D,E))

enter results in Design
test$response(results)

test$summary ()

no plot and no return
MSALin=gagelLin(test,stats=FALSE,plot=FALSE)

plot only
plot(MSALin)
MSALin$plot()

summary
MSALin$summary ()

gagelinDesign gageLinDesign: Function to create a object of class MSALinearity.

Description

Function generates an object that can be used with the function gageLin.

Usage
gageLinDesign(ref, n = 5)

Arguments

ref A vector and contains the reference values for each group.

n A single value and gives the amount of runs.Default value: ‘5°..

50

Value

The function returns an object of class MSALinearity.

See Also

MSALinearity, gagelin.

Examples

results of run A-E

A=c(2.7,2.5,2.4,2.5,2.7,2.3,2.5,2.5,2.4,2.4,2.6,2.4)
B=c(5.1,3.9,4.2,5,3.8,3.9,3.9,3.9,3.9,4,4.1,3.8)
C=c(5.8,5.7,5.9,5.9,6,6.1,6,6.1,6.4,6.3,6,6.1)
D=c(7.6,7.7,7.8,7.7,7.8,7.8,7.8,7.7,7.8,7.5,7.6,7.7)
E=c(9.1,9.3,9.5,9.3,9.4,9.5,9.5,9.5,9.6,9.2,9.3,9.4)
create Design
test=gagelLinDesign(ref=c(2,4,6,8,10),n=12)
create data.frame for results
results=data.frame(rbind(A,B,C,D,E))
enter results in Design
test$response(results)

gageRR gageRR: Gage R&R - Gage Repeatability and Reproducibility

Description

Performs a Gage R&R analysis for an object of class gageRR. c.

Usage

gageRR(
gdo,
method = "crossed”,
sigma = 6,
alpha = 0.25,
tolerance = NULL,
dig = 3,
print = TRUE

Arguments

gdo Needs to be an object of class gageRR. c.

gageRR.c 51

method Character string specifying the Gage R&R method. ~crossed™ which is the
typical design for performing a Measurement Systems Analysis using Gage Re-
peatability and Reproducibility or “nested™ which is used for destructive test-
ing (i.e. the same part cannot be measured twice). Operators measure each a
different sample of parts under the premise that the parts of each batch are alike.
By default method is set to ~crossed™.

sigma Numeric value giving the number of sigmas. For sigma=6 this relates to 99.73
percent representing the full spread of a normal distribution function (i.e. pnorm(3)
- pnorm(-3)). Another popular setting sigma=5.15 relates to 99 percent (i.e.
pnorm(2.575) - pnorm(-2.575)). By default sigma is set to ‘6°.

alpha Alpha value for discarding the interaction Operator:Part and fitting a non-interaction
model. By default alpha is set to ‘0.25°.

tolerance Mumeric value giving the tolerance for the measured parts. This is required to
calculate the Process to Tolerance Ratio. By default tolerance is set to NULL.

dig numeric value giving the number of significant digits for format. By default
digissetto ‘3°.

print Print the summary of the perform of the Gage.

Value

The function gageRR returns an object of class gageRR.c and shows typical Gage Repeatability
and Reproducibility Output including Process to Tolerance Ratios and the number of distinctive
categories (i.e. ndc) the measurement system is able to discriminate with the tested setting.

See Also

gageRR. c, gageRRDesign, gagelin, cg.

Examples

Create de gageRR Design

design <- gageRRDesign(Operators = 3, Parts = 10, Measurements = 3,
method = "crossed”, sigma = 6, randomize = TRUE)

design$response(rnorm(nrow(design$X), mean = 10, sd = 2))

Results of de Design

result <- gageRR(gdo = design, method = "crossed”, sigma = 6, alpha = 0.25)
class(result)

result$plot()

gageRR.c gageRR-class: Class ‘gageRR’

Description

R6 Class for Gage R&R (Repeatability and Reproducibility) Analysis

52

Public fields

X Data frame containing the measurement data.

gageRR.c

ANOVA List containing the results of the Analysis of Variance (ANOVA) for the gage study.

RedANOVA List containing the results of the reduced ANOVA.

method Character string specifying the method used for the analysis (e.g., “crossed™, “nested™).

Estimates List of estimates including variance components, repeatability, and reproducibility.

Varcomp List of variance components.

Sigma Numeric value representing the standard deviation of the measurement system.
GageName Character string representing the name of the gage.

GageTolerance Numeric value indicating the tolerance of the gage.

DateOfStudy Character string representing the date of the gage R&R study.
PersonResponsible Character string indicating the person responsible for the study.

Comments Character string for additional comments or notes about the study.

b Factor levels for operator.

a Factor levels for part.

y Numeric vector or matrix containing the measurement responses.

facNames Character vector specifying the names of the factors (e.g., “Operator™, “Part™).

numO Integer representing the number of operators.
numP Integer representing the number of parts.

numM Integer representing the number of measurements per part-operator combination.

Methods

Public methods:

gageRR.
gageRR.
gageRR.
gageRR.
gageRR.
gageRR.
gageRR.
gageRR.
gageRR.
gageRR.
gageRR.
gageRR.
gageRR.
gageRR.
gageRR.
gageRR.

c$new()

c$print()
c$subset ()
c$summary ()
c$get.response()
c$response()
c$names ()
c$as.data.frame()
c$get.tolerance()
c$set.tolerance()
c$get.sigma()
c$set.sigma()
c$plot()
c$errorPlot()
c$whiskersPlot()
c$averagePlot ()

gageRR.c 53

* gageRR.c$compPlot ()
* gageRR.c$clone()

Method new(): Initialize the fiels of the gageRR object

Usage:

gageRR. c$new(
X,
ANOVA = NULL,

RedANOVA = NULL,
method = NULL,
Estimates = NULL,
Varcomp = NULL,

Sigma = NULL,
GageName = NULL,
GageTolerance = NULL,
DateOfStudy = NULL,
PersonResponsible = NULL,
Comments = NULL,

b = NULL,

a = NULL,

y = NULL,

facNames = NULL,

numO = NULL,

numP = NULL,

numM = NULL

)

Arguments:

X Data frame containing the measurement data.

ANOVA List containing the results of the Analysis of Variance (ANOVA) for the gage study.
RedANOVA List containing the results of the reduced ANOVA.

method Character string specifying the method used for the analysis (e.g., "crossed", "nested").
Estimates List of estimates including variance components, repeatability, and reproducibility.
Varcomp List of variance components.

Sigma Numeric value representing the standard deviation of the measurement system.
GageName Character string representing the name of the gage.

GageTolerance Numeric value indicating the tolerance of the gage.

DateOfStudy Character string representing the date of the gage R&R study.
PersonResponsible Character string indicating the person responsible for the study.
Comments Character string for additional comments or notes about the study.

b Factor levels for operator.

a Factor levels for part.

y Numeric vector or matrix containing the measurement responses.

facNames Character vector specifying the names of the factors (e.g., "Operator”, "Part").

numO Integer representing the number of operators.

numP Integer representing the number of parts.

gageRR.c

numM Integer representing the number of measurements per part-operator combination.

Method print(): Return the data frame containing the measurement data (X)
Usage:
gageRR.c$print ()
Method subset(): Return a subset of the data frame that containing the measurement data (X)

Usage:
gageRR.c$subset (i, j)

Arguments:
i The i-position of the row of X.
j The j-position of the column of X.

Method summary(): Summarize the information of the fields of the gageRR object.

Usage:
gageRR. c$summary ()

Method get.response(): Get or get the response for a gageRRDesign object.
Usage:
gageRR.c$get.response()

Method response(): Set the response for a gageRRDesign object.

Usage:
gageRR.c$response(value)

Arguments:

value New response vector.

Method names(): Methods for function names in Package base.
Usage:
gageRR. c$names ()

Method as.data.frame(): Methods for function as.data. frame in Package base.
Usage:
gageRR.c$as.data. frame()

Method get.tolerance(): Getthe tolerance for an object of class gageRR.
Usage:
gageRR.c$get.tolerance()

Method set.tolerance(): Setthe tolerance for an object of class gageRR.
Usage:
gageRR.c$set.tolerance(value)
Arguments:

value A data.frame or vector for the new value of tolerance.

gageRR.c 55

Method get.sigma(): Get the sigma for an object of class gageRR.
Usage:
gageRR.c$get.sigma()

Method set.sigma(): Setthe sigma for an object of class gageRR.
Usage:
gageRR.c$set.sigma(value)

Arguments:

value Valor of sigma

Method plot(): This function creates a customized plot using the data from the gageRR.c
object.

Usage:

gageRR.c$plot(main = NULL, xlab = NULL, ylab = NULL, col, lwd, fun = mean)

Arguments:

main Character string specifying the title of the plot.

xlab A character string for the x-axis label.

ylab A character string for the y-axis label.

col A character string or vector specifying the color(s) to be used for the plot elements.

lwd A numeric value specifying the line width of plot elements

fun Function to use for the calculation of the interactions (e.g., mean, median). Default is mean.

Examples:

Create gageRR-object
gdo = gageRRDesign(Operators = 3, Parts = 10, Measurements = 3, randomize = FALSE)
Vector of responses
y = ¢c(0.29,0.08, 0.04,-0.56,-0.47,-1.38,1.34,1.19,0.88,0.47,0.01,0.14,-0.80,
-0.56,-1.46, 0.02,-0.20,-0.29,0.59,0.47,0.02,-0.31,-0.63,-0.46,2.26,
1.80,1.77,-1.36,-1.68,-1.49,0.41,0.25,-0.11,-0.68,-1.22,-1.13,1.17,0.94,
1.09,0.50,1.03,0.20,-0.92,-1.20,-1.07,-0.11, 0.22,-0.67,0.75,0.55,0.01,
-0.20, 0.08,-0.56,1.99,2.12,1.45,-1.25,-1.62,-1.77,0.64,0.07,-0.15,-0.58,
-0.68,-0.96,1.27,1.34,0.67,0.64,0.20,0.11,-0.84,-1.28,-1.45,-0.21,0.06,
-0.49,0.66,0.83,0.21,-0.17,-0.34,-0.49,2.01,2.19,1.87,-1.31,-1.50,-2.16)

Appropriate responses
gdo$response(y)

Perform and gageRR
gdo <- gageRR(gdo)

gdo$plot ()

Method errorPlot(): The data from an object of class gageRR can be analyzed by running
‘Error Charts® of the individual deviations from the accepted rference values. These ‘Error Charts*
are provided by the function errorPlot.

Usage:

gageRR.c$errorPlot(main, xlab, ylab, col, pch, ylim, legend = TRUE)

56

gageRR.c

Arguments:

main a main title for the plot.

xlab A character string for the x-axis label.
ylab A character string for the y-axis label.
col Plotting color.

pch An integer specifying a symbol or a single character to be used as the default in plotting
points.
ylim The y limits of the plot.

legend A logical value specifying whether a legend is plotted automatically. By default legend
is set to ‘TRUE".

Examples:

Create gageRR-object

gdo = gageRRDesign(Operators = 3, Parts = 10, Measurements = 3, randomize = FALSE)

Vector of responses

y = c(0.29,0.08, 0.04,-0.56,-0.47,-1.38,1.34,1.19,0.88,0.47,0.01,0.14,-0.80,

-0.56,-1.46, 0.02,-0.20,-0.29,0.59,0.47,0.02,-0.31,-0.63,-0.46,2.26,

1.80,1.77,-1.36,-1.68,-1.49,0.41,0.25,-0.11,-0.68,-1.22,-1.13,1.17,0.94,
1.09,0.50,1.03,0.20,-0.92,-1.20,-1.07,-0.11, 0.22,-0.67,0.75,0.55,0.01,
-0.20, 0.08,-0.56,1.99,2.12,1.45,-1.25,-1.62,-1.77,0.64,0.07,-0.15,-0.58,
-0.68,-0.96,1.27,1.34,0.67,0.64,0.20,0.11,-0.84,-1.28,-1.45,-0.21,0.06,
-0.49,0.66,0.83,0.21,-0.17,-0.34,-0.49,2.01,2.19,1.87,-1.31,-1.50,-2.16)

Appropriate responses
gdo$response(y)

Perform and gageRR
gdo <- gageRR(gdo)

gdo$errorPlot ()

Method whiskersPlot(): In a Whiskers Chart, the high and low data values and the average
(median) by part-by-operator are plotted to provide insight into the consistency between operators,
to indicate outliers and to discover part-operator interactions. The Whiskers Chart reminds of
boxplots for every part and every operator.

Usage:

gageRR.c$whiskersPlot(main, xlab, ylab, col, ylim, legend = TRUE)

Arguments:

main a main title for the plot.

xlab A character string for the x-axis label.

ylab A character string for the y-axis label.

col Plotting color.

ylim The y limits of the plot.

legend A logical value specifying whether a legend is plotted automatically. By default legend
is set to “TRUE".

Examples:

gageRR.c 57

Create gageRR-object
gdo = gageRRDesign(Operators = 3, Parts = 10, Measurements = 3, randomize = FALSE)
Vector of responses
y = ¢c(0.29,0.08, 0.04,-0.56,-0.47,-1.38,1.34,1.19,0.88,0.47,0.01,0.14,-0.80,
-0.56,-1.46, 0.02,-0.20,-0.29,0.59,0.47,0.02,-0.31,-0.63,-0.46,2.26,
1.80,1.77,-1.36,-1.68,-1.49,0.41,0.25,-0.11,-0.68,-1.22,-1.13,1.17,0.94,
1.09,0.50,1.03,0.20,-0.92,-1.20,-1.07,-0.11, 0.22,-0.67,0.75,0.55,0.01,
-0.20, 0.08,-0.56,1.99,2.12,1.45,-1.25,-1.62,-1.77,0.64,0.07,-0.15,-0.58,
-0.68,-0.96,1.27,1.34,0.67,0.64,0.20,0.11,-0.84,-1.28,-1.45,-0.21,0.06,
-0.49,0.66,0.83,0.21,-0.17,-0.34,-0.49,2.01,2.19,1.87,-1.31,-1.50,-2.16)

Appropriate responses
gdo$response(y)

Perform and gageRR
gdo <- gageRR(gdo)

gdo$whiskersPlot ()

Method averagePlot(): averagePlot creates all x-y plots of averages by size out of an object
of class gageRR. Therfore the averages of the multiple readings by each operator on each part are
plotted with the reference value or overall part averages as the index.

Usage:

gageRR.c$averagePlot(main, xlab, ylab, col, single = FALSE)
Arguments:

main a main title for the plot.

xlab A character string for the x-axis label.

ylab A character string for the y-axis label.

col Plotting color.

single Alogical value.If “TRUE* a new graphic device will be opened for each plot. By default
single is set to ‘FALSE‘.

Examples:

Create gageRR-object
gdo = gageRRDesign(Operators = 3, Parts = 10, Measurements = 3, randomize = FALSE)
Vector of responses
y = ¢c(0.29,0.08, 0.04,-0.56,-0.47,-1.38,1.34,1.19,0.88,0.47,0.01,0.14,-0.80,
-0.56,-1.46, 0.02,-0.20,-0.29,0.59,0.47,0.02,-0.31,-0.63,-0.46,2.26,
1.80,1.77,-1.36,-1.68,-1.49,0.41,0.25,-0.11,-0.68,-1.22,-1.13,1.17,0.94,
1.09,0.50,1.03,0.20,-0.92,-1.20,-1.07,-0.11, 0.22,-0.67,0.75,0.55,0.01,
-0.20, 0.08,-0.56,1.99,2.12,1.45,-1.25,-1.62,-1.77,0.64,0.07,-0.15,-0.58,
-0.68,-0.96,1.27,1.34,0.67,0.64,0.20,0.11,-0.84,-1.28,-1.45,-0.21,0.06,
-0.49,0.66,0.83,0.21,-0.17,-0.34,-0.49,2.01,2.19,1.87,-1.31,-1.50,-2.16)

Appropriate responses
gdo$response(y)

Perform and gageRR
gdo <- gageRR(gdo)

58 gageRR.c

gdo$averagePlot ()

Method compPlot(): compPlot creates comparison x-y plots of an object of class gageRR. The
averages of the multiple readings by each operator on each part are plotted against each other
with the operators as indices. This plot compares the values obtained by one operator to those of
another.

Usage:

gageRR.c$compPlot(main, xlab, ylab, col, cex.lab, fun = NULL)

Arguments:

main a main title for the plot.

xlab A character string for the x-axis label.

ylab A character string for the y-axis label.

col Plotting color.

cex.lab The magnification to be used for x and y labels relative to the current setting of cex.

fun Optional function that will be applied to the multiple readings of each part. fun should be
an object of class function like mean,median, sum, etc. By default, fun is set to ‘NULL*
and all readings will be plotted.

Examples:

Create gageRR-object
gdo = gageRRDesign(Operators = 3, Parts = 10, Measurements = 3, randomize = FALSE)
Vector of responses
y = ¢c(0.29,0.08, 0.04,-0.56,-0.47,-1.38,1.34,1.19,0.88,0.47,0.01,0.14,-0.80,
-0.56,-1.46, 0.02,-0.20,-0.29,0.59,0.47,0.02,-0.31,-0.63,-0.46,2.26,
1.80,1.77,-1.36,-1.68,-1.49,0.41,0.25,-0.11,-0.68,-1.22,-1.13,1.17,0.94,
1.09,0.50,1.03,0.20,-0.92,-1.20,-1.07,-0.11, 0.22,-0.67,0.75,0.55,0.01,
-0.20, 0.08,-0.56,1.99,2.12,1.45,-1.25,-1.62,-1.77,0.64,0.07,-0.15,-0.58,
-0.68,-0.96,1.27,1.34,0.67,0.64,0.20,0.11,-0.84,-1.28,-1.45,-0.21,0.06,
-0.49,0.66,0.83,0.21,-0.17,-0.34,-0.49,2.01,2.19,1.87,-1.31,-1.50,-2.16)

Appropriate responses
gdo$response(y)

Perform and gageRR
gdo <- gageRR(gdo)

gdo$compPlot ()

Method clone(): The objects of this class are cloneable with this method.
Usage:
gageRR.c$clone(deep = FALSE)
Arguments:

deep Whether to make a deep clone.

Examples

#create gageRR-object
gdo <- gageRRDesign(Operators = 3, Parts = 10, Measurements = 3, randomize = FALSE)

gageRR.c

#vector of responses

y <- c(0.29,0.08, 0.04,-0.56,-0.47,-1.38,1.34,1.19,0.88,0.47,0.01,0.14,-0.80,
-0.56,-1.46, 0.02,-0.20,-0.29,0.59,0.47,0.02,-0.31,-0.63,-0.46,2.26,
1.80,1.77,-1.36,-1.68,-1.49,0.41,0.25,-0.11,-0.68,-1.22,-1.13,1.17,0.94,
1.09,0.50,1.03,0.20,-0.92,-1.20,-1.07,-0.11, 0.22,-0.67,0.75,0.55,0.01,
-0.20, 0.08,-0.56,1.99,2.12,1.45,-1.25,-1.62,-1.77,0.64,0.07,-0.15,-0.58,
-0.68,-0.96,1.27,1.34,0.67,0.64,0.20,0.11,-0.84,-1.28,-1.45,-0.21,0.06,
-0.49,0.66,0.83,0.21,-0.17,-0.34,-0.49,2.01,2.19,1.87,-1.31,-1.50,-2.16)

#appropriate responses
gdo$response(y)

perform and gageRR
gdo <- gageRR(gdo)

Using the plots
gdo$plot()

oo
Method ~gageRR.c$plot”
e L P e

Create gageRR-object

gdo = gageRRDesign(Operators = 3, Parts = 10, Measurements = 3, randomize = FALSE)

Vector of responses

y = ¢c(0.29,0.08, 0.04,-0.56,-0.47,-1.38,1.34,1.19,0.88,0.47,0.01,0.14,-0.80,
-0.56,-1.46, 0.02,-0.20,-0.29,0.59,0.47,0.02,-0.31,-0.63,-0.46,2.26,
1.80,1.77,-1.36,-1.68,-1.49,0.41,0.25,-0.11,-0.68,-1.22,-1.13,1.17,0.94,
1.09,0.50,1.03,0.20,-0.92,-1.20,-1.07,-0.11, 0.22,-0.67,0.75,0.55,0.01,
-0.20, 0.08,-0.56,1.99,2.12,1.45,-1.25,-1.62,-1.77,0.64,0.07,-0.15,-0.58,
-0.68,-0.96,1.27,1.34,0.67,0.64,0.20,0.11,-0.84,-1.28,-1.45,-0.21,0.06,
-0.49,0.66,0.83,0.21,-0.17,-0.34,-0.49,2.01,2.19,1.87,-1.31,-1.50,-2.16)

Appropriate responses
gdo$response(y)

Perform and gageRR
gdo <- gageRR(gdo)

gdo$plot()

B o
Method ~gageRR.c$errorPlot”
B o

Create gageRR-object

gdo = gageRRDesign(Operators = 3, Parts = 10, Measurements = 3, randomize = FALSE)

Vector of responses

y = ¢c(0.29,0.08, 0.04,-0.56,-0.47,-1.38,1.34,1.19,0.88,0.47,0.01,0.14,-0.80,
-0.56,-1.46, 0.02,-0.20,-0.29,0.59,0.47,0.02,-0.31,-0.63,-0.46,2.26,
1.80,1.77,-1.36,-1.68,-1.49,0.41,0.25,-0.11,-0.68,-1.22,-1.13,1.17,0.94,
1.09,0.50,1.03,0.20,-0.92,-1.20,-1.07,-0.11, 0.22,-0.67,0.75,0.55,0.01,
-0.20, 0.08,-0.56,1.99,2.12,1.45,-1.25,-1.62,-1.77,0.64,0.07,-0.15,-0.58,
-0.68,-0.96,1.27,1.34,0.67,0.64,0.20,0.11,-0.84,-1.28,-1.45,-0.21,0.06,
-0.49,0.66,0.83,0.21,-0.17,-0.34,-0.49,2.01,2.19,1.87,-1.31,-1.50,-2.16)

59

60

Appropriate responses
gdo$response(y)

Perform and gageRR
gdo <- gageRR(gdo)

gdo$errorPlot()

B oo
Method ~gageRR.c$whiskersPlot™
o

Create gageRR-object

gageRR.c

gdo = gageRRDesign(Operators = 3, Parts = 10, Measurements = 3, randomize = FALSE)

Vector of responses

y = c(0.29,0.08, 0.04,-0.56,-0.47,-1.38,1.34,1.19,0.88,0.47,0.01,0.14,-0.80,
-0.56,-1.46, 0.02,-0.20,-0.29,0.59,0.47,0.02,-0.31,-0.63,-0.46,2.26,
1.80,1.77,-1.36,-1.68,-1.49,0.41,0.25,-0.11,-0.68,-1.22,-1.13,1.17,0.94,
1.09,0.50,1.03,0.20,-0.92,-1.20,-1.07,-0.11, 0.22,-0.67,0.75,0.55,0.01,
-0.20, 0.08,-0.56,1.99,2.12,1.45,-1.25,-1.62,-1.77,0.64,0.07,-0.15,-0.58,
-0.68,-0.96,1.27,1.34,0.67,0.64,0.20,0.11,-0.84,-1.28,-1.45,-0.21,0.06,
-0.49,0.66,0.83,0.21,-0.17,-0.34,-0.49,2.01,2.19,1.87,-1.31,-1.50,-2.16)

Appropriate responses
gdo$response(y)

Perform and gageRR
gdo <- gageRR(gdo)

gdo$whiskersPlot()

oo
Method ~gageRR.c$averagePlot”

B m o

Create gageRR-object

gdo = gageRRDesign(Operators = 3, Parts = 10, Measurements = 3, randomize = FALSE)

Vector of responses

y = c(0.29,0.08, 0.04,-0.56,-0.47,-1.38,1.34,1.19,0.88,0.47,0.01,0.14,-0.80,
-0.56,-1.46, 0.02,-0.20,-0.29,0.59,0.47,0.02,-0.31,-0.63,-0.46,2.26,
1.80,1.77,-1.36,-1.68,-1.49,0.41,0.25,-0.11,-0.68,-1.22,-1.13,1.17,0.94,
1.09,0.50,1.03,0.20,-0.92,-1.20,-1.07,-0.11, 0.22,-0.67,0.75,0.55,0.01,
-0.20, 0.08,-0.56,1.99,2.12,1.45,-1.25,-1.62,-1.77,0.64,0.07,-0.15,-0.58,
-0.68,-0.96,1.27,1.34,0.67,0.64,0.20,0.11,-0.84,-1.28,-1.45,-0.21,0.06,
-0.49,0.66,0.83,0.21,-0.17,-0.34,-0.49,2.01,2.19,1.87,-1.31,-1.50,-2.16)

Appropriate responses
gdo$response(y)

Perform and gageRR
gdo <- gageRR(gdo)

gdo$averagePlot()

gageRRDesign 61

Method ~gageRR.c$compPlot”
B o

Create gageRR-object

gdo = gageRRDesign(Operators = 3, Parts = 10, Measurements = 3, randomize = FALSE)

Vector of responses

y = c(0.29,0.08, 0.04,-0.56,-0.47,-1.38,1.34,1.19,0.88,0.47,0.01,0.14,-0.80,
-0.56,-1.46, 0.02,-0.20,-0.29,0.59,0.47,0.02,-0.31,-0.63,-0.46,2.26,
1.80,1.77,-1.36,-1.68,-1.49,0.41,0.25,-0.11,-0.68,-1.22,-1.13,1.17,0.94,
1.09,0.50,1.03,0.20,-0.92,-1.20,-1.07,-0.11, 0.22,-0.67,0.75,0.55,0.01,
-0.20, 0.08,-0.56,1.99,2.12,1.45,-1.25,-1.62,-1.77,0.64,0.07,-0.15,-0.58,
-0.68,-0.96,1.27,1.34,0.67,0.64,0.20,0.11,-0.84,-1.28,-1.45,-0.21,0.06,
-0.49,0.66,0.83,0.21,-0.17,-0.34,-0.49,2.01,2.19,1.87,-1.31,-1.50,-2.16)

Appropriate responses
gdo$response(y)

Perform and gageRR
gdo <- gageRR(gdo)

gdo$compPlot ()

gageRRDesign gageRRDesign: Gage R&R - Gage Repeatability and Reproducibility

Description

Function to Creates a Gage R&R design.

Usage
gageRRDesign(
Operators = 3,
Parts = 10,
Measurements = 3,
method = "crossed”,
sigma = 6,
randomize = TRUE
)
Arguments
Operators Numeric value giving a number or a character vector defining the Operators. By
default Operators is set to ‘3°.
Parts A number or character vector defining the Parts. By default parts is setto ‘10°.

Measurements A number defining the measurements per part. By default Measurements is set
to ‘3°.

62

method

sigma

randomize

Value

interactionPlot

Character string specifying the Gage R&R method. ~crossed™ which is the
typical design for performing a Measurement Systems Analysis using Gage Re-
peatability and Reproducibility or “nested™ which is used for destructive test-
ing (i.e. the same part cannot be measured twice). Operators measure each a
different sample of parts under the premise that the parts of each batch are alike.
By default method is set to ~crossed™.

For sigma=6 this relates to 99.73 percent representing the full spread of a nor-
mal distribution function (i.e. pnorm(3) - pnorm(-3)). Another popular setting
sigma=5.15 relates to 99 percent (i.e. pnorm(2.575) - pnorm(-2.575)). By
default sigma is set to ‘6°.

Logical value. TRUE (default) randomizes the gageRR design.

The function gageRRDesign returns an object of class gageRR.

See Also

gageRR. c, gageRR.

Examples

design <- gageRRDesign(Operators = 3, Parts = 10, Measurements = 3,

method = "crossed”, sigma = 6, randomize = TRUE)

interactionPlot

interactionPlot

Description

Creates an interaction plot for the factors in a factorial design to visualize the interaction effects

between them.

Usage

interactionPlot(dfac, response = NULL, fun = mean, main, col = 1:2)

Arguments

dfac

response

fun

An object of class facDesign.c, representing a factorial design.

Response variable. If the response data frame of fdo consists of more then one
responses, this variable can be used to choose just one column of the response
data frame. response Needs to be an object of class character with length of
‘1°. It needs to be the same character as the name of the response in the response
data frame that should be plotted.

Function to use for the calculation of the interactions (e.g., mean, median). De-
fault is mean.

mixDesign 63

main Character string: title of the plot.

col Vector of colors for the plot. Single colors can be given as character strings or
numeric values. Default is 1: 2.

Details

interactionPlot () displays interactions for an object of class facDesign (i.e. 2k full or 2*k-p
fractional factorial design). Parts of the original interactionPlot were integrated.

Value

Return an interaction plot for the factors in a factorial design.

See Also

fracDesign, facDesign

Examples

Example 1

Create the facDesign object

dfac <- facDesign(k = 3, centerCube = 4)
dfac$names(c('Factor 1', 'Factor 2', 'Factor 3'))

Assign performance to the factorial design

rend <- c(simProc(120,140,1), simProc(80,140,1), simProc(120,140,2),
simProc(120,120,1), simProc(90,130,1.5), simProc(90,130,1.5),
simProc(80,120,2), simProc(90,130,1.5), simProc(90,130,1.5),
simProc(120,120,2), simProc(80,140,2), simProc(80,120,1))

dfac$.response(rend)

Create an interaction plot
interactionPlot(dfac, fun = mean, col = c("purple”, "red"))

Example 2

vp <- fracDesign(k=3, replicates = 2)

y <- 4*vp$get(j=1) -7*vp$get(j=2) + 2xvp$get(j=2)*vpdget(j=1) +
0.2*xvp$get(j=3) + rnorm(16)

vp$.response(y)

interactionPlot(vp)

mixDesign mixDesign: Mixture Designs

Description

Function to generate simplex lattice and simplex centroid mixture designs with optional center
points and axial points.

64

Usage
mixDesign(
P,
n=3

mixDesign

type = "lattice”,
center = TRUE,
axial = FALSE,

delta,
replicates
lower,
total = 1,
randomize,

seed = 1234

Arguments

p
n

type

center

axial

delta

replicates

lower

total

randomize

seed

Value

T,

Numerical value giving the amount of factors.
Numerical value specifying the degree (ignored if type = ‘centroid®).

Character string giving the type of design. type can be ‘lattice‘ or ‘centroid*
(referencing to the first source under the section references]. By default type is
set to ‘lattice*.

Logical value specifying whether (optional) center points will be added. By
default ‘center” is set to ‘TRUE".

Logical value specifying whether (optional) axial points will be added. By de-
fault ‘axial® is set to ‘FALSE".

Numerical value giving the delta (see references) for axial runs. No default
setting.

Vector with the number of replicates for the different design points i.e. c(center
=1, axial = 1, pureBlend = 1, BinaryBlend = 1, p-3 blend, p-2 blend, p-1 blend).
By default ‘replicates® is set to ‘1°.

Numeric vector of lower-bound constraints on the component proportions (i.e.
must be given in percent).

Numeric vector with

¢ [1] the percentage of the mixture made up by the q - components (e.g. q =3
and x1 + x2 + x3 = 0.8, total = 0.8 with 0.2 for the other factors being held
constant)

* [2] overall total in corresponding units (e.g. 200ml for the overall mixture)

Logical value. If “TRUE* the RunOrder of the mixture design will be random-
ized (default).

Nmerical value giving the input for set.seed.

The function mixDesig() returns an object of class mixDesig().

mixDesign.c 65

Note

In this version the creation of (augmented) lattice, centroid mixture designs is fully supported.
Getters and Setter methods for the mixDesign object exist just as for objects of class facDesign
(i.e. factorial designs).

The creation of constrained component proportions is partially supported but don’t rely on it. Visu-
alization (i.e. ternary plots) for some of these designs can be done with the help of the wirePlot3
and contourPlot3 function.

See Also

mixDesign.c, facDesign.c, facDesign, fracDesign, rsmDesign, wirePlot3, contourPlot3.

Examples

Example usage of mixDesign
mdo <- mixDesign(3, 2, center = FALSE, axial = FALSE, randomize = FALSE, replicates =c(1, 1, 2, 3))

mdo$names(c("polyethylene”, "polystyrene”, "polypropylene”))
elongation <- c(11.0, 12.4, 15.0, 14.8, 16.1, 17.7,

16.4, 16.6, 8.8, 10.0, 10.0, 9.7,

11.8, 16.8, 16.0)
mdo$. response(elongation)

mdo$units()
mdo$summary ()

mixDesign.c mixDesign-class: Class ‘mixDesign’

Description

mixDesign class for simplex lattice and simplex centroid mixture designs with optional center points
and augmented points.

Public fields

name Character string representing the name of the design.

factors List of factors involved in the mixture design, including their levels and settings.

total Numeric value representing the total number of runs in the design.

lower Numeric vector representing the lower bounds of the factors in the design.

design Data frame containing the design matrix for the mixture design.

designType Character string specifying the type of design (e.g., "simplex-lattice", "simplex-centroid").
pseudo Data frame containing pseudo-experimental runs if applicable.

response Data frame containing the responses or outcomes measured in the design.

Type Data frame specifying the type of design used (e.g., "factorial", "response surface").

66 mixDesign.c

block Data frame specifying block structures if the design is blocked.
runOrder Data frame specifying the order in which runs are performed.
standardOrder Data frame specifying the standard order of the runs.
desireVal List of desired values or targets for the response variables.
desirability List of desirability scores or metrics based on the desired values.

fits Data frame containing the fitted model parameters and diagnostics.

Methods

Public methods:
e mixDesign.c$.factors()
* mixDesign.c$names()
e mixDesign.c$as.data.frame()
e mixDesign.c$print()
* mixDesign.c$.response()
e mixDesign.c$.nfp()
* mixDesign.c$summary()
e mixDesign.c$units()
* mixDesign.c$lows()
* mixDesign.c$highs()
* mixDesign.c$clone()

Method . factors(): Get and set the factors in an object of class mixDesign
Usage:
mixDesign.c$.factors(value)

Arguments:

value New factors, If missing value get the factors.

Method names(): Get and set the names in an object of class mixDesign.
Usage:
mixDesign.c$names(value)

Arguments:

value New names, If missing value get the names.

Method as.data.frame(): Methods for function as.data. frame in Package base.

Usage:
mixDesign.c$as.data.frame()

Method print(): Methods for function print in Package base.

Usage:
mixDesign.c$print()

Method . response(): Get and set the the response in an object of class mixDesign.

mixDesign.c 67

Usage:
mixDesign.c$.response(value)

Arguments:

value New response, If missing value get the response.
Method .nfp(): Prints a summary of the factors attributes including their low, high, name, unit,
and type.

Usage:
mixDesign.c$.nfp()

Method summary(): Methods for function summary in Package base.

Usage:
mixDesign.c$summary ()

Method units(): Get and set the units for the factors in an object of class mixDesign.

Usage:
mixDesign.c$units(value)

Arguments:

value New units, If missing value get the units.

Method lows(): Get and set the lows for the factors in an object of class mixDesign.

Usage:
mixDesign.c$lows(value)

Arguments:

value New lows, If missing value get the lows.

Method highs(): Get and set the highs for the factors in an object of class mixDesign.
Usage:
mixDesign.c$highs(value)

Arguments:

value New highs, If missing value get the highs.

Method clone(): The objects of this class are cloneable with this method.

Usage:
mixDesign.c$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

mixDesign, contourPlot3, wirePlot3

68 MSALinearity

MSALinearity MSALinearity-class: Class ‘MSALinearity‘

Description

R6 class for performing Measurement System Analysis (MSA) Linearity studies.

Public fields

X A data frame containing the independent variable(s) used in the linearity study.
Y A data frame containing the dependent variable(s) or responses measured in the linearity study.
model The linear model object resulting from the linearity analysis.

conf.level A numeric value specifying the confidence level for the linearity analysis. This should
be between 0 and 1 (e.g., 0.95 for a 95% confidence level).

Linearity A list or data frame containing the results of the linearity study, including the linearity
value and associated statistics.

GageName A character string specifying the name of the gage or measurement system under analy-
sis.

GageTolerance A numeric value specifying the tolerance of the gage or measurement system.

DateOfStudy A character string or Date object indicating the date when the linearity study was
conducted.

PersonResponsible A character string specifying the name of the person responsible for the lin-
earity study.

Comments A character string for additional comments or notes about the linearity study.

facNames A character vector specifying the names of the factors involved in the study, if any.

Methods

Public methods:
* MSALinearity$response()
* MSALinearity$summary()
e MSALinearity$plot()
* MSALinearity$print()
e MSALinearity$as.data.frame()
* MSALinearity$clone()

Method response(): Get and set the the response in an object of class MSALinearity.
Usage:
MSALinearity$response(value)

Arguments:

value New response, If missing value get the response.

mvPlot 69

Method summary(): Methods for function summary in Package base.

Usage:
MSALinearity$summary ()

Method plot(): Plots the measurement system, including individual biases, mean bias, and a
regression line with confidence intervals.

Usage:

MSALinearity$plot(ylim, col, pch, 1ty = c(1, 2))

Arguments:

ylim A numeric vector specifying the limits for the y-axis. If not provided, the limits are
automatically calculated based on data.

col A vector specifying the colors to be used for different plot elements.

pch A numeric vector specifying the plotting characters (symbols) for individual data points
and mean bias points.

1ty A numeric vector specifying the line types for the regression line and its confidence inter-
vals. The defaultis c(1, 2).

Method print(): Methods for function print in Package base.

Usage:
MSALinearity$print()

Method as.data.frame(): Return adata frame with the information of the object MSALinearity.

Usage:
MSALinearity$as.data.frame()

Method clone(): The objects of this class are cloneable with this method.

Usage:
MSALinearity$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

mvPlot mvPlot: Function to create a multi-variable plot

Description

Creates a plot for visualizing the relationships between a response variable and multiple factors.

70 mvPlot

Usage

mvPlot (
response,
facl,
fac2,
fac3,
fac4,
sort = TRUE,
col,
pch,
labels = FALSE,
quantile = TRUE,

FUN = NA
)
Arguments
response The values of the response in a vector.response must be declared.
fac1l Vector providing factor 1 as shown in the example.fac1 must be declared.
fac2 Vector providing factor 1 as shown in the example.fac2 must be declared.
fac3 Optional vector providing factor 3 as shown in the example.
fac4 Optional vector providing factor 4 as shown in the example.
sort Logical value indicating whether the sequence of the factors given by fac1 -

fac4 should be reordered to minimize the space needed to visualize the Multi-
Vari-Chart. By default sort is set to “TRUE".

col Graphical parameter. Vector containing numerical values or character strings
giving the colors for the different factors. By default col starts with the value
‘3¢ and is continued as needed.

pch Graphical parameter. Vector containing numerical values or single characters
giving plotting points for the different factors. See points for possible values
and their interpretation. Note that only integers and single-character strings can
be set as a graphics parameter (and not NA nor NULL). By default pch starts with
the value ‘1° and is continued as needed.

labels Logical value indicating whether the single points should be labels with the
row-number of the data.frame invisibly returned by the function mvPlot. By
default labels is set to ‘FALSE".

quantile A logical value indicating whether the quanitiles (0.00135, 0.5 & 0.99865)
should be visualized for the single groups. By default quantile is setto “TRUE".

FUN An optional function to be used for calculation of response for unique settings
of the factors e.g. the mean. By default FUN is set to ‘NA‘ and therfore omitted.

Value

mvPlot returns an invisible list cointaining: a data.frame in which all plotted points are listed and
the final plot. The option labels can be used to plot the row-numbers at the single points and to ease
the identification.

normalPlot

71

Examples
#Example I
exampl = expand.grid(c("Enginel”,"Engine2”,"Engine3"),c(10,20,30,40))
exampl = as.data.frame(rbind(exampl, exampl, exampl))
exampl = cbind(examp1, rnorm(36, 1, 0.02))
names(examp1) = c("factor1”, "factor2”, "response”)

mvPlot(response = exampl1[,3], facl = exampl1[,2],fac2 = examp1[,1],sort=FALSE,FUN=mean)

normalPlot normalPlot: Normal plot

Description

Creates a normal probability plot for the effects in a facDesign. c object.

Usage
normalPlot(
dfac,
response = NULL,
main,
ylim,
xlim,
xlab,
ylab,
pch,
col,
border = "red"
)
Arguments
dfac An object of class facDesign.c.
response Response variable. If the response data frame of fdo consists of more then one
responses, this variable can be used to choose just one column of the response
data frame. response needs to be an object of class character with length of ‘1°.
It needs to be the same character as the name of the response in the response
data frame that should be plotted. By default respons‘ is set to NULL.
main Character string specifying the main title of the plot.
ylim Graphical parameter. The y limits of the plot.
x1lim Graphical parameter. The x limits (x1, x2) of the plot. Note that x1 > x2 is
allowed and leads to a ‘reversed axis ‘.
xlab Character string specifying the label for the x-axis.
ylab Character string specifying the label for the y-axis.

72 normalPlot

pch Graphical parameter. Vector containing numerical values or single characters
giving plotting points for the different factors. Accepts values from 0 to 25,
each corresponding to a specific shape in ggplot2 (e.g., O: square, 1: circle, 2:
triangle point up, 3: plus, 4: cross).

col Graphical parameter. Single numerical value or character string giving the color
for the points (e.g., 1: black, 2: red, 3: green).

border Graphical parameter. Single numerical value or character string giving the color
of the border line.

Details

If the given facDesign.c object fdo contains replicates this function will deliver a normal plot i.e.:
effects divided by the standard deviation (t-value) will be plotted against an appropriate probability
scaling (see: ‘ppoints‘). If the given facDesign.c object fdo contains no replications the standard
error can not be calculated. In that case the function will deliver an effect plot. i.e.: the effects will
be plotted against an appropriate probability scaling. (see: ‘ppoints®).

Value

The function normalPlot returns an invisible list containing:

effects a list of effects for each response in the facDesign. c object.
plot The generated normal plot.
See Also

facDesign, paretoPlot, interactionPlot

Examples

Example 1: Create a normal probability plot for a full factorial design
dfac <- facDesign(k = 3, centerCube = 4)
dfac$names(c('Factor 1', 'Factor 2', 'Factor 3'))

Assign performance to the factorial design

rend <- c(simProc(120,140,1), simProc(80,140,1), simProc(120,140,2),
simProc(120,120,1), simProc(90,130,1.5), simProc(90,130,1.5),
simProc(80,120,2), simProc(90,130,1.5), simProc(90,130,1.5),
simProc(120,120,2), simProc(80,140,2), simProc(80,120,1))

dfac$.response(rend)

normalPlot(dfac)

Example 2: Create a normal probability plot with custom colors and symbols
normalPlot(dfac, col = "blue"”, pch = 4)

oaChoose 73

oaChoose oaChoose: Taguchi Designs

Description

Shows a matrix of possible taguchi designs.

Usage

oaChoose(factors1, factors2, levell, level2, ia)

Arguments
factorsi Number of factors on levell.
factors2 Number of factors on level2.
leveli Number of levels on levell.
level2 Number of levels on level2.
ia Number of interactions.
Details

oaChoose returns possible taguchi designs. Specifying the number of factorl factors with levell
levels (factors1 = 2, levell = 3 means 2 factors with 3 factor levels) and factor2 factors with level2
levels and desired interactions one or more taguchi designs are suggested. If all parameters are set
to ‘0°, a matrix of possible taguchi designs is shown.

Value

oaChoose returns an object of class taguchiDesign.

See Also

» facDesign: for 2k factorial designs.
* rsmDesign: for response surface designs.
* fracDesign: for fractional factorial design.

* gageRRDesign: for gage designs.

Examples

oaChoose()

74 optimum

optimum optimum: Optimal factor settings

Description

This function calculates the optimal factor settings based on defined desirabilities and constraints.
It supports two approaches: (I) evaluating all possible factor settings via a grid search and (II) using
optimization methods such as “optim™ or ~gosolnp™ from the Rsolnp package. Using ~optim™ ini-
tial values for the factors to be optimized over can be set via start. The optimality of the solution de-
pends critically on the starting parameters which is why it is recommended to use type="gosolnp”
although calculation takes a while.

Usage

optimum(fdo, constraints, steps = 25, type = "grid"”, start)

Arguments
fdo An object of class facDesign.c with fits and desires set.
constraints A list specifying the constraints for the factors, e.g., list(A=c(-2,1), B=
c(0, 0.8)).
steps Number of grid points per factor if type = “grid~. Default is 25°.
type The type of search to perform. Supported values are ~grid”, ~optim™, and
“gosolnp™. See Details for more information.
start A numeric vector providing the initial values for the factors when using type =
“optim™.
Details

The function allows you to optimize the factor settings either by evaluating a grid of possible settings
(type = “grid™) or by using optimization algorithms (type = ~optim™ or ~gosolnp™). The choice
of optimization method may significantly affect the result, especially for desirability functions that
lack continuous first derivatives. When using type = ~optim™, it is advisable to provide start
values to avoid local optima. The ~gosolnp™ method is recommended for its robustness, although
it may be computationally intensive.

Value

Return an object of class desOpt.

See Also

overall, desirability,

overall

Examples

#Example 1: Simultaneous Optimization of Several Response Variables
#Define the response surface design as given in the paper and sort via Standard Order
fdo = rsmDesign(k = 3, alpha = 1.633, cc = 0, cs = 6)
fdo = randomize(fdo, so = TRUE)
#Attaching the 4 responses
yl = c(102, 120, 117, 198, 103, 132,
132, 139, 102, 154, 96, 163,
116, 153, 133, 133, 140, 142,
145, 142)

y2 = c(900, 860, 800, 2294, 490, 1289,
1270, 1090, 770, 1690, 700, 1540,
2184, 1784, 1300, 1300, 1145, 1090,

1260, 1344)

y3 = c(470, 410, 570, 240, 640, 270,
410, 380, 590, 260, 520, 380,
520, 290, 380, 380, 430, 430,
390, 390)

y4 = c(67.5, 65, 77.5, 74.5, 62.5, 67,

78, 70, 76, 70, 63, 75,

65, 71, 70, 68.5, 68, 68,

69, 70)
fdo$.response(data.frame(yl, y2, y3, y4)[c(5,2,3,8,1,6,7,4,9:20),1)
#Setting names and real values of the factors
fdo$names(c("silica”, "silan"”, "sulfur"))
fdo$highs(c(1.7, 60, 2.8))
fdo$lows(c(0.7, 40, 1.8))
#Setting the desires
fdo$desires(desirability(yl, 120, 170, scale = c(1,1), target = "max"))
fdo$desires(desirability(y2, 1000, 1300, target = "max"))
fdo$desires(desirability(y3, 400, 600, target = 500))
fdo$desires(desirability(y4, 60, 75, target = 67.5))
#Setting the fits

fdo$set.fits(fdo$lm(yl ~ A+ B + C + A:B + A:C + B:C + I(A*2) + I(B*2) + I(C"2)))
fdo$set.fits(fdo$lm(y2 ~ A + B + C + A:B + A:C + B:C + I(A*2) + I(B*2) + I(C*2)))
fdo$set.fits(fdo$lm(y3 ~ A + B + C + A:B + A:C + B:C + I(A*2) + I(B"2) + I(C"2)))
fdo$set.fits(fdo$lm(y4 ~ A+ B + C + A:B + A:C + B:C + I(A*2) + I(B*2) + I(C"2)))

#Calculate the best factor settings using type = "optim”
optimum(fdo, type = "optim")
#Calculate the best factor settings using type
optimum(fdo, type = "grid")

"grid”

overall overall: Overall Desirability.

76 paretoChart

Description

This function calculates the desirability for each response as well as the overall desirability. The
resulting data.frame can be used to plot the overall desirability as well as the desirabilities for
each response. This function is designed to visualize the desirability approach for multiple response

optimization.
Usage
overall(fdo, steps = 20, constraints, ...)
Arguments
fdo An object of class facDesign.c containing fits and desires.
steps A numeric value indicating the number of points per factor to be evaluated,
which also specifies the grid size. Default is ‘20°.
constraints A list of constraints for the factors in coded values, such as 1ist(A>90.5, B<
0.2).
Further arguments passed to other methods.
Value

A data.frame with a column for each factor, the desirability for each response, and a column for
the overall desirability.

See Also

facDesign, rsmDesign, desirability.

Examples

#Example 1: Arbitrary example with random data

rsdo = rsmDesign(k = 2, blocks = 2, alpha = "both")

rsdo$.response(data.frame(y = rnorm(rsdo$nrow()), y2 = rnorm(rsdo$nrow())))
rsdos$set.fits(rsdo$lm(y ~ A*B + I(A*2) + I(B*2)))

rsdo$set.fits(rsdo$lm(y2 ~ A*xB + I(A*2) + I(B*2)))

rsdo$desires(desirability(y, -1, 2, scale = c(1, 1), target = "max"))
rsdo$desires(desirability(y2, -1, @, scale = c(1, 1), target = "min"))

dVals = overall(rsdo, steps = 10, constraints = list(A = c(-0.5,1), B = c(@, 1)))

paretoChart paretoChart: Pareto Chart

Description

Function to create a Pareto chart, displaying the relative frequency of categories.

paretoChart

Usage

paretoChart(
X,
weight,
main,
col,
border,
xlab,

77

ylab = "Frequency"”,

percentVec,

showTable = TRUE,
showPlot = TRUE

Arguments

X
weight
main
col
border
xlab
ylab

percentVec

showTable

showPlot

Value

A vector of qualitative values.

A numeric vector of weights corresponding to each category in x.

A character string for the main title of the plot.

A numerical value or character string defining the fill-color of the bars.

A numerical value or character string defining the border-color of the bars.

A character string for the x-axis label.

A character string for the y-axis label. By default, ylab is set to ~Frequency ™.

A numerical vector giving the position and values of tick marks for percentage
axis.

Logical value indicating whether to display a table of frequencies. By default,
showTable is set to TRUE

Logical value indicating whether to display the Pareto chart. By default, showPlot
is set to TRUE.

paretoChart returns a Pareto chart along with a frequency table if showTable is TRUE. Addition-
ally, the function returns an invisible list containing:

plot
table

Examples

The generated Pareto chart.

A data.frame with the frequencies and percentages of the categories.

Example 1: Creating a Pareto chart for defect types
defects1 <- c(rep("E", 62), rep("B", 15), rep("F", 3), rep("A", 10),

rep("C", 20), rep("D", 10))

paretoChart(defects1)

Example 2: Creating a Pareto chart with weighted frequencies

78 paretoPlot

defects2 <- c("E", "B", "F", "A", "C", "D")

frequencies <- c(62, 15, 3, 10, 20, 10)

weights <- ¢(1.5, 2, 0.5, 1, 1.2, 1.8)

names(weights) <- defects2 # Assign names to the weights vector

paretoChart(defects2, weight = frequencies * weights)

paretoPlot paretoPlot

Description

Display standardized effects and interactions of a facDesign.c object in a pareto plot.

Usage
paretoPlot(
dfac,
abs = TRUE,
decreasing = TRUE,
alpha = 0.05,
response = NULL,
ylim,
xlab,
ylab,
main,
p.col,
legend_left = TRUE
)
Arguments
dfac An object of class facDesign.
abs Logical. If TRUE, absolute effects and interactions are displayed. Default is
TRUE.
decreasing Logical. If TRUE, effects and interactions are sorted decreasing. Default is TRUE.
alpha The significance level used to calculate the critical value
response Response variable. If the response data frame of fdo consists of more then one
responses, this variable can be used to choose just one column of the response
data frame. response needs to be an object of class character with length of “1°.
It needs to be the same character as the name of the response in the response
data frame that should be plotted. By default response is set to NULL.
ylim Numeric vector of length 2: limits for the y-axis. If missing, the limits are set

automatically.

xlab Character string: label for the x-axis.

paretoPlot 79

ylab Character string: label for the y-axis.
main Character string: title of the plot.
p.col Character string specifying the color palette to use for the plot. Must be one of
the following values from the RColorBrewer package:
e “Set1”
e “Set2”
e “Set3”
e “Pastell”
e “Pastel2”
e “Paired”
* “Dark2"
* “Accent”

legend_left Logical value indicating whether to place the legend on the left side of the plot.
Default is TRUE.
Details

paretoPlot displays a pareto plot of effects and interactions for an object of class facDesign (i.e.
27k full or 2”k-p fractional factorial design). For a given significance level alpha, a critical value
is calculated and added to the plot. Standardization is achieved by dividing estimates with their
standard error. For unreplicated fractional factorial designs a Lenth Plot is generated.

Value

The function paretoPlot returns an invisible list containing:

effects a list of effects for each response in the facDesign. c object
plot The generated PP plot.
See Also

fracDesign, facDesign

Examples

Create the facDesign object
dfac <- facDesign(k = 3, centerCube = 4)
dfac$names(c('Factor 1', 'Factor 2', 'Factor 3'))

Assign performance to the factorial design

rend <- c(simProc(120,140,1), simProc(80,140,1), simProc(120,140,2),
simProc(120,120,1), simProc(90,130,1.5), simProc(90,130,1.5),
simProc(80,120,2), simProc(90,130,1.5), simProc(90,130,1.5),
simProc(120,120,2), simProc(80,140,2), simProc(80,120,1))

dfac$.response(rend)

paretoPlot(dfac)
paretoPlot(dfac, decreasing = TRUE, abs = FALSE, p.col = "Pastell”)

80 pbDesign
pbDesign pbDesign: Plackett-Burman Designs
Description
Function to create a Plackett-Burman design.
Usage
pbDesign(n, k, randomize = TRUE, replicates = 1)
Arguments
n Integer value giving the number of trials.
k Integer value giving the number of factors.
randomize A logical value (TRUE/FALSE) that specifies whether to randomize the RunOrder
of the design. By default, randomize is set to TRUE.
replicates An integer specifying the number of replicates for each run in the design.
Value

A pbDesign returns an object of class pbDesign.

Note

This function creates Placket-Burman Designs down to n=26. Bigger Designs are not implemented
because of lack in practicability. For the creation either the number of factors or the number of trials
can be denoted. Wrong combinations will lead to an error message. Originally Placket-Burman-
Design are applicable for number of trials divisible by 4. If n is not divisble by 4 this function will

take the next larger Placket-Burman Design and truncate the last rows and columns.

See Also

» facDesign: for 2k factorial designs.
* rsmDesign: for response surface designs.
* fracDesign: for fractional factorial design.

* gageRRDesign: for gage designs.

Examples

pbdo<- pbDesign(n=5)
pbdo$summary ()

pbDesign.c 81

pbDesign.c pbDesign

Description

An R6 class representing a Plackett-Burman design.

Public fields

name A character string specifying the name of the design. Default is NULL.

factors A list of factors included in the Taguchi design. Each factor is typically an instance of the
pbFactor class.

design A data.frame representing the design matrix of the experiment. This includes the levels
of each factor for every run of the experiment. Default is an empty data. frame.

designType A character string specifying the type of Taguchi design used. Default is NULL.

replic A data.frame containing the replication information for the design. Default is an empty
data.frame.

response A data.frame storing the response values collected from the experiment. Default is an
empty data.frame.

Type A data.frame specifying the type of responses or factors involved in the design. Default is
an empty data. frame.

block A data.frame indicating any blocking factors used in the design. Default is an empty
data.frame.

runOrder A data.frame detailing the order in which the experimental runs were conducted. De-
fault is an empty data. frame.

standardOrder A data.frame detailing the standard order of the experimental runs. Default is
an empty data. frame.

desireVal A list storing desired values for responses in the experiment. Default is an empty list.

desirability A liststoring desirability functions used to evaluate the outcomes of the experiment.
Default is an empty list.

fits A data.frame containing model fits or other statistical summaries from the analysis of the
experimental data. Default is an empty data. frame.

Methods

Public methods:

* pbDesign.c$values()

e pbDesign.c$units()

* pbDesign.c$.factors()

¢ pbDesign.c$names()

* pbDesign.c$as.data.frame()
* pbDesign.c$print()

82

pbDesign.c

* pbDesign.c$.response()
e pbDesign.c$.nfp()

* pbDesign.c$summary()

e pbDesign.c$clone()

Method values(): Get and set the values for an object of class pbDesign.
Usage:
pbDesign.c$values(value)
Arguments:

value New value, If missing value get the values.

Method units(): Get and set the units for an object of class pbDesign.

Usage:
pbDesign.c$units(value)

Arguments:

value New units, If missing value get the units.

Method . factors(): Get and set the factors in an object of class pbDesign.

Usage:
pbDesign.c$.factors(value)

Arguments:

value New factors, If missing value get the factors.

Method names(): Get and set the names in an object of class pbDesign.

Usage:
pbDesign.c$names(value)

Arguments:

value New names, If missing value get the names.

Method as.data.frame(): Return a data frame with the information of the object pbDesign.

Usage:
pbDesign.c$as.data.frame()

Method print(): Methods for function print in Package base.

Usage:
pbDesign.c$print()

Method . response(): Get and set the the response in an object of class pbDesign.
Usage:
pbDesign.c$.response(value)
Arguments:

value New response, If missing value get the response.

pbFactor 83

Method .nfp(): Prints a summary of the factors attributes including their low, high, name, unit,
and type.

Usage:
pbDesign.c$.nfp()

Method summary(): Methods for function summary in Package base.

Usage:
pbDesign.c$summary ()

Method clone(): The objects of this class are cloneable with this method.
Usage:
pbDesign.c$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

pbFactor pbFactor

Description

An R6 class representing a factor in a Plackett-Burman design.

Public fields

values A vector containing the levels or values associated with the factor. Default is NA.
name A character string specifying the name of the factor. Default is an empty string ~ ~.

unit A character string specifying the unit of measurement for the factor. Default is an empty
string ~ "

type A character string specifying the type of the factor, which can be either “numeric” or “categorical”.
Default is “numeric™.

Methods

Public methods:
* pbFactors$attributes()
* pbFactor$.values()
e pbFactor$.unit()
e pbFactor$names()
* pbFactor$clone()

Method attributes(): Get the attributes of the factor.

Usage:
pbFactor$attributes()

84

Method .values(): Get and set the values for the factors in an object of class pbFactor.

Usage:
pbFactor$.values(value)

Arguments:

value New values, If missing value get the values.

Method .unit(): Get and set the units for the factors in an object of class pbFactor.

Usage:
pbFactor$.unit(value)

Arguments:

value New unit, If missing value get the units.

Method names(): Get and set the names in an object of class pbFactor.

Usage:
pbFactor$names(value)

Arguments:

value New names, If missing value get the names.

Method clone(): The objects of this class are cloneable with this method.
Usage:
pbFactor$clone(deep = FALSE)
Arguments:

deep Whether to make a deep clone.

per

pcr pcr: Process Capability Indices

Description

Calculates the process capability cp, cpk, cpkL (onesided) and cpkU (onesided) for a given dataset
and distribution. A histogram with a density curve is displayed along with the specification lim-
its and a Quantile-Quantile Plot for the specified distribution. Lower-, upper and total fraction
of nonconforming entities are calculated. Box-Cox Transformations are supported as well as the

calculation of Anderson Darling Test Statistics.

Usage

per(
X)
distribution = "normal”,
1s1,
usl,
target,

per 85
boxcox = FALSE,
lambda = c(-5, 5),
main,
xlim,
grouping = NULL,
std.dev = NULL,
conf.level = 0.9973002,
bounds.lty = 3,
bounds.col = "red",
col.fill = "lightblue”,
col.border = "black”,
col.curve = "red”,
plot = TRUE,
ADtest = TRUE
)
Arguments
X Numeric vector containing the values for which the process capability should be
calculated.
distribution Character string specifying the distribution of x. The function cp will accept the
following character strings for distribution:
* “normal”
e “log-normal”
e “exponential”
e “logistic”
e “gamma’
e “weibull®
e “cauchy”
e “gamma3”
* “weibull3"
e “lognormal3"”
* “beta”
o ~f*
e “geometric”
* “poisson”
* “negative-binomial~
By default distribution is set to “normal-.
1sl A numeric value specifying the lower specification limit.
usl A numeric value specifying the upper specification limit.
target (Optional) numeric value giving the target value.
boxcox Logical value specifying whether a Box-Cox transformation should be performed
or not. By default boxcox is set to FALSE.
lambda (Optional) lambda for the transformation, default is to have the function estimate

lambda.

86
main

x1lim

grouping

std.dev

conf.level

bounds. 1ty
bounds.col
col.fill

col.border

col.curve

plot
ADtest

Details

per

A character string specifying the main title of the plot.
A numeric vector of length 2 specifying the x-axis limits for the plot.

(Optional) If grouping is given the standard deviation is calculated as mean stan-
dard deviation of the specified subgroups corrected by the factor c4 and expected
fraction of nonconforming is calculated using this standard deviation.

An optional numeric value specifying the historical standard deviation (only
provided for normal distribution). If NULL, the standard deviation is calculated
from the data.

Numeric value between @ and 1 giving the confidence interval. By default
conf.level is ©.9973 (99.73%) which is the reference interval bounded by
the 99.865% and 0.135% quantile.

graphical parameter. For further details see ppPlot or qqPlot.
A character string specifying the color of the capability bounds. Default is "red".

A character string specifying the fill color for the histogram plot. Default is
"lightblue".

A character string specifying the border color for the histogram plot. Default is
"black”.

A character string specifying the color of the fitted distribution curve. Default is
llredll.

A logical value indicating whether to generate a plot. Default is TRUE.

A logical value indicating whether to print the Anderson-Darling. Default is
TRUE.

Distribution fitting is delegated to the function FitDistr from this package, as well as the cal-
culation of lambda for the Box-Cox Transformation. p-values for the Anderson-Darling Test are
reported for the most important distributions.

The process capability indices are calculated as follows:

¢ ¢pk: minimum of cpK and cpL.

* pt: total fraction nonconforming.

* pu: upper fraction nonconforming.

* pl: lower fraction nonconforming.

* cp: process capability index.

* cpkL: lower process capability index.

» cpkU: upper process capability index.

* cpk: minimum process capability index.

For a Box-Cox transformation, a data vector with positive values is needed to estimate an optimal
value of lambda for the Box-Cox power transformation of the values. The Box-Cox power trans-
formation is used to bring the distribution of the data vector closer to normality. Estimation of the
optimal lambda is delegated to the function boxcox from the MASS package. The Box-Cox transfor-

mation has the form y(\) = yAT_l for A # 0, and y(A) = log(y) for A = 0. The function boxcox

pgamma3 87

computes the profile log-likelihoods for a range of values of the parameter lambda. The function
boxcox.lambda returns the value of lambda with the maximum profile log-likelihood.

In case no specification limits are given, 1s1 and usl are calculated to support a process capability
index of 1.

Value

The function returns a list with the following components:

The function pcr returns a list with lambda, cp, cpl, cpu, ppt, ppl, ppu, A, usl, 1sl, target,
asTest, plot.

Examples

set.seed(1234)
data <- rnorm(20, mean = 20)
pcr(data, "normal”, 1sl = 17, usl = 23)

set.seed(1234)
weib <- rweibull(20, shape = 2, scale = 8)
pcr(weib, "weibull”, usl = 20)

pgamma3 pgamma3: The gamma Distribution (3 Parameter)

Description

Density function, distribution function, and quantile function for the Gamma distribution.

Usage
pgamma3(q, shape, scale, threshold)

Arguments
q A numeric vector of quantiles.
shape The shape parameter, default is 1.
scale The scale parameter, default is 1.
threshold The threshold parameter, default is 0.
Details

The Gamma distribution with scale parameter alpha, shape parameter c, and threshold parameter
zeta has a density given by:

88 plnorm3

The cumulative distribution function is given by:
F(z)=1—exp (— (w—C))
«

dgamma3 gives the density, pgamma3 gives the distribution function, and qgamma3 gives the quantile
function.

Value

Examples

dgamma3(x = 1, scale = 1, shape = 5, threshold = 0)

temp <- pgamma3(q = 1, scale = 1, shape = 5, threshold = 0)
temp

ggamma3(p = temp, scale = 1, shape = 5, threshold = 0)

plnorm3 plnorm3: The Lognormal Distribution (3 Parameter)

Description

Density function, distribution function, and quantile function for the Lognormal distribution.

Usage
plnorm3(qg, meanlog, sdlog, threshold)

Arguments

q A numeric vector of quantiles.

meanlog, sdlog The mean and standard deviation of the distribution on the log scale with default
values of @ and 1 respectively.

threshold The threshold parameter, default is 0.
Details

The Lognormal distribution with meanlog parameter zeta, sdlog parameter sigma, and threshold
parameter theta has a density given by:

1
flz) = m exp (

The cumulative distribution function is given by:

Flo)= <log(x—9) —g>

202

(log(z — 6) - oz)

a

where ® is the cumulative distribution function of the standard normal distribution.

ppPlot 89

Value

dlnorm3 gives the density, plnorm3 gives the distribution function, and qlnorm3 gives the quantile
function.

Examples

dlnorm3(x = 2, meanlog = @, sdlog = 1/8, threshold = 1)

temp <- plnorm3(q = 2, meanlog = @, sdlog = 1/8, threshold = 1)
temp

glnorm3(p = temp, meanlog = @, sdlog = 1/8, threshold = 1)

ppPlot ppPlot: Probability Plots for various distributions

Description

Function ppPlot creates a Probability plot of the values in x including a line.

Usage

ppPlot(
X,
distribution,
confbounds = TRUE,
alpha,
probs,
main,
xlab,
ylab,
xlim,
ylim,
border = "red",
bounds.col = "black",
bounds.lty = 1,
start,
showPlot = TRUE,
axis.y.right = FALSE,
bw.theme = FALSE

Arguments

X Numeric vector containing the sample data for the ppPlot.

distribution Character string specifying the distribution of x. The function ppPlot will sup-
port the following character strings for distribution:

e “beta”

90

confbounds
alpha
probs

main

x1lab

ylab

x1im

ylim

border

bounds.col
bounds. 1ty

start

showPlot

axis.y.right

bw. theme

ppPlot

* “cauchy”

* “chi-squared”

* “exponential”

o« “f*

* “gamma’

* “geometric”

e “log-normal”

* “lognormal~

e “logistic"

* “negative binomial~

e “normal”
e “Poisson”
e “weibull®

By default distribution is set to “normal-.
Logical value: whether to display confidence bounds. Default is TRUE.
Numeric value: significance level for confidence bounds, default is ‘0.05°.

Vector containing the percentages for the y axis. All the values need to be be-
tween ‘0° and ‘1°. If ‘probs‘ is missing it will be calculated internally.

Character string: title of the plot.
Character string: label for the x-axis.
Character string: label for the y-axis.
Numeric vector of length 2: limits for the x-axis.
Numeric vector of length 2: limits for the y-axis.
Character or numeric: color for the border of the line through the quantiles.
Defaultis “red".
Character or numeric: color for the confidence bounds lines. Default is ~black™.
Numeric or character: line type for the confidence bounds lines. This can be
specified with either an integer (0-6) or a name:
* 0: blank
* 1: solid
: dashed
: dotted
: dotdash
: longdash
* 6: twodash
Default is ‘1° (solid line).
A named list giving the parameters to be fitted with initial values. Must be
supplied for some distributions (see Details).

.
W AW N

Logical value indicating whether to display the plot. By default, showPlot is set
to TRUE.

Logical value indicating whether to display the y-axis on the right side. By
default, axis.y.right is set to FALSE.

Logical value indicating whether to use a black-and-white theme from the ggplot2
package for the plot. By default, bw. theme is set to FALSE.

print_adtest 91

Details

Distribution fitting is performed using the FitDistr function from this package. For the compu-
tation of the confidence bounds, the variance of the quantiles is estimated using the delta method,
which involves the estimation of the observed Fisher Information matrix as well as the gradient
of the CDF of the fitted distribution. Where possible, those values are replaced by their normal
approximation.

Value

The function ppPlot returns an invisible list containing:

X x coordinates.

y y coordinates.

int Intercept.

slope Slope.

plot The generated PP plot.
See Also

qgPlot, FitDistr.

Examples

set.seed(123)

ppPlot(rnorm(20, mean=90, sd=5), "normal”,6 alpha=0.30)
ppPlot(rcauchy(100), "cauchy")

ppPlot(rweibull (50, shape = 1, scale = 1), "weibull”)
ppPlot(rlogis(50), "logistic")

ppPlot(rlnorm(50) , "log-normal")

ppPlot(rbeta(10, 0.7, 1.5),"beta")
ppPlot(rpois(20,3), "poisson")

ppPlot(rchisq(20, 10),"chi-squared”)

ppPlot(rgeom(20, prob = 1/4), "geometric")
ppPlot(rnbinom(n = 20, size = 3, prob = 0.2), "negative binomial")
ppPlot(rf(20, df1 = 10, df2 = 20), "f")

print_adtest print_adtest: Test Statistics

Description

Function to show adtest.

Usage

print_adtest(x, digits = 4, quote = TRUE, prefix = "", ...)

92 pweibull3

Arguments
X Needs to be an object of class adtest.
digits Minimal number of significant digits.
quote Logical, indicating whether or not strings should be printed with surrounding
quotes. By default quote is set to TRUE.
prefix Single character or character string that will be printed in front of x.
Further arguments passed to or from other methods.
Value

The function returns a summary of Anderson Darling Test

Examples

data <- rnorm(20, mean = 20)
pcri<-pcr(data, "normal”, 1sl = 17, usl = 23, plot = FALSE)
print_adtest(pcri$adTest)

pweibull3 pweibull3: The Weibull Distribution (3 Parameter)

Description
Density function, distribution function, and quantile function for the Weibull distribution with a
threshold parameter.

Usage
pweibull3(q, shape, scale, threshold)

Arguments

q A numeric vector of quantiles.

shape The shape parameter of the Weibull distribution. Default is 1.

scale The scale parameter of the Weibull distribution. Default is 1.

threshold The threshold (or location) parameter of the Weibull distribution. Default is O.
Details

The Weibull distribution with the scale parameter alpha, shape parameter c, and threshold pa-
rameter zeta has a density function given by:

05 (59 " (- (59))

The cumulative distribution function is given by:

Fz) =1—exp <— (z - g))

ggamma3 93

Value

dweibull3 returns the density, pweibull3 returns the distribution function, and qweibull3 returns
the quantile function for the Weibull distribution with a threshold.

Examples

dweibull3(x = 1, scale = 1, shape = 5, threshold = 0)

temp <- pweibull3(q = 1, scale = 1, shape = 5, threshold = 0)
temp

gweibull3(p = temp, scale = 1, shape = 5, threshold = 0)

ggamma3s ggamma3: The gamma Distribution (3 Parameter)

Description

Density function, distribution function, and quantile function for the Gamma distribution.

Usage

ggamma3(p, shape, scale, threshold, ...)
Arguments

p A numeric vector of probabilities.

shape The shape parameter, default is 1.

scale The scale parameter, default is 1.

threshold The threshold parameter, default is 0.

Additional arguments that can be passed to uniroot.

Details

The Gamma distribution with scale parameter alpha, shape parameter ¢, and threshold parameter
zeta has a density given by:

0559 "o (- (599)

The cumulative distribution function is given by:
F(x)=1—exp <— ($_<>)
@

dgamma3 gives the density, pgamma3 gives the distribution function, and qgamma3 gives the quantile
function.

Value

94 qlnorm3

Examples

dgamma3(x = 1, scale = 1, shape = 5, threshold = 0)

temp <- pgamma3(q = 1, scale = 1, shape = 5, threshold = 0)
temp

ggamma3(p = temp, scale = 1, shape = 5, threshold = 0)

glnorm3 qlnorm3: The Lognormal Distribution (3 Parameter)

Description

Density function, distribution function, and quantile function for the Lognormal distribution.

Usage

glnorm3(p, meanlog, sdlog, threshold, ...)
Arguments

p A numeric vector of probabilities.

meanlog, sdlog The mean and standard deviation of the distribution on the log scale with default
values of @ and 1 respectively.

threshold The threshold parameter, default is 0.

Additional arguments that can be passed to uniroot.

Details

The Lognormal distribution with meanlog parameter zeta, sdlog parameter sigma, and threshold
parameter theta has a density given by:

1 ((lesle—6) 0
)= p(-)

The cumulative distribution function is given by:

Flz) = ® (log(x —0) - C)

g

where @ is the cumulative distribution function of the standard normal distribution.

Value

dlnorm3 gives the density, plnorm3 gives the distribution function, and qlnorm3 gives the quantile
function.

qqPlot 95

Examples

dlnorm3(x = 2, meanlog = @, sdlog = 1/8, threshold = 1)

temp <- plnorm3(q = 2, meanlog = @, sdlog = 1/8, threshold = 1)
temp

glnorm3(p = temp, meanlog = @, sdlog = 1/8, threshold = 1)

ggPlot qqPlot: Quantile-Quantile Plots for various distributions

Description

Function qgPlot creates a QQ plot of the values in x including a line which passes through the first
and third quartiles.

Usage

qqgPlot(
X,
Y,
confbounds = TRUE,
alpha,
main,
xlab,
ylab,
xlim,
ylim,
border = "red",
bounds.col = "black”,
bounds.lty = 1,
start,
showPlot = TRUE,
axis.y.right = FALSE,
bw.theme = FALSE

)
Arguments
X The sample for qqPlot.
y Character string specifying the distribution of x. The function qqPlot supports
the following character strings for y:
* “beta”
* “cauchy"

e “chi-squared”
e “exponential®
o ~f*

96

confbounds

alpha

main
x1lab
ylab
x1lim
ylim
border

bounds.col

bounds. 1ty

start

showPlot

axis.y.right

bw. theme

qqPlot

e “gamma”

e “geometric”

e “log-normal-”

e “lognormal”

e “logistic”

* “negative binomial”

e “normal”
e “Poisson”
e “weibull®

By default distribution is set to “normal-.

Logical value indicating whether to display confidence bounds. By default,
confbounds is set to TRUE.

Numeric value specifying the significance level for the confidence bounds, set
to ‘0.05° by default.

A character string for the main title of the plot.

A character string for the x-axis label.

A character string for the y-axis label.

A numeric vector of length 2 to specify the limits of the x-axis.
A numeric vector of length 2 to specify the limits of the y-axis.

A numerical value or single character string giving the color of the interpolation
line. By default, border is set to “red".

A numerical value or single character string giving the color of the confidence
bounds lines. By default, bounds.col is set to “black™.

A numeric or character: line type for the confidence bounds lines. This can be
specified with either an integer (0-6) or a name:

* 0: blank

* 1: solid

* 2: dashed

* 3: dotted

* 4: dotdash

* 5: longdash

* 6: twodash
Default is ‘1° (solid line).
A named list giving the parameters to be fitted with initial values. Must be
supplied for some distributions (see Details).

Logical value indicating whether to display the plot. By default, showPlot is set
to TRUE.

Logical value indicating whether to display the y-axis on the right side. By
default, axis.y.right is set to FALSE.

Logical value indicating whether to use a black-and-white theme from the ggplot2
package for the plot. By default, bw. theme is set to FALSE.

gqweibull3 97

Details

Distribution fitting is performed using the FitDistr function from this package. For the compu-
tation of the confidence bounds, the variance of the quantiles is estimated using the delta method,
which involves the estimation of the observed Fisher Information matrix as well as the gradient
of the CDF of the fitted distribution. Where possible, those values are replaced by their normal
approximation.

Value

The function qqPlot returns an invisible list containing:

X Sample quantiles.

y Theoretical quantiles.

int Intercept of the fitted line.

slope Slope of the fitted line.

plot The generated QQ plot.
See Also

ppPlot, FitDistr.

Examples

set.seed(123)

qgPlot(rnorm(20, mean=90, sd=5), "normal”,alpha=0.30)
qgPlot(rcauchy(100), "cauchy")

gqPlot(rweibull (50, shape = 1, scale = 1), "weibull")
qgPlot(rlogis(50), "logistic")

qgPlot(rlnorm(50) , "log-normal)

gqPlot(rbeta(10, 0.7, 1.5),"beta")
qgPlot(rpois(20,3), "poisson")

qgPlot(rchisq(20, 10),"chi-squared”)

qgPlot(rgeom(20, prob = 1/4), "geometric")
ggPlot(rnbinom(n = 20, size = 3, prob = 0.2), "negative binomial”)
qqPlot(rf(20, df1 = 10, df2 = 20), "f")

gweibull3 gweibull3: The Weibull Distribution (3 Parameter)

Description
Density function, distribution function, and quantile function for the Weibull distribution with a
threshold parameter.

Usage
gweibull3(p, shape, scale, threshold, ...)

98 randomize

Arguments
p A numeric vector of probabilities.
shape The shape parameter of the Weibull distribution. Default is 1.
scale The scale parameter of the Weibull distribution. Default is 1.
threshold The threshold (or location) parameter of the Weibull distribution. Default is 0.
Additional arguments passed to uniroot for qweibull3.
Details

The Weibull distribution with the scale parameter alpha, shape parameter c, and threshold pa-
rameter zeta has a density function given by:

=559 (- (59)

The cumulative distribution function is given by:

F(z) =1—exp <_ (‘T - c))

Value

dweibull3 returns the density, pweibull3 returns the distribution function, and qweibull3 returns
the quantile function for the Weibull distribution with a threshold.

Examples

dweibull3(x = 1, scale = 1, shape = 5, threshold = 0)

temp <- pweibull3(q = 1, scale = 1, shape = 5, threshold = 0)
temp

gweibull3(p = temp, scale = 1, shape = 5, threshold = 0)

randomize randomize: Randomization

Description

Function to do randomize the run order of factorial designs.

Usage

randomize(fdo, random.seed = 93275938, so = FALSE)

rsmChoose 99

Arguments
fdo An object of class facDesign.c.
random. seed Seed for randomness.
o) Logical value specifying whether the standard order should be used or not. By
default so is set to FALSE.
Value

An object of class facDesign.c with the run order randomized.

Examples

dfrac <- fracDesign(k = 3)
randomize (dfrac)

rsmChoose rsmChoose: Choosing a response surface design from a table

Description
Designs displayed are central composite designs with orthogonal blocking and near rotatability.
The function allows users to choose a design by clicking with the mouse into the appropriate field.
Usage

rsmChoose()

Value

Returns an object of class facDesign.c.

See Also

fracChoose, rsmDesign

Examples

rsmChoose ()

100 rsmDesign

rsmDesign rsmDesign: Generate a response surface design.

Description

Generates a response surface design containing a cube, centerCube, star, and centerStar portion.

Usage
rsmDesign(
k =3,
p=0,
alpha = "rotatable”,
blocks = 1,
cc =1,
cs =1,
fp =1,
sp =1,
faceCentered = FALSE
)
Arguments
k Integer value giving the number of factors. By default, k is set to ‘3°.
p Integer value giving the number of additional factors in the response surface
design by aliasing effects. Default is ‘0°.
alpha Character string indicating the type of star points to generate. Should be ~rotatable™ (default),
“orthogonal”, or “both™. If “both™, values for cc and cs will be discarded.
blocks Integer value specifying the number of blocks in the response surface design.
Default is ‘1°.
cc Integer value giving the number of centerpoints (per block) in the cube portion
(i.e., the factorial 2"k design) of the response surface design. Default is ‘1°.
cs Integer value specifying the number of centerpoints in the star portion. Default
is ‘1%
fp Integer value giving the number of replications per factorial point (i.e., corner
points). Default is ‘1°.
sp Integer value specifying the number of replications per star point. Defaultis ‘1°.

faceCentered Logical value indicating whether to use a faceCentered response surface design
(i.e., alpha = ‘1). Default is FALSE.

Details

Generated designs consist of a cube, centerCube, star, and centerStar portion. The replication struc-
ture can be set with the parameters cc (centerCube), cs (centerStar), fp (factorialPoints), and sp
(starPoints).

simProc 101

Value

The function returns an object of class facDesign.c.

See Also

facDesign, fracDesign, fracChoose, pbDesign, rsmChoose

Examples

Example 1: Central composite design for 2 factors with 2 blocks, alpha = 1.41,
5 centerpoints in the cube portion and 3 centerpoints in the star portion:
rsmDesign(k = 2, blocks = 2, alpha = sqrt(2), cc = 5, cs = 3)

Example 2: Central composite design with both, orthogonality and near rotatability
rsmDesign(k = 2, blocks = 2, alpha = "both")

Example 3: Central composite design with:

2 centerpoints in the factorial portion of the design (i.e., 2)
1 centerpoint in the star portion of the design (i.e., 1)

2 replications per factorial point (i.e., 2%3x2 = 16)

3 replications per star point (i.e., 3*2x3 = 18)

Makes a total of 37 factor combinations

rsdo = rsmDesign(k = 3, blocks = 1, alpha = 2, cc = 2, cs

I
—
—+

o

1
N
[%2])

©

1
w

~

simProc simProc: Simulated Process

Description

This is a function to simulate a black box process for teaching the use of designed experiments. The
optimal factor settings can be found using a sequential assembly strategy i.e. apply a 2”k factorial
design first, calculate the path of the steepest ascent, again apply a 2”k factorial design and augment
a star portion to find the optimal factor settings. Of course, other strategies are possible.

Usage

simProc(x1, x2, x3, noise = TRUE)

Arguments
x1 numeric vector containing the values for factor 1.
X2 numeric vector containing the values for factor 2.
X3 numeric vector containing the values for factor 3.
noise logical value deciding whether noise should be added or not. Default setting is

TRUE.

102 snPlot

Value

simProc returns a numeric value within the range [0,1].

Examples

simProc(120, 140, 1)
simProc(120, 220, 1)
simProc(160, 140, 1)

snPlot snPlot: Signal-to-Noise-Ratio Plots

Description

Creates a Signal-to-Noise Ratio plot for designs of type taguchiDesign.c with at least two repli-

cates.
Usage
snPlot(object, type = "nominal”, factors, fun = mean, response = NULL,
points = FALSE, classic = FALSE, 1ty, xlab, ylab,
main, ylim, 1l.col, p.col, 1ld.col, pch)
Arguments
object An object of class taguchiDesign.c.
type A character string specifying the type of the Signal-to-Noise Ratio plot. Possible
values are:
* “nominal”: Nominal-the-best plot to equalize observed values to a nominal
value.
e “smaller”: Smaller-the-better plot to minimize observed values.
e “larger: Larger-the-better plot to maximize observed values.
Default is “nominal~.
factors The factors for which the effect plot is to be created.
fun A function for constructing the effect plot such as mean, median, etc. Default is
mean.
response A character string specifying the response variable. If object contains multiple
responses, this parameter selects one column to plot. Default is NULL.
points A logical value. If TRUE, points are shown in addition to values derived from
fun. Default is FALSE.
classic A logical value. If TRUE, creates an effect plot as depicted in most textbooks.
Default is FALSE.
1ty A numeric value specifying the line type to be used.

xlab A title for the x-axis.

starDesign 103

ylab A title for the y-axis.
main An overall title for the plot.
ylim A numeric vector of length 2 specifying the limits of the y-axis.
l.col A color for the lines.
p.col A color for the points.
1d.col A color for the dashed line.
pch The symbol for plotting points.
Details

The Signal-to-Noise Ratio (SNR) is calculated based on the type specified:

* “nominal”:

SN =10 - log(mean(y)/var(y))
e “smaller”:

SN = —10-log((1/n) - sum(y?))
e “larger™:

SN = —10-log((1/n) - sum(1/y?))
Signal-to-Noise Ratio plots are used to estimate the effects of individual factors and to judge the
variance and validity of results from an effect plot.
Value

An invisible data. frame containing all the single Signal-to-Noise Ratios.

Examples

tdo <- taguchiDesign("”L9_3", replicates = 3)
tdo$.response(rnorm(27))
snPlot(tdo, points = TRUE, 1l.col = 2, p.col = 2, 1ld.col = 2, pch = 16, 1ty = 3)

starDesign starDesign: Axial Design

Description

starDesign is a function to create the star portion of a response surface design. The starDesign
function can be used to create a star portion of a response surface design for a sequential assembly
strategy. One can either specify k and p and alpha and cs and cc OR simply simply pass an object
of class facDesign.c to the data. In the latter an object of class facDesign.c otherwise a list
containing the axial runs and centerpoints is returned.

104 starDesign

Usage
starDesign(
K,
p=0,
alpha = c("both”, "rotatable"”, "orthogonal"”),
cs,
cc,
data
)
Arguments
k Integer value giving number of factors.
p Integer value giving the number of factors via aliasing. By default set to ‘0°.
alpha If no numeric value is given defaults to ~both™ i.e. ~orthogonality™ and
“rotatibility” which can be set as character strings too.
cs Integer value giving the number of centerpoints in the star portion of the design.
cc Integer value giving the number of centerpoints in the cube portion of the design.
data Optional. An object of class facDesign.c.
Value

starDesign returns a facDesign.c object if an object of class facDesign.c is given or a list
containing entries for axial runs and center points in the cube and the star portion of a design.

See Also

facDesign, fracDesign, rsmDesign, mixDesign

Examples

Example 1: sequential assembly

Factorial design with one center point in the cube portion
fdo = facDesign(k = 3, centerCube = 1)

Set the response via generic response method
fdo$.response(1:9)

Sequential assembly of a response surface design (rsd)

rsd = starDesign(data = fdo)

Example 2: Returning a list of star point designs
starDesign(k = 3, cc = 2, cs = 2, alpha = "orthogonal”)
starDesign(k = = 2, alpha = "rotatable”)
starDesign(k = = 2, alpha = "both")

| |

w w
O 0
[elNe]
In o
NN
o0 0
n un

steepAscent 105

steepAscent steepAscent: Steepest Ascent

Description

steepAscent is a method to calculate the steepest ascent for a facDesign. c object.

Usage

steepAscent(factors, response, size = 0.2, steps = 5, data)

Arguments
factors List containing vector of factor names (coded) to be included in calculation, first
factor is the reference factor.
response A character of response given in data.
size Numeric integer value giving the step size in coded units for the first factor given
in factors. By default size is set to @. 2.
steps Numeric integer value giving the number of steps. By default step is set to ‘5°.
data An object of class facDesign.c.
Value

steepAscent returns an object of class steepAscent.c.

See Also

optimum, desirability

Examples

Example 1

fdo = facDesign(k = 2, centerCube = 5)

fdo$lows(c(170@, 150))

fdo$highs(c(230, 250))

fdo$names(c("temperature”, "time"))

fdo$unit(c("C", "minutes"))

yield = ¢(32.79, 24.07, 48.94, 52.49, 38.89, 48.29, 29.68, 46.5, 44.15)
fdo$.response(yield)

fdo$summary ()

sao = steepAscent(factors = c("B", "A"), response = "yield"”, size =1,
data = fdo)

106 steepAscent.c

steepAscent.c steepAscent-class: Class ‘steepAscent

Description

The steepAscent.c class represents a steepest ascent algorithm in a factorial design context. This
class is used for optimizing designs based on iterative improvements.

Public fields

name A character string representing the name of the steep ascent design.

X A data frame containing the design matrix for the steepest ascent procedure. This matrix repre-
sents the factors and their levels at each iteration.

response A data frame containing the response values associated with the design matrix.

Methods

Public methods:
* steepAscent.c$.response()
* steepAscent.c$get()
e steepAscent.c$as.data.frame()
e steepAscent.c$print()
¢ steepAscent.c$plot()
e steepAscent.c$clone()

Method .response(): Get and set the ‘response‘ values in an object of class ‘steepAscent.c”.
Usage:
steepAscent.c$.response(value)

Arguments:

value A data frame or numeric vector to set as the new ‘response‘. If missing, returns the
current ‘response’.

Method get(): Access specific elements in the design matrix or response data of the object.
Usage:
steepAscent.c$get(i, j)
Arguments:

i An integer specifying the row index to retrieve.
j An integer specifying the column index to retrieve.

Method as.data.frame(): Convert the object to a data frame.

Usage:
steepAscent.c$as.data.frame()

summaryFits 107

Method print(): Print the details of the object.
Usage:
steepAscent.c$print()

Method plot(): Plot the results of the steepest ascent procedure for an object of class ‘steep-
Ascent.c’.

Usage:

steepAscent.c$plot(main, xlab, ylab, 1.col, p.col, line.type, point.shape)

Arguments:

main The main title of the plot.

xlab The label for the x-axis.

ylab The label for the y-axis.

1.col Color for the line in the plot.

p.col Color for the points in the plot.

line.type Type of the line used in the plot.

point.shape Shape of the points used in the plot.

Method clone(): The objects of this class are cloneable with this method.

Usage:
steepAscent.c$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also

steepAscent, desirability.c, optimum

summaryFits summaryFits: Fit Summary

Description

Function to provide an overview of fitted linear models for objects of class facDesign.c.

Usage
summaryFits(fdo, 1ImFit = TRUE, curvTest = TRUE)

Arguments
fdo An object of class facDesign.c.
ImFit A logical value deciding whether the fits from the object fdo should be included
or not. By default, ImFit is set to TRUE.
curvTest A logical value deciding whether curvature tests should be performed or not. By

default, curvTest is set to TRUE.

108 taguchiChoose

Value

A summary output of the fitted linear models, which may include the linear fits, curvature tests, and
original fit values, depending on the input parameters.

Examples

dfac <- facDesign(k = 3)

dfac$.response(data.frame(y = rnorm(8), y2 = rnorm(8)))
dfac$set.fits(Im(y ~ A + B , data = dfac$as.data.frame()))
dfac$set.fits(Im(y2 ~ A + C, data = dfac$as.data.frame()))
summaryFits(dfac)

taguchiChoose taguchiChoose: Taguchi Designs

Description

Shows a matrix of possible taguchi designs

Usage

taguchiChoose(
factorsl = 0,
factors2 = 0,
levell = 0,
level2 = 0
ia =0,
col = 2,
randomize = TRUE,
replicates = 1

’

)
Arguments
factorsi Integer number of factors on levell. By default set to ‘0°.
factors2 Integer number of factors on level2. By default set to ‘0°.
levell Integer number of levels on levell. By default set to ‘0°.
level2 Integer number of levels on level2. By default set to ‘0°.
ia Integer number of interactions. By default set to ‘0°.
col Select the color scheme for the selection matrix: use 1 for blue, 2 for pink
(default), and 3 for a variety of colors.
randomize A logical value (TRUE/FALSE) that specifies whether to randomize the RunOrder

of the design. By default, randomize is set to TRUE.

replicates An integer specifying the number of replicates for each run in the design.

taguchiDesign 109

Details

taguchiChoose returns possible taguchi designs. Specifying the number of factorl factors with
levell levels (factorsl = 2, levell = 3 means 2 factors with 3 factor levels) and factor2 factors with
level2 levels and desired interactions one or more taguchi designs are suggested. If all parameters
are set to 0, a matrix of possible taguchi designs is shown.

Value

taguchiChoose returns an object of class taguchiDesign.

See Also
» facDesign: for 2k factorial designs.
* rsmDesign: for response surface designs.
» fracDesign: for fractional factorial design.

* gageRRDesign: for gage designs.

Examples

tdol <- taguchiChoose()
tdol <- taguchiChoose(factorsl = 3, levell = 2)

taguchiDesign taguchiDesign: Taguchi Designs

Description

Function to create a taguchi design.

Usage

taguchiDesign(design, randomize = TRUE, replicates = 1)

Arguments

design A character string specifying the orthogonal array of the Taguchi design. The
available options are:
e ‘L4 2" for three two-level factors.
e ‘L8 2" for seven two-level factors.
e ‘L.9_3" for four three-level factors.
e ‘L12_2" for 11 two-level factors.
e ‘L16_2" for 16 two-level factors
e ‘L16_4" for 16 four-level factors.
e ‘L18_2 3" for one two-level and seven three-level factors.
e ‘.25 5" for six five-level factors.

110

taguchiDesign

‘L27_3" for 13 three-level factors.

‘L32_2" for 32 two-level factors.

‘L32_2 4" for one two-level factor and nine four-level factors.
‘L36_2_3_a" for 11 two-level factors and 12 three-level factors.
‘L36_2_3_b" for three two-level factors and 13 three-level factors.
‘L50_2 5" for one two-level factor and eleven five-level factors.
‘L.8_4_2" for one four-level factor and four two-level factors.
‘L16_4 2 a" for one four-level factor and 12 two-level factors.
‘L16_4_2 b" for two four-level factors and nine two-level factors.
‘L16_4_2_c" for three four-level factors and six two-level factors.
‘L16_4 2 d" for five four-level factors and two two-level factors.

‘L18_6_3" for one six-level factor and six three-level factors.

randomize A logical value (TRUE/FALSE) that specifies whether to randomize the RunOrder
of the design. By default, randomize is set to TRUE.

replicates An integer specifying the number of replicates for each run in the design.

Details

An overview of possible taguchi designs is possible with taguchiChoose.

Value

A taguchiDesign returns an object of class taguchiDesign.

See Also

» facDesign: for 2"k factorial designs.

* rsmDesign: for response surface designs.

» fracDesign: for fractional factorial design.

Examples

pbDesign: for response surface designs.

gageRRDesign: for gage designs.

tdo <- taguchiDesign("”L9_3")

tdo$values(list(A = c("material 1", "material 2", "material 3"), B = c(29, 30, 35)))
tdo$names(c("Factor 1", "Factor 2", "Factor 3", "Factor 4"))

tdo$.response(rnorm(9))

tdo$summary ()

taguchiDesign.c 111

taguchiDesign.c taguchiDesign

Description

An R6 class representing a Taguchi experimental design.

Public fields

name A character string specifying the name of the design. Default is NULL.

factors A list of factors included in the Taguchi design. Each factor is typically an instance of the
taguchiFactor class.

design A ‘data.frame‘ representing the design matrix of the experiment. This includes the levels
of each factor for every run of the experiment. Default is an empty data. frame.

designType A character string specifying the type of Taguchi design used. Default is NULL.

replic A ‘data.frame‘ containing the replication information for the design. Default is an empty
data.frame.

response A ‘data.frame‘ storing the response values collected from the experiment. Default is an
empty data.frame.

Type A ‘data.frame’ specifying the type of responses or factors involved in the design. Default is
an empty data. frame.

block A ‘data.frame‘ indicating any blocking factors used in the design. Default is an empty
data.frame.

runOrder A ‘data.frame‘ detailing the order in which the experimental runs were conducted. De-
fault is an empty data. frame.

standardOrder A ‘data.frame‘ detailing the standard order of the experimental runs. Default is an
empty data.frame.

desireVal A list storing desired values for responses in the experiment. Default is an empty list.

desirability A liststoring desirability functions used to evaluate the outcomes of the experiment.
Default is an empty list.

fits A ‘data.frame‘ containing model fits or other statistical summaries from the analysis of the
experimental data. Default is an empty data. frame.

Methods
Public methods:

e taguchiDesign.c$values()

e taguchiDesign.c$units()

* taguchiDesign.c$.factors()

* taguchiDesign.c$names()

* taguchiDesign.c$as.data.frame()
e taguchiDesign.c$print()

112 taguchiDesign.c

e taguchiDesign.c$.response()
e taguchiDesign.c$.nfp()

e taguchiDesign.c$summary ()

* taguchiDesign.c$effectPlot()
e taguchiDesign.c$identity()

* taguchiDesign.c$clone()

Method values(): Get and set the values for an object of class taguchiDesign.
Usage:
taguchiDesign.c$values(value)

Arguments:

value New value, If missing value get the values.

Method units(): Get and set the units for an object of class taguchiDesign.

Usage:
taguchiDesign.c$units(value)

Arguments:

value New units, If missing value get the units.

Method . factors(): Get and set the factors in an object of class taguchiDesign.

Usage:
taguchiDesign.c$.factors(value)

Arguments:

value New factors, If missing value get the factors.

Method names(): Get and set the names in an object of class taguchiDesign.
Usage:
taguchiDesign.c$names(value)

Arguments:

value New names, If missing value get the names.

Method as.data.frame(): Return adata frame with the information of the object taguchiDesign.c.

Usage:
taguchiDesign.c$as.data.frame()

Method print(): Methods for function print in Package base.

Usage:
taguchiDesign.c$print()

Method .response(): Get and set the the response in an object of class taguchiDesign.

Usage:
taguchiDesign.c$.response(value)

Arguments:

taguchiDesign.c 113

value New response, If missing value get the response.

Method .nfp(): Prints a summary of the factors attributes including their low, high, name, unit,
and type.

Usage:

taguchiDesign.c$.nfp()

Method summary(): Methods for function summary in Package base.
Usage:
taguchiDesign.c$summary ()

Method effectPlot(): Plots the effects of factors on the response variables.
Usage:
taguchiDesign.c$effectPlot(
factors,
fun = mean,
response = NULL,
points = FALSE,
1.col,
p.col,
1d.col,
lty,
xlab,
ylab,
main,
ylim,
pch
)
Arguments:
factors Factors to be plotted.
fun Function applied to the response variables (e.g., mean).
response Optional; specifies which response variables to plot.
points Logical; if TRUE, plots data points.
1.col A color for the lines.
p.col A color for the points.
1d.col A color for the dashed line.
1ty Line type for plotting.
xlab Label for the x-axis.
ylab Label for the y-axis.
main Main title for the plot.
ylim Limits for the y-axis.
pch The symbol for plotting points.

Examples:

tdo = taguchiDesign("L9_3")
tdo$.response(rnorm(9))

tdo$effectPlot(points = TRUE, pch = 16, 1ty = 3)

114 taguchiFactor

Method identity(): Calculates the alias table for a fractional factorial design and prints an
easy to read summary of the defining relations such as 'I = ABCD’ for a standard 2”(4-1) factorial
design.

Usage:
taguchiDesign.c$identity()

Method clone(): The objects of this class are cloneable with this method.
Usage:
taguchiDesign.c$clone(deep = FALSE)
Arguments:

deep Whether to make a deep clone.

Examples

HHE m oo
Method ~taguchiDesign.c$effectPlot”
B —m o

tdo = taguchiDesign("L9_3")
tdo$.response(rnorm(9))
tdo$effectPlot(points = TRUE, pch = 16, lty = 3)

taguchiFactor taguchiFactor

Description

An R6 class representing a factor in a Taguchi design.

Public fields

values A vector containing the levels or values associated with the factor. Default is NA.
name A character string specifying the name of the factor. Default is an empty string ~~.

unit A character string specifying the unit of measurement for the factor. Default is an empty
string =~

type A character string specifying the type of the factor, which can be either “numeric” or “categorical”.
Default is “numeric”.

Methods

Public methods:

e taguchiFactor$attributes()
e taguchiFactor$.values()

e taguchiFactor$.unit()

e taguchiFactor$names()

wirePlot 115
e taguchiFactor$clone()

Method attributes(): Get the attributes of the factor.

Usage:
taguchiFactor$attributes()

Method .values(): Getand set the values for the factors in an object of class taguchiFactor.

Usage:
taguchiFactor$.values(value)

Arguments:

value New values, If missing value get the values.

Method .unit(): Get and set the units for the factors in an object of class taguchiFactor.

Usage:
taguchiFactor$.unit(value)

Arguments:

value New unit, If missing value get the units.

Method names(): Get and set the names in an object of class taguchiFactor.

Usage:
taguchiFactor$names(value)

Arguments:

value New names, If missing value get the names.

Method clone(): The objects of this class are cloneable with this method.

Usage:
taguchiFactor$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

wirePlot wirePlot: 3D Plot

Description

Creates a wireframe diagram for an object of class facDesign.c.

116 wirePlot

Usage
wirePlot(
X)
Y,
z,
data = NULL,
xlim,
ylim,
zlim,
main,
xlab,
ylab,
sub,
sub.a = TRUE,
zlab,
form = "fit",
col = "Rainbow",
steps,
fun,
plot = TRUE,
show.scale = TRUE,
n.scene = "scene”
)
Arguments
X Name providing the Factor A for the plot.
y Name providing the Factor B for the plot.
z Name giving the Response variable.
data Needs to be an object of class facDesign and contains the names of x, y, z.
x1lim Numeric vector of length 2: limits for the x-axis. If missing, limits are set
automatically.
ylim Numeric vector of length 2: limits for the y-axis. If missing, limits are set
automatically.
zlim Numeric vector of length 2: limits for the z-axis. If missing, limits are set
automatically.
main Character string: title of the plot.
xlab Character string: label for the x-axis.
ylab Character string: label for the y-axis.
sub Character string: subtitle for the plot. Default is NULL.
sub.a Logical value indicating whether to display the subtitle. Default is TRUE.
zlab Character string: label for the z-axis.
form Character string specifying the form of the surface to be plotted. Options include

* “quadratic”

wirePlot 117

e “full"
* “interaction”
e “linear”
o “fit”
Defaultis “fit".
col Character string specifying the color palette to use for the plot (e.g., “Rainbow™,
“Jet™, "Earth”, “Electric™). Default is “Rainbow™.
steps Numeric value specifying the number of steps for the grid in the plot. Higher
values result in a smoother surface.
fun Optional function to be applied to the data before plotting.
plot Logical value indicating whether to display the plot. Default is TRUE.
show.scale Logical value indicating whether to display the color scale on the plot. Default
is TRUE.
n.scene Character string specifying the scene name for the plot. Default is ~scene”.
Details

The wirePlot function is used to create a 3D wireframe plot that visualizes the relationship between
two factors and a response variable. The plot can be customized in various ways, including changing
axis labels, adding subtitles, and choosing the color palette.

Value

The function wirePlot returns an invisible list containing:

plot The generated wireframe plot.
grid The grid data used for plotting.
See Also

contourPlot, paretoChart.

Examples

Example 1: Basic wireframe plot

x <- seq(-10, 10, length = 30)

y <- seq(-10, 10, length = 30)

z <- outer(x, y, function(a, b) sin(sqrt(a*2 + b*2)))

wirePlot(x, y, z, main = "3D Wireframe Plot"”, xlab = "X-Axis", ylab = "Y-Axis", zlab = "Z-Axis")

fdo = rsmDesign(k = 3, blocks = 2)
fdo$.response(data.frame(y = rnorm(fdo$nrow())))

#I - display linear fit
wirePlot(A,B,y, data = fdo, form = "linear")

#I1 - display full fit (i.e. effect, interactions and quadratic effects
wirePlot(A,B,y, data = fdo, form = "full")

118

#III - display a fit specified before
fdo$set.fits(fdo$lm(y ~ B + I(A*2)))
wirePlot(A,B,y, data = fdo, form = "fit")

#IV - display a fit given directly
wirePlot(A,B,y, data = fdo, form = "y ~ A%B + I(A*2)")

#V - display a fit using a different colorRamp
wirePlot(A,B,y, data = fdo, form = "full”, col = 2)

wirePlot3

wirePlot3 wirePlot3: function to create a ternary plot (3D wire plot)

Description

This function creates a ternary plot for mixture designs (i.e. object of class mixDesign).

Usage

wirePlot3(
X,
Y,
z,
response,
data = NULL,
main,
xlab,
ylab,
zlab,
form = "linear”,
col = "Rainbow",
steps,
plot = TRUE

Arguments

X Factor 1 of the mixDesign object.
y Factor 2 of the mixDesign object.
Factor 3 of the mixDesign object.
response the response of the mixDesign object.
data The mixDesign object from which X,y,z and the response are taken.
main Character string specifying the main title of the plot.

x1lab Character string specifying the label for the x-axis.

wirePlot3 119

ylab Character string specifying the label for the y-axis.
zlab Character string specifying the label for the z-axis.
form A character string or a formula with the syntax ‘y ~ A + B + C*. If form is a

character string, it has to be one of the following:

* ‘linear’

¢ ‘quadratic’
How the form influences the output is described in the reference listed below.
By default, form is set to ‘linear".

col Character string specifying the color palette to use for the plot (e.g., “Rainbow™,
“Jet™, "Earth”, "Electric™). Default is “Rainbow™.
steps A numeric value specifying the resolution of the plot, i.e., the number of rows

for the square matrix, which also represents the number of grid points per factor.
By default, steps is set to 25.

plot Logical value indicating whether to display the plot. Default is TRUE.

Value

The function wirePlot3 returns an invisible matrix containing the response values as NA’s and
numerics.

See Also

mixDesign.c, mixDesign, contourPlot3.

Examples

#Example 1
mdo <- mixDesign(3, 2, center = FALSE, axial = FALSE, randomize = FALSE, replicates =c(1, 1, 2, 3))
elongation <- c(11.0, 12.4, 15.0, 14.8, 16.1, 17.7,
16.4, 16.6, 8.8, 10.0, 10.0, 9.7,
11.8, 16.8, 16.0)
mdo$. response(elongation)
wirePlot3(A, B, C, elongation, data = mdo, form = "quadratic")

#Example 2
mdo <- mixDesign(3,2, center = FALSE, axial = FALSE, randomize = FALSE, replicates =c¢(1,1,2,3))
mdo$names(c("polyethylene”, "polystyrene”, "polypropylene”))
mdo$units("percent”)
elongation <- c(11.9, 12.4, 15.0, 14.8, 16.1, 17.7,
16.4, 16.6, 8.8, 10.0, 10.0, 9.7,
11.8, 16.8, 16.0)
mdo$. response(elongation)

wirePlot3(A, B, C, elongation, data = mdo, form = "linear")
wirePlot3(A, B, C, elongation, data = mdo, form = "quadratic”,
col = "Jet")

wirePlot3(A, B, C, elongation, data = mdo,
form = "elongation ~ I(A*2) - B:A + I(C*2)",
col = "Electric")

wirePlot3(A, B, C, elongation, data = mdo, form = "quadratic”,
col = "Earth")

Index

adSim, 3
aliasTable, 5
as.data.frame_facDesign, 5

blocking, 6

cg,7,10,12,14,49,51
cg_HistChart, 8,9, 12, 14
cg_RunChart, 8, 10, 11, 14
cg_ToleranceChart, 8, 10, 12, 13
code2real, 15

confounds, 15
contourPlot, 16, 117
contourPlot3, 18, 65, 67, 119

desirability, 20, 23, 24, 74, 76, 105
desirability.c, 20, 21, 107
desOpt, 23, 74

dgamma3, 24
Distr, 25, 29, 30, 32,45
DistrCollection, 27, 28, 32, 45
distribution, 27, 30, 31, 45
dlnorm3, 32

doeFactor, 33

dotPlot, 35

dweibull3, 36

facDesign, 6, 24, 37, 46, 47, 63, 65, 72, 73,
76,79, 80, 101, 104, 109, 110

facDesign.c, 5, 6, 15, 16, 38, 39, 46, 47, 62,
65,71,74,76,78, 99, 101, 103-105,
107,115

FitDistr, 4, 27, 30, 44, 91, 97

fracChoose, 5, 38, 46, 47, 99, 101

fracDesign, 5, 38, 46, 46, 63, 65, 73, 79, 80
101, 104, 109, 110

gagelin, 48, 50, 51
gagelLinDesign, 49, 49
gageRR, 49, 50, 62
gageRR.c, 50, 51, 51, 62

120

gageRRDesign, 51, 61, 73, 80, 109, 110
interactionPlot, 62, 72

mixDesign, 19, 63, 67, 104, 119
mixDesign.c, 19,44, 65,65, 119
MSALinearity, 49, 50, 68
mvPlot, 69

normalPlot, 71

oaChoose, 73
optimum, 21, 23, 24, 74, 105, 107
overall, 21,23,74,75

paretoChart, 17,76, 117
paretoPlot, 72,78
pbDesign, 38,47, 80, 101, 110
pbDesign.c, 81
pbFactor, 83

pcr, 84

pgamma3, 87

plnorm3, 88
ppPlot, 89, 97
print_adtest, 91
pweibull3, 92

ggamma3s, 93
glnorm3, 94
qgPlot, 91, 95
qweibull3, 97

randomize, 98

rsmChoose, 46, 99, 101

rsmDesign, 38, 46, 47, 65, 73, 76, 80, 99, 100,
104, 109, 110

simProc, 101

snPlot, 102
starDesign, 103
steepAscent, 105, 107

INDEX

steepAscent.c, 105, 106
summaryFits, 107

taguchiChoose, 108
taguchiDesign, 38, 47, 109
taguchiDesign.c, 44, 102, 111
taguchiFactor, 34, 114

wirePlot, /7,115
wirePlot3, 19, 65,67, 118

121

	adSim
	aliasTable
	as.data.frame_facDesign
	blocking
	cg
	cg_HistChart
	cg_RunChart
	cg_ToleranceChart
	code2real
	confounds
	contourPlot
	contourPlot3
	desirability
	desirability.c
	desOpt
	dgamma3
	Distr
	DistrCollection
	distribution
	dlnorm3
	doeFactor
	dotPlot
	dweibull3
	facDesign
	facDesign.c
	FitDistr
	fracChoose
	fracDesign
	gageLin
	gageLinDesign
	gageRR
	gageRR.c
	gageRRDesign
	interactionPlot
	mixDesign
	mixDesign.c
	MSALinearity
	mvPlot
	normalPlot
	oaChoose
	optimum
	overall
	paretoChart
	paretoPlot
	pbDesign
	pbDesign.c
	pbFactor
	pcr
	pgamma3
	plnorm3
	ppPlot
	print_adtest
	pweibull3
	qgamma3
	qlnorm3
	qqPlot
	qweibull3
	randomize
	rsmChoose
	rsmDesign
	simProc
	snPlot
	starDesign
	steepAscent
	steepAscent.c
	summaryFits
	taguchiChoose
	taguchiDesign
	taguchiDesign.c
	taguchiFactor
	wirePlot
	wirePlot3
	Index

