
Package ‘scoringutils’
June 26, 2025

Title Utilities for Scoring and Assessing Predictions

Version 2.1.1

Language en-GB

Description Facilitate the evaluation of forecasts in a convenient
framework based on data.table. It allows user to to check their forecasts
and diagnose issues, to visualise forecasts and missing data, to transform
data before scoring, to handle missing forecasts, to aggregate scores, and
to visualise the results of the evaluation. The package mostly focuses on
the evaluation of probabilistic forecasts and allows evaluating several
different forecast types and input formats. Find more information about the
package in the Vignettes as well as in the accompanying paper,
<doi:10.48550/arXiv.2205.07090>.

License MIT + file LICENSE

Encoding UTF-8

LazyData true

Imports checkmate, cli, data.table (>= 1.16.0), ggplot2 (>= 3.4.0),
methods, Metrics, purrr, scoringRules (>= 1.1.3), stats

Suggests ggdist, kableExtra, knitr, magrittr, rmarkdown, testthat (>=
3.1.9), vdiffr

Config/Needs/website r-lib/pkgdown, amirmasoudabdol/preferably

Config/testthat/edition 3

RoxygenNote 7.3.2

URL https://doi.org/10.48550/arXiv.2205.07090,

https://epiforecasts.io/scoringutils/,

https://github.com/epiforecasts/scoringutils

BugReports https://github.com/epiforecasts/scoringutils/issues

VignetteBuilder knitr

Depends R (>= 4.1)

NeedsCompilation no

1

https://doi.org/10.48550/arXiv.2205.07090
https://doi.org/10.48550/arXiv.2205.07090
https://epiforecasts.io/scoringutils/
https://github.com/epiforecasts/scoringutils
https://github.com/epiforecasts/scoringutils/issues

2 Contents

Author Nikos Bosse [aut, cre] (ORCID: <https://orcid.org/0000-0002-7750-5280>),
Sam Abbott [aut] (ORCID: <https://orcid.org/0000-0001-8057-8037>),
Hugo Gruson [aut] (ORCID: <https://orcid.org/0000-0002-4094-1476>),
Johannes Bracher [ctb] (ORCID: <https://orcid.org/0000-0002-3777-1410>),
Toshiaki Asakura [ctb] (ORCID: <https://orcid.org/0000-0001-8838-785X>),
James Mba Azam [ctb] (ORCID: <https://orcid.org/0000-0001-5782-7330>),
Sebastian Funk [aut],
Michael Chirico [ctb] (ORCID: <https://orcid.org/0000-0003-0787-087X>)

Maintainer Nikos Bosse <nikosbosse@gmail.com>

Repository CRAN

Date/Publication 2025-06-25 22:20:02 UTC

Contents
add_relative_skill . 4
ae_median_quantile . 5
ae_median_sample . 6
assert_dims_ok_point . 7
assert_forecast.forecast_binary . 8
assert_forecast_generic . 9
assert_forecast_type . 9
assert_input_binary . 10
assert_input_categorical . 10
assert_input_interval . 11
assert_input_nominal . 12
assert_input_ordinal . 12
assert_input_point . 13
assert_input_quantile . 14
assert_input_sample . 14
as_forecast_binary . 15
as_forecast_doc_template . 17
as_forecast_generic . 18
as_forecast_nominal . 19
as_forecast_ordinal . 21
as_forecast_point . 23
as_forecast_quantile . 25
as_forecast_sample . 27
bias_quantile . 29
bias_sample . 30
check_columns_present . 32
check_dims_ok_point . 32
check_duplicates . 33
check_input_binary . 34
check_input_interval . 34
check_input_point . 35
check_input_quantile . 35
check_input_sample . 36

https://orcid.org/0000-0002-7750-5280
https://orcid.org/0000-0001-8057-8037
https://orcid.org/0000-0002-4094-1476
https://orcid.org/0000-0002-3777-1410
https://orcid.org/0000-0001-8838-785X
https://orcid.org/0000-0001-5782-7330
https://orcid.org/0000-0003-0787-087X

Contents 3

check_number_per_forecast . 37
check_numeric_vector . 37
check_try . 38
crps_sample . 39
dss_sample . 40
example_binary . 41
example_nominal . 42
example_ordinal . 43
example_point . 44
example_quantile . 45
example_sample_continuous . 46
example_sample_discrete . 47
get_correlations . 48
get_coverage . 48
get_duplicate_forecasts . 50
get_forecast_counts . 50
get_forecast_type . 51
get_forecast_unit . 52
get_metrics . 53
get_metrics.forecast_binary . 53
get_metrics.forecast_nominal . 54
get_metrics.forecast_ordinal . 55
get_metrics.forecast_point . 56
get_metrics.forecast_quantile . 58
get_metrics.forecast_sample . 59
get_metrics.scores . 60
get_pairwise_comparisons . 61
get_pit_histogram.forecast_quantile . 64
get_type . 66
interval_coverage . 66
interval_score . 67
is_forecast_binary . 69
logs_categorical . 70
logs_sample . 71
log_shift . 72
mad_sample . 73
pit_histogram_sample . 74
plot_correlations . 77
plot_forecast_counts . 78
plot_heatmap . 79
plot_interval_coverage . 80
plot_pairwise_comparisons . 80
plot_quantile_coverage . 81
plot_wis . 82
print.forecast . 83
quantile_score . 83
rps_ordinal . 85
score.forecast_binary . 86

4 add_relative_skill

scoring-functions-binary . 89
select_metrics . 90
set_forecast_unit . 91
se_mean_sample . 92
summarise_scores . 93
test_columns_not_present . 94
test_columns_present . 94
theme_scoringutils . 95
transform_forecasts . 95
validate_metrics . 97
wis . 98

Index 102

add_relative_skill Add relative skill scores based on pairwise comparisons

Description

Adds a columns with relative skills computed by running pairwise comparisons on the scores. For
more information on the computation of relative skill, see get_pairwise_comparisons(). Rela-
tive skill will be calculated for the aggregation level specified in by.

Usage

add_relative_skill(
scores,
compare = "model",
by = NULL,
metric = intersect(c("wis", "crps", "brier_score"), names(scores)),
baseline = NULL,
...

)

Arguments

scores An object of class scores (a data.table with scores and an additional attribute
metrics as produced by score()).

compare Character vector with a single colum name that defines the elements for the
pairwise comparison. For example, if this is set to "model" (the default), then
elements of the "model" column will be compared.

by Character vector with column names that define further grouping levels for the
pairwise comparisons. By default this is NULL and there will be one relative skill
score per distinct entry of the column selected in compare. If further columns
are given here, for example, by = "location" with compare = "model", then
one separate relative skill score is calculated for every model in every location.

ae_median_quantile 5

metric A string with the name of the metric for which a relative skill shall be com-
puted. By default this is either "crps", "wis" or "brier_score" if any of these are
available.

baseline A string with the name of a model. If a baseline is given, then a scaled relative
skill with respect to the baseline will be returned. By default (NULL), relative
skill will not be scaled with respect to a baseline model.

... Additional arguments for the comparison between two models. See compare_forecasts()
for more information.

ae_median_quantile Absolute error of the median (quantile-based version)

Description

Compute the absolute error of the median calculated as

|observed − median prediction|

The median prediction is the predicted value for which quantile_level == 0.5. The function requires
0.5 to be among the quantile levels in quantile_level.

Usage

ae_median_quantile(observed, predicted, quantile_level)

Arguments

observed Numeric vector of size n with the observed values.

predicted Numeric nxN matrix of predictive quantiles, n (number of rows) being the num-
ber of forecasts (corresponding to the number of observed values) and N (num-
ber of columns) the number of quantiles per forecast. If observed is just a single
number, then predicted can just be a vector of size N.

quantile_level Vector of of size N with the quantile levels for which predictions were made.

Value

Numeric vector of length N with the absolute error of the median.

Input format

6 ae_median_sample

See Also

ae_median_sample()

Examples

observed <- rnorm(30, mean = 1:30)
predicted_values <- replicate(3, rnorm(30, mean = 1:30))
ae_median_quantile(

observed, predicted_values, quantile_level = c(0.2, 0.5, 0.8)
)

ae_median_sample Absolute error of the median (sample-based version)

Description

Absolute error of the median calculated as

|observed − median prediction|

where the median prediction is calculated as the median of the predictive samples.

Usage

ae_median_sample(observed, predicted)

Arguments

observed A vector with observed values of size n

predicted nxN matrix of predictive samples, n (number of rows) being the number of data
points and N (number of columns) the number of Monte Carlo samples. Alter-
natively, predicted can just be a vector of size n.

Value

Numeric vector of length n with the absolute errors of the median.

Input format

assert_dims_ok_point 7

See Also

ae_median_quantile()

Examples

observed <- rnorm(30, mean = 1:30)
predicted_values <- matrix(rnorm(30, mean = 1:30))
ae_median_sample(observed, predicted_values)

assert_dims_ok_point Assert Inputs Have Matching Dimensions

Description

Function assesses whether input dimensions match. In the following, n is the number of observa-
tions / forecasts. Scalar values may be repeated to match the length of the other input. Allowed
options are therefore:

• observed is vector of length 1 or length n

• predicted is:

– a vector of of length 1 or length n
– a matrix with n rows and 1 column

Usage

assert_dims_ok_point(observed, predicted)

Arguments

observed Input to be checked. Should be a factor of length n with exactly two levels, hold-
ing the observed values. The highest factor level is assumed to be the reference
level. This means that predicted represents the probability that the observed
value is equal to the highest factor level.

predicted Input to be checked. predicted should be a vector of length n, holding proba-
bilities. Alternatively, predicted can be a matrix of size n x 1. Values represent
the probability that the corresponding value in observed will be equal to the
highest available factor level.

Value

Returns NULL invisibly if the assertion was successful and throws an error otherwise.

8 assert_forecast.forecast_binary

assert_forecast.forecast_binary

Assert that input is a forecast object and passes validations

Description

Assert that an object is a forecast object (i.e. a data.table with a class forecast and an additional
class forecast_<type> corresponding to the forecast type).

See the corresponding assert_forecast_<type> functions for more details on the required input
formats.

Usage

S3 method for class 'forecast_binary'
assert_forecast(forecast, forecast_type = NULL, verbose = TRUE, ...)

S3 method for class 'forecast_point'
assert_forecast(forecast, forecast_type = NULL, verbose = TRUE, ...)

S3 method for class 'forecast_quantile'
assert_forecast(forecast, forecast_type = NULL, verbose = TRUE, ...)

S3 method for class 'forecast_sample'
assert_forecast(forecast, forecast_type = NULL, verbose = TRUE, ...)

assert_forecast(forecast, forecast_type = NULL, verbose = TRUE, ...)

Default S3 method:
assert_forecast(forecast, forecast_type = NULL, verbose = TRUE, ...)

Arguments

forecast A forecast object (a validated data.table with predicted and observed values).

forecast_type (optional) The forecast type you expect the forecasts to have. If the forecast type
as determined by scoringutils based on the input does not match this, an error
will be thrown. If NULL (the default), the forecast type will be inferred from the
data.

verbose Logical. If FALSE (default is TRUE), no messages and warnings will be created.

... Currently unused. You cannot pass additional arguments to scoring functions
via See the Customising metrics section below for details on how to use
purrr::partial() to pass arguments to individual metrics.

Value

Returns NULL invisibly.

assert_forecast_generic 9

Examples

forecast <- as_forecast_binary(example_binary)
assert_forecast(forecast)

assert_forecast_generic

Validation common to all forecast types

Description

The function runs input checks that apply to all input data, regardless of forecast type. The function

• asserts that the forecast is a data.table which has columns observed and predicted

• checks the forecast type and forecast unit
• checks there are no duplicate forecasts
• if appropriate, checks the number of samples / quantiles is the same for all forecasts.

Usage

assert_forecast_generic(data, verbose = TRUE)

Arguments

data A data.table with forecasts and observed values that should be validated.
verbose Logical. If FALSE (default is TRUE), no messages and warnings will be created.

Value

returns the input

assert_forecast_type Assert that forecast type is as expected

Description

Assert that forecast type is as expected

Usage

assert_forecast_type(data, actual = get_forecast_type(data), desired = NULL)

Arguments

data A forecast object.
actual The actual forecast type of the data
desired The desired forecast type of the data

10 assert_input_categorical

Value

Returns NULL invisibly if the assertion was successful and throws an error otherwise.

assert_input_binary Assert that inputs are correct for binary forecast

Description

Function assesses whether the inputs correspond to the requirements for scoring binary forecasts.

Usage

assert_input_binary(observed, predicted)

Arguments

observed Input to be checked. Should be a factor of length n with exactly two levels, hold-
ing the observed values. The highest factor level is assumed to be the reference
level. This means that predicted represents the probability that the observed
value is equal to the highest factor level.

predicted Input to be checked. predicted should be a vector of length n, holding proba-
bilities. Alternatively, predicted can be a matrix of size n x 1. Values represent
the probability that the corresponding value in observed will be equal to the
highest available factor level.

Value

Returns NULL invisibly if the assertion was successful and throws an error otherwise.

assert_input_categorical

Assert that inputs are correct for categorical forecasts

Description

Function assesses whether the inputs correspond to the requirements for scoring categorical, i.e.
either nominal or ordinal forecasts.

Usage

assert_input_categorical(observed, predicted, predicted_label, ordered = NA)

assert_input_interval 11

Arguments

observed Input to be checked. Should be a factor of length n with N levels holding the
observed values. n is the number of observations and N is the number of possible
outcomes the observed values can assume.

predicted Input to be checked. Should be nxN matrix of predicted probabilities, n (number
of rows) being the number of data points and N (number of columns) the number
of possible outcomes the observed values can assume. If observed is just a
single number, then predicted can just be a vector of size N. Values represent
the probability that the corresponding value in observed will be equal to the
factor level referenced in predicted_label.

predicted_label

Factor of length N with N levels, where N is the number of possible outcomes
the observed values can assume.

ordered Value indicating whether factors have to be ordered or not. Defaults to NA, which
means that the check is not performed.

Value

Returns NULL invisibly if the assertion was successful and throws an error otherwise.

assert_input_interval Assert that inputs are correct for interval-based forecast

Description

Function assesses whether the inputs correspond to the requirements for scoring interval-based
forecasts.

Usage

assert_input_interval(observed, lower, upper, interval_range)

Arguments

observed Input to be checked. Should be a numeric vector with the observed values of
size n.

lower Input to be checked. Should be a numeric vector of size n that holds the predicted
value for the lower bounds of the prediction intervals.

upper Input to be checked. Should be a numeric vector of size n that holds the predicted
value for the upper bounds of the prediction intervals.

interval_range Input to be checked. Should be a vector of size n that denotes the interval range
in percent. E.g. a value of 50 denotes a (25%, 75%) prediction interval.

Value

Returns NULL invisibly if the assertion was successful and throws an error otherwise.

12 assert_input_ordinal

assert_input_nominal Assert that inputs are correct for nominal forecasts

Description

Function assesses whether the inputs correspond to the requirements for scoring nominal forecasts.

Usage

assert_input_nominal(observed, predicted, predicted_label)

Arguments

observed Input to be checked. Should be an unordered factor of length n with N lev-
els holding the observed values. n is the number of observations and N is the
number of possible outcomes the observed values can assume.

predicted Input to be checked. Should be nxN matrix of predicted probabilities, n (number
of rows) being the number of data points and N (number of columns) the number
of possible outcomes the observed values can assume. If observed is just a
single number, then predicted can just be a vector of size N. Values represent
the probability that the corresponding value in observed will be equal to the
factor level referenced in predicted_label.

predicted_label

Unordered factor of length N with N levels, where N is the number of possible
outcomes the observed values can assume.

Value

Returns NULL invisibly if the assertion was successful and throws an error otherwise.

assert_input_ordinal Assert that inputs are correct for ordinal forecasts

Description

Function assesses whether the inputs correspond to the requirements for scoring ordinal forecasts.

Usage

assert_input_ordinal(observed, predicted, predicted_label)

assert_input_point 13

Arguments

observed Input to be checked. Should be an ordered factor of length n with N levels hold-
ing the observed values. n is the number of observations and N is the number of
possible outcomes the observed values can assume.

predicted Input to be checked. Should be nxN matrix of predicted probabilities, n (number
of rows) being the number of data points and N (number of columns) the number
of possible outcomes the observed values can assume. If observed is just a
single number, then predicted can just be a vector of size N. Values represent
the probability that the corresponding value in observed will be equal to factor
level referenced in predicted_label.

predicted_label

Ordered factor of length N with N levels, where N is the number of possible
outcomes the observed values can assume.

Value

Returns NULL invisibly if the assertion was successful and throws an error otherwise.

assert_input_point Assert that inputs are correct for point forecast

Description

Function assesses whether the inputs correspond to the requirements for scoring point forecasts.

Usage

assert_input_point(observed, predicted)

Arguments

observed Input to be checked. Should be a numeric vector with the observed values of
size n.

predicted Input to be checked. Should be a numeric vector with the predicted values of
size n.

Value

Returns NULL invisibly if the assertion was successful and throws an error otherwise.

14 assert_input_sample

assert_input_quantile Assert that inputs are correct for quantile-based forecast

Description

Function assesses whether the inputs correspond to the requirements for scoring quantile-based
forecasts.

Usage

assert_input_quantile(
observed,
predicted,
quantile_level,
unique_quantile_levels = TRUE

)

Arguments

observed Input to be checked. Should be a numeric vector with the observed values of
size n.

predicted Input to be checked. Should be nxN matrix of predictive quantiles, n (number of
rows) being the number of data points and N (number of columns) the number
of quantiles per forecast. If observed is just a single number, then predicted can
just be a vector of size N.

quantile_level Input to be checked. Should be a vector of size N that denotes the quantile levels
corresponding to the columns of the prediction matrix.

unique_quantile_levels

Whether the quantile levels are required to be unique (TRUE, the default) or not
(FALSE).

Value

Returns NULL invisibly if the assertion was successful and throws an error otherwise.

assert_input_sample Assert that inputs are correct for sample-based forecast

Description

Function assesses whether the inputs correspond to the requirements for scoring sample-based fore-
casts.

Usage

assert_input_sample(observed, predicted)

as_forecast_binary 15

Arguments

observed Input to be checked. Should be a numeric vector with the observed values of
size n.

predicted Input to be checked. Should be a numeric nxN matrix of predictive samples, n
(number of rows) being the number of data points and N (number of columns)
the number of samples per forecast. If observed is just a single number, then
predicted values can just be a vector of size N.

Value

Returns NULL invisibly if the assertion was successful and throws an error otherwise.

as_forecast_binary Create a forecast object for binary forecasts

Description

Process and validate a data.frame (or similar) or similar with forecasts and observations. If the input
passes all input checks, those functions will be converted to a forecast object. A forecast object is
a data.table with a class forecast and an additional class that depends on the forecast type.

The arguments observed, predicted, etc. make it possible to rename existing columns of the
input data to match the required columns for a forecast object. Using the argument forecast_unit,
you can specify the columns that uniquely identify a single forecast (and thereby removing other,
unneeded columns. See section "Forecast Unit" below for details).

Usage

as_forecast_binary(data, ...)

Default S3 method:
as_forecast_binary(
data,
forecast_unit = NULL,
observed = NULL,
predicted = NULL,
...

)

Arguments

data A data.frame (or similar) with predicted and observed values. See the details
section of for additional information on the required input format.

... Unused

16 as_forecast_binary

forecast_unit (optional) Name of the columns in data (after any renaming of columns) that
denote the unit of a single forecast. See get_forecast_unit() for details. If
NULL (the default), all columns that are not required columns are assumed to
form the unit of a single forecast. If specified, all columns that are not part of
the forecast unit (or required columns) will be removed.

observed (optional) Name of the column in data that contains the observed values. This
column will be renamed to "observed".

predicted (optional) Name of the column in data that contains the predicted values. This
column will be renamed to "predicted".

Value

A forecast object of class forecast_binary

Required input

The input needs to be a data.frame or similar with the following columns:

• observed: factor with exactly two levels representing the observed values. The highest
factor level is assumed to be the reference level. This means that corresponding value in
predicted represent the probability that the observed value is equal to the highest factor
level.

• predicted: numeric with predicted probabilities, representing the probability that the corre-
sponding value in observed is equal to the highest available factor level.

For convenience, we recommend an additional column model holding the name of the forecaster or
model that produced a prediction, but this is not strictly necessary.

See the example_binary data set for an example.

Forecast unit

In order to score forecasts, scoringutils needs to know which of the rows of the data belong
together and jointly form a single forecasts. This is easy e.g. for point forecast, where there is
one row per forecast. For quantile or sample-based forecasts, however, there are multiple rows that
belong to a single forecast.

The forecast unit or unit of a single forecast is then described by the combination of columns that
uniquely identify a single forecast. For example, we could have forecasts made by different models
in various locations at different time points, each for several weeks into the future. The forecast
unit could then be described as forecast_unit = c("model", "location", "forecast_date",
"forecast_horizon"). scoringutils automatically tries to determine the unit of a single fore-
cast. It uses all existing columns for this, which means that no columns must be present that are un-
related to the forecast unit. As a very simplistic example, if you had an additional row, "even", that is
one if the row number is even and zero otherwise, then this would mess up scoring as scoringutils
then thinks that this column was relevant in defining the forecast unit.

In order to avoid issues, we recommend setting the forecast unit explicitly, using the forecast_unit
argument. This will simply drop unneeded columns, while making sure that all necessary, ’protected
columns’ like "predicted" or "observed" are retained.

as_forecast_doc_template 17

See Also

Other functions to create forecast objects: as_forecast_nominal(), as_forecast_ordinal(),
as_forecast_point(), as_forecast_quantile(), as_forecast_sample()

Examples

as_forecast_binary(
example_binary,
predicted = "predicted",
forecast_unit = c("model", "target_type", "target_end_date",

"horizon", "location")
)

as_forecast_doc_template

General information on creating a forecast object

Description

Process and validate a data.frame (or similar) or similar with forecasts and observations. If the input
passes all input checks, those functions will be converted to a forecast object. A forecast object is
a data.table with a class forecast and an additional class that depends on the forecast type.

The arguments observed, predicted, etc. make it possible to rename existing columns of the
input data to match the required columns for a forecast object. Using the argument forecast_unit,
you can specify the columns that uniquely identify a single forecast (and thereby removing other,
unneeded columns. See section "Forecast Unit" below for details).

Arguments

data A data.frame (or similar) with predicted and observed values. See the details
section of for additional information on the required input format.

forecast_unit (optional) Name of the columns in data (after any renaming of columns) that
denote the unit of a single forecast. See get_forecast_unit() for details. If
NULL (the default), all columns that are not required columns are assumed to
form the unit of a single forecast. If specified, all columns that are not part of
the forecast unit (or required columns) will be removed.

observed (optional) Name of the column in data that contains the observed values. This
column will be renamed to "observed".

predicted (optional) Name of the column in data that contains the predicted values. This
column will be renamed to "predicted".

18 as_forecast_generic

Forecast unit

In order to score forecasts, scoringutils needs to know which of the rows of the data belong
together and jointly form a single forecasts. This is easy e.g. for point forecast, where there is
one row per forecast. For quantile or sample-based forecasts, however, there are multiple rows that
belong to a single forecast.

The forecast unit or unit of a single forecast is then described by the combination of columns that
uniquely identify a single forecast. For example, we could have forecasts made by different models
in various locations at different time points, each for several weeks into the future. The forecast
unit could then be described as forecast_unit = c("model", "location", "forecast_date",
"forecast_horizon"). scoringutils automatically tries to determine the unit of a single fore-
cast. It uses all existing columns for this, which means that no columns must be present that are un-
related to the forecast unit. As a very simplistic example, if you had an additional row, "even", that is
one if the row number is even and zero otherwise, then this would mess up scoring as scoringutils
then thinks that this column was relevant in defining the forecast unit.

In order to avoid issues, we recommend setting the forecast unit explicitly, using the forecast_unit
argument. This will simply drop unneeded columns, while making sure that all necessary, ’protected
columns’ like "predicted" or "observed" are retained.

as_forecast_generic Common functionality for as_forecast_<type> functions

Description

Common functionality for as_forecast_<type> functions

Usage

as_forecast_generic(data, forecast_unit = NULL, ...)

Arguments

data A data.frame (or similar) with predicted and observed values. See the details
section of for additional information on the required input format.

forecast_unit (optional) Name of the columns in data (after any renaming of columns) that
denote the unit of a single forecast. See get_forecast_unit() for details. If
NULL (the default), all columns that are not required columns are assumed to
form the unit of a single forecast. If specified, all columns that are not part of
the forecast unit (or required columns) will be removed.

... Named arguments that are used to rename columns. The names of the arguments
are the names of the columns that should be renamed. The values are the new
names.

Details

This function splits out part of the functionality of as_forecast_<type> that is the same for all
as_forecast_<type> functions. It renames the required columns, where appropriate, and sets the
forecast unit.

as_forecast_nominal 19

as_forecast_nominal Create a forecast object for nominal forecasts

Description

Process and validate a data.frame (or similar) or similar with forecasts and observations. If the input
passes all input checks, those functions will be converted to a forecast object. A forecast object is
a data.table with a class forecast and an additional class that depends on the forecast type.

The arguments observed, predicted, etc. make it possible to rename existing columns of the
input data to match the required columns for a forecast object. Using the argument forecast_unit,
you can specify the columns that uniquely identify a single forecast (and thereby removing other,
unneeded columns. See section "Forecast Unit" below for details).

Usage

as_forecast_nominal(data, ...)

Default S3 method:
as_forecast_nominal(
data,
forecast_unit = NULL,
observed = NULL,
predicted = NULL,
predicted_label = NULL,
...

)

Arguments

data A data.frame (or similar) with predicted and observed values. See the details
section of for additional information on the required input format.

... Unused

forecast_unit (optional) Name of the columns in data (after any renaming of columns) that
denote the unit of a single forecast. See get_forecast_unit() for details. If
NULL (the default), all columns that are not required columns are assumed to
form the unit of a single forecast. If specified, all columns that are not part of
the forecast unit (or required columns) will be removed.

observed (optional) Name of the column in data that contains the observed values. This
column will be renamed to "observed".

predicted (optional) Name of the column in data that contains the predicted values. This
column will be renamed to "predicted".

predicted_label

(optional) Name of the column in data that denotes the outcome to which a
predicted probability corresponds to. This column will be renamed to "pre-
dicted_label".

20 as_forecast_nominal

Details

Nominal forecasts are a form of categorical forecasts and represent a generalisation of binary fore-
casts to multiple outcomes. The possible outcomes that the observed values can assume are not
ordered.

Value

A forecast object of class forecast_nominal

Required input

The input needs to be a data.frame or similar for the default method with the following columns:

• observed: Column with observed values of type factor with N levels, where N is the num-
ber of possible outcomes. The levels of the factor represent the possible outcomes that the
observed values can assume.

• predicted: numeric column with predicted probabilities. The values represent the proba-
bility that the observed value is equal to the factor level denoted in predicted_label. Note
that forecasts must be complete, i.e. there must be a probability assigned to every possible
outcome and those probabilities must sum to one.

• predicted_label: factor with N levels, denoting the outcome that the probabilities in
predicted correspond to.

For convenience, we recommend an additional column model holding the name of the forecaster or
model that produced a prediction, but this is not strictly necessary.

See the example_nominal data set for an example.

Forecast unit

In order to score forecasts, scoringutils needs to know which of the rows of the data belong
together and jointly form a single forecasts. This is easy e.g. for point forecast, where there is
one row per forecast. For quantile or sample-based forecasts, however, there are multiple rows that
belong to a single forecast.

The forecast unit or unit of a single forecast is then described by the combination of columns that
uniquely identify a single forecast. For example, we could have forecasts made by different models
in various locations at different time points, each for several weeks into the future. The forecast
unit could then be described as forecast_unit = c("model", "location", "forecast_date",
"forecast_horizon"). scoringutils automatically tries to determine the unit of a single fore-
cast. It uses all existing columns for this, which means that no columns must be present that are un-
related to the forecast unit. As a very simplistic example, if you had an additional row, "even", that is
one if the row number is even and zero otherwise, then this would mess up scoring as scoringutils
then thinks that this column was relevant in defining the forecast unit.

In order to avoid issues, we recommend setting the forecast unit explicitly, using the forecast_unit
argument. This will simply drop unneeded columns, while making sure that all necessary, ’protected
columns’ like "predicted" or "observed" are retained.

as_forecast_ordinal 21

See Also

Other functions to create forecast objects: as_forecast_binary(), as_forecast_ordinal(),
as_forecast_point(), as_forecast_quantile(), as_forecast_sample()

Examples

as_forecast_nominal(
na.omit(example_nominal),
predicted = "predicted",
forecast_unit = c("model", "target_type", "target_end_date",

"horizon", "location")
)

as_forecast_ordinal Create a forecast object for ordinal forecasts

Description

Process and validate a data.frame (or similar) or similar with forecasts and observations. If the input
passes all input checks, those functions will be converted to a forecast object. A forecast object is
a data.table with a class forecast and an additional class that depends on the forecast type.

The arguments observed, predicted, etc. make it possible to rename existing columns of the
input data to match the required columns for a forecast object. Using the argument forecast_unit,
you can specify the columns that uniquely identify a single forecast (and thereby removing other,
unneeded columns. See section "Forecast Unit" below for details).

Usage

as_forecast_ordinal(data, ...)

Default S3 method:
as_forecast_ordinal(
data,
forecast_unit = NULL,
observed = NULL,
predicted = NULL,
predicted_label = NULL,
...

)

Arguments

data A data.frame (or similar) with predicted and observed values. See the details
section of for additional information on the required input format.

... Unused

22 as_forecast_ordinal

forecast_unit (optional) Name of the columns in data (after any renaming of columns) that
denote the unit of a single forecast. See get_forecast_unit() for details. If
NULL (the default), all columns that are not required columns are assumed to
form the unit of a single forecast. If specified, all columns that are not part of
the forecast unit (or required columns) will be removed.

observed (optional) Name of the column in data that contains the observed values. This
column will be renamed to "observed".

predicted (optional) Name of the column in data that contains the predicted values. This
column will be renamed to "predicted".

predicted_label

(optional) Name of the column in data that denotes the outcome to which a
predicted probability corresponds to. This column will be renamed to "pre-
dicted_label".

Details

Ordinal forecasts are a form of categorical forecasts and represent a generalisation of binary fore-
casts to multiple outcomes. The possible outcomes that the observed values can assume are ordered.

Value

A forecast object of class forecast_ordinal

Required input

The input needs to be a data.frame or similar for the default method with the following columns:

• observed: Column with observed values of type factor with N ordered levels, where N is
the number of possible outcomes. The levels of the factor represent the possible outcomes that
the observed values can assume.

• predicted: numeric column with predicted probabilities. The values represent the proba-
bility that the observed value is equal to the factor level denoted in predicted_label. Note
that forecasts must be complete, i.e. there must be a probability assigned to every possible
outcome and those probabilities must sum to one.

• predicted_label: factor with N levels, denoting the outcome that the probabilities in
predicted correspond to.

For convenience, we recommend an additional column model holding the name of the forecaster or
model that produced a prediction, but this is not strictly necessary.

See the example_ordinal data set for an example.

Forecast unit

In order to score forecasts, scoringutils needs to know which of the rows of the data belong
together and jointly form a single forecasts. This is easy e.g. for point forecast, where there is
one row per forecast. For quantile or sample-based forecasts, however, there are multiple rows that
belong to a single forecast.

as_forecast_point 23

The forecast unit or unit of a single forecast is then described by the combination of columns that
uniquely identify a single forecast. For example, we could have forecasts made by different models
in various locations at different time points, each for several weeks into the future. The forecast
unit could then be described as forecast_unit = c("model", "location", "forecast_date",
"forecast_horizon"). scoringutils automatically tries to determine the unit of a single fore-
cast. It uses all existing columns for this, which means that no columns must be present that are un-
related to the forecast unit. As a very simplistic example, if you had an additional row, "even", that is
one if the row number is even and zero otherwise, then this would mess up scoring as scoringutils
then thinks that this column was relevant in defining the forecast unit.

In order to avoid issues, we recommend setting the forecast unit explicitly, using the forecast_unit
argument. This will simply drop unneeded columns, while making sure that all necessary, ’protected
columns’ like "predicted" or "observed" are retained.

See Also

Other functions to create forecast objects: as_forecast_binary(), as_forecast_nominal(),
as_forecast_point(), as_forecast_quantile(), as_forecast_sample()

Examples

as_forecast_ordinal(
na.omit(example_ordinal),
predicted = "predicted",
forecast_unit = c("model", "target_type", "target_end_date",

"horizon", "location")
)

as_forecast_point Create a forecast object for point forecasts

Description

When converting a forecast_quantile object into a forecast_point object, the 0.5 quantile is
extracted and returned as the point forecast.

Usage

as_forecast_point(data, ...)

Default S3 method:
as_forecast_point(
data,
forecast_unit = NULL,
observed = NULL,
predicted = NULL,
...

)

24 as_forecast_point

S3 method for class 'forecast_quantile'
as_forecast_point(data, ...)

Arguments

data A data.frame (or similar) with predicted and observed values. See the details
section of for additional information on the required input format.

... Unused

forecast_unit (optional) Name of the columns in data (after any renaming of columns) that
denote the unit of a single forecast. See get_forecast_unit() for details. If
NULL (the default), all columns that are not required columns are assumed to
form the unit of a single forecast. If specified, all columns that are not part of
the forecast unit (or required columns) will be removed.

observed (optional) Name of the column in data that contains the observed values. This
column will be renamed to "observed".

predicted (optional) Name of the column in data that contains the predicted values. This
column will be renamed to "predicted".

Value

A forecast object of class forecast_point

Required input

The input needs to be a data.frame or similar for the default method with the following columns:

• observed: Column of type numeric with observed values.

• predicted: Column of type numeric with predicted values.

For convenience, we recommend an additional column model holding the name of the forecaster or
model that produced a prediction, but this is not strictly necessary.

See the example_point data set for an example.

See Also

Other functions to create forecast objects: as_forecast_binary(), as_forecast_nominal(),
as_forecast_ordinal(), as_forecast_quantile(), as_forecast_sample()

as_forecast_quantile 25

as_forecast_quantile Create a forecast object for quantile-based forecasts

Description

Process and validate a data.frame (or similar) or similar with forecasts and observations. If the input
passes all input checks, those functions will be converted to a forecast object. A forecast object is
a data.table with a class forecast and an additional class that depends on the forecast type.

The arguments observed, predicted, etc. make it possible to rename existing columns of the
input data to match the required columns for a forecast object. Using the argument forecast_unit,
you can specify the columns that uniquely identify a single forecast (and thereby removing other,
unneeded columns. See section "Forecast Unit" below for details).

Usage

as_forecast_quantile(data, ...)

Default S3 method:
as_forecast_quantile(
data,
forecast_unit = NULL,
observed = NULL,
predicted = NULL,
quantile_level = NULL,
...

)

S3 method for class 'forecast_sample'
as_forecast_quantile(
data,
probs = c(0.05, 0.25, 0.5, 0.75, 0.95),
type = 7,
...

)

Arguments

data A data.frame (or similar) with predicted and observed values. See the details
section of for additional information on the required input format.

... Unused

forecast_unit (optional) Name of the columns in data (after any renaming of columns) that
denote the unit of a single forecast. See get_forecast_unit() for details. If
NULL (the default), all columns that are not required columns are assumed to
form the unit of a single forecast. If specified, all columns that are not part of
the forecast unit (or required columns) will be removed.

26 as_forecast_quantile

observed (optional) Name of the column in data that contains the observed values. This
column will be renamed to "observed".

predicted (optional) Name of the column in data that contains the predicted values. This
column will be renamed to "predicted".

quantile_level (optional) Name of the column in data that contains the quantile level of the
predicted values. This column will be renamed to "quantile_level". Only appli-
cable to quantile-based forecasts.

probs A numeric vector of quantile levels for which quantiles will be computed. Cor-
responds to the probs argument in quantile().

type Type argument passed down to the quantile function. For more information, see
quantile().

Value

A forecast object of class forecast_quantile

Required input

The input needs to be a data.frame or similar for the default method with the following columns:

• observed: Column of type numeric with observed values.

• predicted: Column of type numeric with predicted values. Predicted values represent quan-
tiles of the predictive distribution.

• quantile_level: Column of type numeric, denoting the quantile level of the corresponding
predicted value. Quantile levels must be between 0 and 1.

For convenience, we recommend an additional column model holding the name of the forecaster or
model that produced a prediction, but this is not strictly necessary.

See the example_quantile data set for an example.

Converting from forecast_sample to forecast_quantile

When creating a forecast_quantile object from a forecast_sample object, the quantiles are
estimated by computing empircal quantiles from the samples via quantile(). Note that empirical
quantiles are a biased estimator for the true quantiles in particular in the tails of the distribution and
when the number of available samples is low.

Forecast unit

In order to score forecasts, scoringutils needs to know which of the rows of the data belong
together and jointly form a single forecasts. This is easy e.g. for point forecast, where there is
one row per forecast. For quantile or sample-based forecasts, however, there are multiple rows that
belong to a single forecast.

The forecast unit or unit of a single forecast is then described by the combination of columns that
uniquely identify a single forecast. For example, we could have forecasts made by different models
in various locations at different time points, each for several weeks into the future. The forecast
unit could then be described as forecast_unit = c("model", "location", "forecast_date",

as_forecast_sample 27

"forecast_horizon"). scoringutils automatically tries to determine the unit of a single fore-
cast. It uses all existing columns for this, which means that no columns must be present that are un-
related to the forecast unit. As a very simplistic example, if you had an additional row, "even", that is
one if the row number is even and zero otherwise, then this would mess up scoring as scoringutils
then thinks that this column was relevant in defining the forecast unit.

In order to avoid issues, we recommend setting the forecast unit explicitly, using the forecast_unit
argument. This will simply drop unneeded columns, while making sure that all necessary, ’protected
columns’ like "predicted" or "observed" are retained.

See Also

Other functions to create forecast objects: as_forecast_binary(), as_forecast_nominal(),
as_forecast_ordinal(), as_forecast_point(), as_forecast_sample()

Examples

as_forecast_quantile(
example_quantile,
predicted = "predicted",
forecast_unit = c("model", "target_type", "target_end_date",

"horizon", "location")
)

as_forecast_sample Create a forecast object for sample-based forecasts

Description

Process and validate a data.frame (or similar) or similar with forecasts and observations. If the input
passes all input checks, those functions will be converted to a forecast object. A forecast object is
a data.table with a class forecast and an additional class that depends on the forecast type.

The arguments observed, predicted, etc. make it possible to rename existing columns of the
input data to match the required columns for a forecast object. Using the argument forecast_unit,
you can specify the columns that uniquely identify a single forecast (and thereby removing other,
unneeded columns. See section "Forecast Unit" below for details).

Usage

as_forecast_sample(data, ...)

Default S3 method:
as_forecast_sample(
data,
forecast_unit = NULL,
observed = NULL,
predicted = NULL,
sample_id = NULL,
...

)

28 as_forecast_sample

Arguments

data A data.frame (or similar) with predicted and observed values. See the details
section of for additional information on the required input format.

... Unused

forecast_unit (optional) Name of the columns in data (after any renaming of columns) that
denote the unit of a single forecast. See get_forecast_unit() for details. If
NULL (the default), all columns that are not required columns are assumed to
form the unit of a single forecast. If specified, all columns that are not part of
the forecast unit (or required columns) will be removed.

observed (optional) Name of the column in data that contains the observed values. This
column will be renamed to "observed".

predicted (optional) Name of the column in data that contains the predicted values. This
column will be renamed to "predicted".

sample_id (optional) Name of the column in data that contains the sample id. This column
will be renamed to "sample_id".

Value

A forecast object of class forecast_sample

Required input

The input needs to be a data.frame or similar for the default method with the following columns:

• observed: Column of type numeric with observed values.

• predicted: Column of type numeric with predicted values. Predicted values represent ran-
dom samples from the predictive distribution.

• sample_id: Column of any type with unique identifiers (unique within a single forecast) for
each sample.

For convenience, we recommend an additional column model holding the name of the forecaster or
model that produced a prediction, but this is not strictly necessary.

See the example_sample_continuous and example_sample_discrete data set for an example

Forecast unit

In order to score forecasts, scoringutils needs to know which of the rows of the data belong
together and jointly form a single forecasts. This is easy e.g. for point forecast, where there is
one row per forecast. For quantile or sample-based forecasts, however, there are multiple rows that
belong to a single forecast.

The forecast unit or unit of a single forecast is then described by the combination of columns that
uniquely identify a single forecast. For example, we could have forecasts made by different models
in various locations at different time points, each for several weeks into the future. The forecast
unit could then be described as forecast_unit = c("model", "location", "forecast_date",
"forecast_horizon"). scoringutils automatically tries to determine the unit of a single fore-
cast. It uses all existing columns for this, which means that no columns must be present that are un-
related to the forecast unit. As a very simplistic example, if you had an additional row, "even", that is

bias_quantile 29

one if the row number is even and zero otherwise, then this would mess up scoring as scoringutils
then thinks that this column was relevant in defining the forecast unit.

In order to avoid issues, we recommend setting the forecast unit explicitly, using the forecast_unit
argument. This will simply drop unneeded columns, while making sure that all necessary, ’protected
columns’ like "predicted" or "observed" are retained.

See Also

Other functions to create forecast objects: as_forecast_binary(), as_forecast_nominal(),
as_forecast_ordinal(), as_forecast_point(), as_forecast_quantile()

bias_quantile Determines bias of quantile forecasts

Description

Determines bias from quantile forecasts. For an increasing number of quantiles this measure con-
verges against the sample based bias version for integer and continuous forecasts.

Usage

bias_quantile(observed, predicted, quantile_level, na.rm = TRUE)

Arguments

observed Numeric vector of size n with the observed values.

predicted Numeric nxN matrix of predictive quantiles, n (number of rows) being the num-
ber of forecasts (corresponding to the number of observed values) and N (num-
ber of columns) the number of quantiles per forecast. If observed is just a single
number, then predicted can just be a vector of size N.

quantile_level Vector of of size N with the quantile levels for which predictions were made.
Note that if this does not contain the median (0.5) then the median is imputed as
being the mean of the two innermost quantiles.

na.rm Logical. Should missing values be removed?

Details

For quantile forecasts, bias is measured as

Bt = (1−2·max{i|qt,i ∈ Qt∧qt,i ≤ xt})1(xt ≤ qt,0.5)+(1−2·min{i|qt,i ∈ Qt∧qt,i ≥ xt})1(xt ≥ qt,0.5),

where Qt is the set of quantiles that form the predictive distribution at time t and xt is the observed
value. For consistency, we define Qt such that it always includes the element qt,0 = −∞ and
qt,1 = ∞. 1() is the indicator function that is 1 if the condition is satisfied and 0 otherwise.

In clearer terms, bias Bt is:

30 bias_sample

• 1−2· the maximum percentile rank for which the corresponding quantile is still smaller than or
equal to the observed value, if the observed value is smaller than the median of the predictive
distribution.

• 1 − 2· the minimum percentile rank for which the corresponding quantile is still larger than
or equal to the observed value if the observed value is larger than the median of the predictive
distribution..

• 0 if the observed value is exactly the median (both terms cancel out)

Bias can assume values between -1 and 1 and is 0 ideally (i.e. unbiased).

Note that if the given quantiles do not contain the median, the median is imputed as a linear inter-
polation of the two innermost quantiles. If the median is not available and cannot be imputed, an
error will be thrown. Note that in order to compute bias, quantiles must be non-decreasing with
increasing quantile levels.

For a large enough number of quantiles, the percentile rank will equal the proportion of predic-
tive samples below the observed value, and the bias metric coincides with the one for continuous
forecasts (see bias_sample()).

Value

scalar with the quantile bias for a single quantile prediction

Input format

Examples

predicted <- matrix(c(1.5:23.5, 3.3:25.3), nrow = 2, byrow = TRUE)
quantile_level <- c(0.01, 0.025, seq(0.05, 0.95, 0.05), 0.975, 0.99)
observed <- c(15, 12.4)
bias_quantile(observed, predicted, quantile_level)

bias_sample Determine bias of forecasts

Description

Determines bias from predictive Monte-Carlo samples. The function automatically recognises
whether forecasts are continuous or integer valued and adapts the Bias function accordingly.

bias_sample 31

Usage

bias_sample(observed, predicted)

Arguments

observed A vector with observed values of size n

predicted nxN matrix of predictive samples, n (number of rows) being the number of data
points and N (number of columns) the number of Monte Carlo samples. Alter-
natively, predicted can just be a vector of size n.

Details

For continuous forecasts, Bias is measured as

Bt(Pt, xt) = 1− 2 ∗ (Pt(xt))

where Pt is the empirical cumulative distribution function of the prediction for the observed value
xt. Computationally, Pt(xt) is just calculated as the fraction of predictive samples for xt that are
smaller than xt.

For integer valued forecasts, Bias is measured as

Bt(Pt, xt) = 1− (Pt(xt) + Pt(xt + 1))

to adjust for the integer nature of the forecasts.

In both cases, Bias can assume values between -1 and 1 and is 0 ideally.

Value

Numeric vector of length n with the biases of the predictive samples with respect to the observed
values.

Input format

References

The integer valued Bias function is discussed in Assessing the performance of real-time epidemic
forecasts: A case study of Ebola in the Western Area region of Sierra Leone, 2014-15 Funk S,
Camacho A, Kucharski AJ, Lowe R, Eggo RM, et al. (2019) Assessing the performance of real-
time epidemic forecasts: A case study of Ebola in the Western Area region of Sierra Leone, 2014-15.
PLOS Computational Biology 15(2): e1006785. doi:10.1371/journal.pcbi.1006785

https://doi.org/10.1371/journal.pcbi.1006785

32 check_dims_ok_point

Examples

integer valued forecasts
observed <- rpois(30, lambda = 1:30)
predicted <- replicate(200, rpois(n = 30, lambda = 1:30))
bias_sample(observed, predicted)

continuous forecasts
observed <- rnorm(30, mean = 1:30)
predicted <- replicate(200, rnorm(30, mean = 1:30))
bias_sample(observed, predicted)

check_columns_present Check column names are present in a data.frame

Description

The functions loops over the column names and checks whether they are present. If an issue is
encountered, the function immediately stops and returns a message with the first issue encountered.

Usage

check_columns_present(data, columns)

Arguments

data A data.frame or similar to be checked

columns A character vector of column names to check

Value

Returns TRUE if the check was successful and a string with an error message otherwise.

check_dims_ok_point Check Inputs Have Matching Dimensions

Description

Function assesses whether input dimensions match. In the following, n is the number of observa-
tions / forecasts. Scalar values may be repeated to match the length of the other input. Allowed
options are therefore:

• observed is vector of length 1 or length n

• predicted is:

– a vector of of length 1 or length n
– a matrix with n rows and 1 column

check_duplicates 33

Usage

check_dims_ok_point(observed, predicted)

Arguments

observed Input to be checked. Should be a factor of length n with exactly two levels, hold-
ing the observed values. The highest factor level is assumed to be the reference
level. This means that predicted represents the probability that the observed
value is equal to the highest factor level.

predicted Input to be checked. predicted should be a vector of length n, holding proba-
bilities. Alternatively, predicted can be a matrix of size n x 1. Values represent
the probability that the corresponding value in observed will be equal to the
highest available factor level.

Value

Returns TRUE if the check was successful and a string with an error message otherwise.

check_duplicates Check that there are no duplicate forecasts

Description

Runs get_duplicate_forecasts() and returns a message if an issue is encountered

Usage

check_duplicates(data)

Arguments

data A data.frame (or similar) with predicted and observed values. See the details
section of for additional information on the required input format.

Value

Returns TRUE if the check was successful and a string with an error message otherwise.

34 check_input_interval

check_input_binary Check that inputs are correct for binary forecast

Description

Function assesses whether the inputs correspond to the requirements for scoring binary forecasts.

Usage

check_input_binary(observed, predicted)

Arguments

observed Input to be checked. Should be a factor of length n with exactly two levels, hold-
ing the observed values. The highest factor level is assumed to be the reference
level. This means that predicted represents the probability that the observed
value is equal to the highest factor level.

predicted Input to be checked. predicted should be a vector of length n, holding proba-
bilities. Alternatively, predicted can be a matrix of size n x 1. Values represent
the probability that the corresponding value in observed will be equal to the
highest available factor level.

Value

Returns TRUE if the check was successful and a string with an error message otherwise.

check_input_interval Check that inputs are correct for interval-based forecast

Description

Function assesses whether the inputs correspond to the requirements for scoring interval-based
forecasts.

Usage

check_input_interval(observed, lower, upper, interval_range)

Arguments

observed Input to be checked. Should be a numeric vector with the observed values of
size n.

lower Input to be checked. Should be a numeric vector of size n that holds the predicted
value for the lower bounds of the prediction intervals.

check_input_point 35

upper Input to be checked. Should be a numeric vector of size n that holds the predicted
value for the upper bounds of the prediction intervals.

interval_range Input to be checked. Should be a vector of size n that denotes the interval range
in percent. E.g. a value of 50 denotes a (25%, 75%) prediction interval.

Value

Returns TRUE if the check was successful and a string with an error message otherwise.

check_input_point Check that inputs are correct for point forecast

Description

Function assesses whether the inputs correspond to the requirements for scoring point forecasts.

Usage

check_input_point(observed, predicted)

Arguments

observed Input to be checked. Should be a numeric vector with the observed values of
size n.

predicted Input to be checked. Should be a numeric vector with the predicted values of
size n.

Value

Returns TRUE if the check was successful and a string with an error message otherwise.

check_input_quantile Check that inputs are correct for quantile-based forecast

Description

Function assesses whether the inputs correspond to the requirements for scoring quantile-based
forecasts.

Usage

check_input_quantile(observed, predicted, quantile_level)

36 check_input_sample

Arguments

observed Input to be checked. Should be a numeric vector with the observed values of
size n.

predicted Input to be checked. Should be nxN matrix of predictive quantiles, n (number of
rows) being the number of data points and N (number of columns) the number
of quantiles per forecast. If observed is just a single number, then predicted can
just be a vector of size N.

quantile_level Input to be checked. Should be a vector of size N that denotes the quantile levels
corresponding to the columns of the prediction matrix.

Value

Returns TRUE if the check was successful and a string with an error message otherwise.

check_input_sample Check that inputs are correct for sample-based forecast

Description

Function assesses whether the inputs correspond to the requirements for scoring sample-based fore-
casts.

Usage

check_input_sample(observed, predicted)

Arguments

observed Input to be checked. Should be a numeric vector with the observed values of
size n.

predicted Input to be checked. Should be a numeric nxN matrix of predictive samples, n
(number of rows) being the number of data points and N (number of columns)
the number of samples per forecast. If observed is just a single number, then
predicted values can just be a vector of size N.

Value

Returns TRUE if the check was successful and a string with an error message otherwise.

check_number_per_forecast 37

check_number_per_forecast

Check that all forecasts have the same number of rows

Description

Helper function that checks the number of rows (corresponding e.g to quantiles or samples) per
forecast. If the number of quantiles or samples is the same for all forecasts, it returns TRUE and a
string with an error message otherwise.

Usage

check_number_per_forecast(data, forecast_unit)

Arguments

data A data.frame or similar to be checked

forecast_unit Character vector denoting the unit of a single forecast.

Value

Returns TRUE if the check was successful and a string with an error message otherwise.

check_numeric_vector Check whether an input is an atomic vector of mode ’numeric’

Description

Helper function to check whether an input is a numeric vector.

Usage

check_numeric_vector(x, ...)

Arguments

x input to check

... Arguments passed on to checkmate::check_numeric

lower [numeric(1)]
Lower value all elements of x must be greater than or equal to.

upper [numeric(1)]
Upper value all elements of x must be lower than or equal to.

finite [logical(1)]
Check for only finite values? Default is FALSE.

38 check_try

any.missing [logical(1)]
Are vectors with missing values allowed? Default is TRUE.

all.missing [logical(1)]
Are vectors with no non-missing values allowed? Default is TRUE. Note that
empty vectors do not have non-missing values.

len [integer(1)]
Exact expected length of x.

min.len [integer(1)]
Minimal length of x.

max.len [integer(1)]
Maximal length of x.

unique [logical(1)]
Must all values be unique? Default is FALSE.

sorted [logical(1)]
Elements must be sorted in ascending order. Missing values are ignored.

names [character(1)]
Check for names. See checkNamed for possible values. Default is “any”
which performs no check at all. Note that you can use checkSubset to
check for a specific set of names.

typed.missing [logical(1)]
If set to FALSE (default), all types of missing values (NA, NA_integer_,
NA_real_, NA_character_ or NA_character_) as well as empty vectors
are allowed while type-checking atomic input. Set to TRUE to enable strict
type checking.

null.ok [logical(1)]
If set to TRUE, x may also be NULL. In this case only a type check of x is
performed, all additional checks are disabled.

Value

Returns TRUE if the check was successful and a string with an error message otherwise.

check_try Helper function to convert assert statements into checks

Description

Tries to execute an expression. Internally, this is used to see whether assertions fail when checking
inputs (i.e. to convert an assert_*() statement into a check). If the expression fails, the error
message is returned. If the expression succeeds, TRUE is returned.

Usage

check_try(expr)

crps_sample 39

Arguments

expr an expression to be evaluated

Value

Returns TRUE if the check was successful and a string with an error message otherwise.

crps_sample (Continuous) ranked probability score

Description

Wrapper around the crps_sample() function from the scoringRules package. Can be used for
continuous as well as integer valued forecasts

The Continuous ranked probability score (CRPS) can be interpreted as the sum of three components:
overprediction, underprediction and dispersion. "Dispersion" is defined as the CRPS of the median
forecast m. If an observation y is greater than m then overprediction is defined as the CRPS
of the forecast for y minus the dispersion component, and underprediction is zero. If, on the
other hand, $y<m$ then underprediction is defined as the CRPS of the forecast for y minus the
dispersion component, and overprediction is zero.

The overprediction, underprediction and dispersion components correspond to those of the wis().

Usage

crps_sample(observed, predicted, separate_results = FALSE, ...)

dispersion_sample(observed, predicted, ...)

overprediction_sample(observed, predicted, ...)

underprediction_sample(observed, predicted, ...)

Arguments

observed A vector with observed values of size n

predicted nxN matrix of predictive samples, n (number of rows) being the number of data
points and N (number of columns) the number of Monte Carlo samples. Alter-
natively, predicted can just be a vector of size n.

separate_results

Logical. If TRUE (default is FALSE), then the separate parts of the CRPS (disper-
sion penalty, penalties for over- and under-prediction) get returned as separate
elements of a list. If you want a data.frame instead, simply call as.data.frame()
on the output.

... Additional arguments passed on to crps_sample() from functions overprediction_sample(),
underprediction_sample() and dispersion_sample().

40 dss_sample

Value

Vector with scores.

dispersion_sample(): a numeric vector with dispersion values (one per observation).

overprediction_sample(): a numeric vector with overprediction values (one per observation).

underprediction_sample(): a numeric vector with underprediction values (one per observation).

Input format

References

Alexander Jordan, Fabian Krüger, Sebastian Lerch, Evaluating Probabilistic Forecasts with scor-
ingRules, https://www.jstatsoft.org/article/view/v090i12

Examples

observed <- rpois(30, lambda = 1:30)
predicted <- replicate(200, rpois(n = 30, lambda = 1:30))
crps_sample(observed, predicted)

dss_sample Dawid-Sebastiani score

Description

Wrapper around the dss_sample() function from the scoringRules package.

Usage

dss_sample(observed, predicted, ...)

Arguments

observed A vector with observed values of size n

predicted nxN matrix of predictive samples, n (number of rows) being the number of data
points and N (number of columns) the number of Monte Carlo samples. Alter-
natively, predicted can just be a vector of size n.

... Additional arguments passed to dss_sample() from the scoringRules package.

https://www.jstatsoft.org/article/view/v090i12

example_binary 41

Value

Vector with scores.

Input format

References

Alexander Jordan, Fabian Krüger, Sebastian Lerch, Evaluating Probabilistic Forecasts with scor-
ingRules, https://www.jstatsoft.org/article/view/v090i12

Examples

observed <- rpois(30, lambda = 1:30)
predicted <- replicate(200, rpois(n = 30, lambda = 1:30))
dss_sample(observed, predicted)

example_binary Binary forecast example data

Description

A data set with binary predictions for COVID-19 cases and deaths constructed from data submitted
to the European Forecast Hub.

Usage

example_binary

Format

An object of class forecast_binary (see as_forecast_binary()) with the following columns:

location the country for which a prediction was made

location_name name of the country for which a prediction was made

target_end_date the date for which a prediction was made

target_type the target to be predicted (cases or deaths)

observed A factor with observed values

forecast_date the date on which a prediction was made

https://www.jstatsoft.org/article/view/v090i12

42 example_nominal

model name of the model that generated the forecasts

horizon forecast horizon in weeks

predicted predicted value

Details

Predictions in the data set were constructed based on the continuous example data by looking at the
number of samples below the mean prediction. The outcome was constructed as whether or not the
actually observed value was below or above that mean prediction. This should not be understood as
sound statistical practice, but rather as a practical way to create an example data set.

The data was created using the script create-example-data.R in the inst/ folder (or the top level
folder in a compiled package).

Source

https://github.com/european-modelling-hubs/covid19-forecast-hub-europe_archive/
commit/a42867b1ea152c57e25b04f9faa26cfd4bfd8fa6/

example_nominal Nominal example data

Description

A data set with predictions for COVID-19 cases and deaths submitted to the European Forecast
Hub.

Usage

example_nominal

Format

An object of class forecast_nominal (see as_forecast_nominal()) with the following columns:

location the country for which a prediction was made

target_end_date the date for which a prediction was made

target_type the target to be predicted (cases or deaths)

observed Numeric: observed values

location_name name of the country for which a prediction was made

forecast_date the date on which a prediction was made

predicted_label outcome that a probabilty corresponds to

predicted predicted value

model name of the model that generated the forecasts

horizon forecast horizon in weeks

https://github.com/european-modelling-hubs/covid19-forecast-hub-europe_archive/commit/a42867b1ea152c57e25b04f9faa26cfd4bfd8fa6/
https://github.com/european-modelling-hubs/covid19-forecast-hub-europe_archive/commit/a42867b1ea152c57e25b04f9faa26cfd4bfd8fa6/

example_ordinal 43

Details

The data was created using the script create-example-data.R in the inst/ folder (or the top level
folder in a compiled package).

Source

https://github.com/european-modelling-hubs/covid19-forecast-hub-europe_archive/
commit/a42867b1ea152c57e25b04f9faa26cfd4bfd8fa6/

example_ordinal Ordinal example data

Description

A data set with predictions for COVID-19 cases and deaths submitted to the European Forecast
Hub.

Usage

example_ordinal

Format

An object of class forecast_ordinal (see as_forecast_ordinal()) with the following columns:

location the country for which a prediction was made

target_end_date the date for which a prediction was made

target_type the target to be predicted (cases or deaths)

observed Numeric: observed values

location_name name of the country for which a prediction was made

forecast_date the date on which a prediction was made

predicted_label outcome that a probabilty corresponds to

predicted predicted value

model name of the model that generated the forecasts

horizon forecast horizon in weeks

Details

The data was created using the script create-example-data.R in the inst/ folder (or the top level
folder in a compiled package).

Source

https://github.com/european-modelling-hubs/covid19-forecast-hub-europe_archive/
commit/a42867b1ea152c57e25b04f9faa26cfd4bfd8fa6/

https://github.com/european-modelling-hubs/covid19-forecast-hub-europe_archive/commit/a42867b1ea152c57e25b04f9faa26cfd4bfd8fa6/
https://github.com/european-modelling-hubs/covid19-forecast-hub-europe_archive/commit/a42867b1ea152c57e25b04f9faa26cfd4bfd8fa6/
https://github.com/european-modelling-hubs/covid19-forecast-hub-europe_archive/commit/a42867b1ea152c57e25b04f9faa26cfd4bfd8fa6/
https://github.com/european-modelling-hubs/covid19-forecast-hub-europe_archive/commit/a42867b1ea152c57e25b04f9faa26cfd4bfd8fa6/

44 example_point

example_point Point forecast example data

Description

A data set with predictions for COVID-19 cases and deaths submitted to the European Forecast
Hub. This data set is like the quantile example data, only that the median has been replaced by a
point forecast.

Usage

example_point

Format

An object of class forecast_point (see as_forecast_point()) with the following columns:

location the country for which a prediction was made

target_end_date the date for which a prediction was made

target_type the target to be predicted (cases or deaths)

observed observed values

location_name name of the country for which a prediction was made

forecast_date the date on which a prediction was made

predicted predicted value

model name of the model that generated the forecasts

horizon forecast horizon in weeks

Details

The data was created using the script create-example-data.R in the inst/ folder (or the top level
folder in a compiled package).

Source

https://github.com/european-modelling-hubs/covid19-forecast-hub-europe_archive/
commit/a42867b1ea152c57e25b04f9faa26cfd4bfd8fa6/

https://github.com/european-modelling-hubs/covid19-forecast-hub-europe_archive/commit/a42867b1ea152c57e25b04f9faa26cfd4bfd8fa6/
https://github.com/european-modelling-hubs/covid19-forecast-hub-europe_archive/commit/a42867b1ea152c57e25b04f9faa26cfd4bfd8fa6/

example_quantile 45

example_quantile Quantile example data

Description

A data set with predictions for COVID-19 cases and deaths submitted to the European Forecast
Hub.

Usage

example_quantile

Format

An object of class forecast_quantile (see as_forecast_quantile()) with the following columns:

location the country for which a prediction was made

target_end_date the date for which a prediction was made

target_type the target to be predicted (cases or deaths)

observed Numeric: observed values

location_name name of the country for which a prediction was made

forecast_date the date on which a prediction was made

quantile_level quantile level of the corresponding prediction

predicted predicted value

model name of the model that generated the forecasts

horizon forecast horizon in weeks

Details

The data was created using the script create-example-data.R in the inst/ folder (or the top level
folder in a compiled package).

Source

https://github.com/european-modelling-hubs/covid19-forecast-hub-europe_archive/
commit/a42867b1ea152c57e25b04f9faa26cfd4bfd8fa6/

https://github.com/european-modelling-hubs/covid19-forecast-hub-europe_archive/commit/a42867b1ea152c57e25b04f9faa26cfd4bfd8fa6/
https://github.com/european-modelling-hubs/covid19-forecast-hub-europe_archive/commit/a42867b1ea152c57e25b04f9faa26cfd4bfd8fa6/

46 example_sample_continuous

example_sample_continuous

Continuous forecast example data

Description

A data set with continuous predictions for COVID-19 cases and deaths constructed from data sub-
mitted to the European Forecast Hub.

Usage

example_sample_continuous

Format

An object of class forecast_sample (see as_forecast_sample()) with the following columns:

location the country for which a prediction was made

target_end_date the date for which a prediction was made

target_type the target to be predicted (cases or deaths)

observed observed values

location_name name of the country for which a prediction was made

forecast_date the date on which a prediction was made

model name of the model that generated the forecasts

horizon forecast horizon in weeks

predicted predicted value

sample_id id for the corresponding sample

Details

The data was created using the script create-example-data.R in the inst/ folder (or the top level
folder in a compiled package).

Source

https://github.com/european-modelling-hubs/covid19-forecast-hub-europe_archive/
commit/a42867b1ea152c57e25b04f9faa26cfd4bfd8fa6/

https://github.com/european-modelling-hubs/covid19-forecast-hub-europe_archive/commit/a42867b1ea152c57e25b04f9faa26cfd4bfd8fa6/
https://github.com/european-modelling-hubs/covid19-forecast-hub-europe_archive/commit/a42867b1ea152c57e25b04f9faa26cfd4bfd8fa6/

example_sample_discrete 47

example_sample_discrete

Discrete forecast example data

Description

A data set with integer predictions for COVID-19 cases and deaths constructed from data submitted
to the European Forecast Hub.

Usage

example_sample_discrete

Format

An object of class forecast_sample (see as_forecast_sample()) with the following columns:

location the country for which a prediction was made

target_end_date the date for which a prediction was made

target_type the target to be predicted (cases or deaths)

observed observed values

location_name name of the country for which a prediction was made

forecast_date the date on which a prediction was made

model name of the model that generated the forecasts

horizon forecast horizon in weeks

predicted predicted value

sample_id id for the corresponding sample

Details

The data was created using the script create-example-data.R in the inst/ folder (or the top level
folder in a compiled package).

Source

https://github.com/european-modelling-hubs/covid19-forecast-hub-europe_archive/
commit/a42867b1ea152c57e25b04f9faa26cfd4bfd8fa6/

https://github.com/european-modelling-hubs/covid19-forecast-hub-europe_archive/commit/a42867b1ea152c57e25b04f9faa26cfd4bfd8fa6/
https://github.com/european-modelling-hubs/covid19-forecast-hub-europe_archive/commit/a42867b1ea152c57e25b04f9faa26cfd4bfd8fa6/

48 get_coverage

get_correlations Calculate correlation between metrics

Description

Calculate the correlation between different metrics for a data.frame of scores as produced by score().

Usage

get_correlations(scores, metrics = get_metrics.scores(scores), ...)

Arguments

scores An object of class scores (a data.table with scores and an additional attribute
metrics as produced by score()).

metrics A character vector with the metrics to show. If set to NULL (default), all metrics
present in scores will be shown.

... Additional arguments to pass down to cor().

Value

An object of class scores (a data.table with an additional attribute metrics holding the names of
the scores) with correlations between different metrics

Examples

library(magrittr) # pipe operator

scores <- example_quantile %>%
as_forecast_quantile() %>%
score()

get_correlations(scores)

get_coverage Get quantile and interval coverage values for quantile-based forecasts

Description

For a validated forecast object in a quantile-based format (see as_forecast_quantile() for more
information), this function computes:

• interval coverage of central prediction intervals

• quantile coverage for predictive quantiles

• the deviation between desired and actual coverage (both for interval and quantile coverage)

get_coverage 49

Coverage values are computed for a specific level of grouping, as specified in the by argument. By
default, coverage values are computed per model.

Interval coverage

Interval coverage for a given interval range is defined as the proportion of observations that fall
within the corresponding central prediction intervals. Central prediction intervals are symmetric
around the median and formed by two quantiles that denote the lower and upper bound. For exam-
ple, the 50% central prediction interval is the interval between the 0.25 and 0.75 quantiles of the
predictive distribution.

Quantile coverage

Quantile coverage for a given quantile level is defined as the proportion of observed values that are
smaller than the corresponding predictive quantile. For example, the 0.5 quantile coverage is the
proportion of observed values that are smaller than the 0.5 quantile of the predictive distribution.
Just as above, for a single observation and the quantile of a single predictive distribution, the value
will either be TRUE or FALSE.

Coverage deviation

The coverage deviation is the difference between the desired coverage (can be either interval or
quantile coverage) and the actual coverage. For example, if the desired coverage is 90% and the
actual coverage is 80%, the coverage deviation is -0.1.

Usage

get_coverage(forecast, by = "model")

Arguments

forecast A forecast object (a validated data.table with predicted and observed values).

by character vector that denotes the level of grouping for which the coverage values
should be computed. By default ("model"), one coverage value per model will
be returned.

Value

A data.table with columns as specified in by and additional columns for the coverage values de-
scribed above

a data.table with columns "interval_coverage", "interval_coverage_deviation", "quantile_coverage",
"quantile_coverage_deviation" and the columns specified in by.

Examples

library(magrittr) # pipe operator
example_quantile %>%

as_forecast_quantile() %>%
get_coverage(by = "model")

50 get_forecast_counts

get_duplicate_forecasts

Find duplicate forecasts

Description

Internal helper function to identify duplicate forecasts, i.e. instances where there is more than one
forecast for the same prediction target.

Usage

get_duplicate_forecasts(data, forecast_unit = NULL, counts = FALSE)

Arguments

data A data.frame (or similar) with predicted and observed values. See the details
section of for additional information on the required input format.

forecast_unit (optional) Name of the columns in data (after any renaming of columns) that
denote the unit of a single forecast. See get_forecast_unit() for details. If
NULL (the default), all columns that are not required columns are assumed to
form the unit of a single forecast. If specified, all columns that are not part of
the forecast unit (or required columns) will be removed.

counts Should the output show the number of duplicates per forecast unit instead of the
individual duplicated rows? Default is FALSE.

Value

A data.frame with all rows for which a duplicate forecast was found

Examples

example <- rbind(example_quantile, example_quantile[1000:1010])
get_duplicate_forecasts(example)

get_forecast_counts Count number of available forecasts

Description

Given a data set with forecasts, this function counts the number of available forecasts. The level of
grouping can be specified using the by argument (e.g. to count the number of forecasts per model,
or the number of forecasts per model and location). This is useful to determine whether there are
any missing forecasts.

get_forecast_type 51

Usage

get_forecast_counts(
forecast,
by = get_forecast_unit(forecast),
collapse = c("quantile_level", "sample_id")

)

Arguments

forecast A forecast object (a validated data.table with predicted and observed values).

by character vector or NULL (the default) that denotes the categories over which the
number of forecasts should be counted. By default this will be the unit of a
single forecast (i.e. all available columns (apart from a few "protected" columns
such as ’predicted’ and ’observed’) plus "quantile_level" or "sample_id" where
present).

collapse character vector (default: c("quantile_level", "sample_id") with names
of categories for which the number of rows should be collapsed to one when
counting. For example, a single forecast is usually represented by a set of several
quantiles or samples and collapsing these to one makes sure that a single forecast
only gets counted once. Setting collapse = c() would mean that all quantiles /
samples would be counted as individual forecasts.

Value

A data.table with columns as specified in by and an additional column "count" with the number of
forecasts.

Examples

library(magrittr) # pipe operator
example_quantile %>%

as_forecast_quantile() %>%
get_forecast_counts(by = c("model", "target_type"))

get_forecast_type Get forecast type from forecast object

Description

Get forecast type from forecast object

Usage

get_forecast_type(forecast)

52 get_forecast_unit

Arguments

forecast A forecast object (a validated data.table with predicted and observed values).

Value

Character vector of length one with the forecast type.

get_forecast_unit Get unit of a single forecast

Description

Helper function to get the unit of a single forecast, i.e. the column names that define where a single
forecast was made for. This just takes all columns that are available in the data and subtracts the
columns that are protected, i.e. those returned by get_protected_columns() as well as the names
of the metrics that were specified during scoring, if any.

Usage

get_forecast_unit(data)

Arguments

data A data.frame (or similar) with predicted and observed values. See the details
section of for additional information on the required input format.

Value

A character vector with the column names that define the unit of a single forecast

Forecast unit

In order to score forecasts, scoringutils needs to know which of the rows of the data belong
together and jointly form a single forecasts. This is easy e.g. for point forecast, where there is
one row per forecast. For quantile or sample-based forecasts, however, there are multiple rows that
belong to a single forecast.

The forecast unit or unit of a single forecast is then described by the combination of columns that
uniquely identify a single forecast. For example, we could have forecasts made by different models
in various locations at different time points, each for several weeks into the future. The forecast
unit could then be described as forecast_unit = c("model", "location", "forecast_date",
"forecast_horizon"). scoringutils automatically tries to determine the unit of a single fore-
cast. It uses all existing columns for this, which means that no columns must be present that are un-
related to the forecast unit. As a very simplistic example, if you had an additional row, "even", that is
one if the row number is even and zero otherwise, then this would mess up scoring as scoringutils
then thinks that this column was relevant in defining the forecast unit.

In order to avoid issues, we recommend setting the forecast unit explicitly, using the forecast_unit
argument. This will simply drop unneeded columns, while making sure that all necessary, ’protected
columns’ like "predicted" or "observed" are retained.

get_metrics 53

get_metrics Get metrics

Description

Generic function to to obtain default metrics available for scoring or metrics that were used for
scoring.

• If called on a forecast object it returns a list of functions that can be used for scoring.

• If called on a scores object (see score()), it returns a character vector with the names of the
metrics that were used for scoring.

See the documentation for the actual methods in the See Also section below for more details.
Alternatively call ?get_metrics.<forecast_type> or ?get_metrics.scores.

Usage

get_metrics(x, ...)

Arguments

x A forecast or scores object.

... Additional arguments passed to the method.

See Also

Other get_metrics functions: get_metrics.forecast_binary(), get_metrics.forecast_nominal(),
get_metrics.forecast_ordinal(), get_metrics.forecast_point(), get_metrics.forecast_quantile(),
get_metrics.forecast_sample(), get_metrics.scores()

get_metrics.forecast_binary

Get default metrics for binary forecasts

Description

For binary forecasts, the default scoring rules are:

• "brier_score" = brier_score()

• "log_score" = logs_binary()

Usage

S3 method for class 'forecast_binary'
get_metrics(x, select = NULL, exclude = NULL, ...)

54 get_metrics.forecast_nominal

Arguments

x A forecast object (a validated data.table with predicted and observed values, see
as_forecast_binary()).

select A character vector of scoring rules to select from the list. If select is NULL (the
default), all possible scoring rules are returned.

exclude A character vector of scoring rules to exclude from the list. If select is not
NULL, this argument is ignored.

... unused

Value

A list of scoring functions.

Input format

See Also

Other get_metrics functions: get_metrics(), get_metrics.forecast_nominal(), get_metrics.forecast_ordinal(),
get_metrics.forecast_point(), get_metrics.forecast_quantile(), get_metrics.forecast_sample(),
get_metrics.scores()

Examples

get_metrics(example_binary)
get_metrics(example_binary, select = "brier_score")
get_metrics(example_binary, exclude = "log_score")

get_metrics.forecast_nominal

Get default metrics for nominal forecasts

Description

For nominal forecasts, the default scoring rule is:

• "log_score" = logs_categorical()

get_metrics.forecast_ordinal 55

Usage

S3 method for class 'forecast_nominal'
get_metrics(x, select = NULL, exclude = NULL, ...)

Arguments

x A forecast object (a validated data.table with predicted and observed values, see
as_forecast_binary()).

select A character vector of scoring rules to select from the list. If select is NULL (the
default), all possible scoring rules are returned.

exclude A character vector of scoring rules to exclude from the list. If select is not
NULL, this argument is ignored.

... unused

See Also

Other get_metrics functions: get_metrics(), get_metrics.forecast_binary(), get_metrics.forecast_ordinal(),
get_metrics.forecast_point(), get_metrics.forecast_quantile(), get_metrics.forecast_sample(),
get_metrics.scores()

Examples

get_metrics(example_nominal)

get_metrics.forecast_ordinal

Get default metrics for nominal forecasts

Description

For ordinal forecasts, the default scoring rules are:

• "log_score" = logs_categorical()

• "rps" = rps_ordinal()

Usage

S3 method for class 'forecast_ordinal'
get_metrics(x, select = NULL, exclude = NULL, ...)

56 get_metrics.forecast_point

Arguments

x A forecast object (a validated data.table with predicted and observed values, see
as_forecast_binary()).

select A character vector of scoring rules to select from the list. If select is NULL (the
default), all possible scoring rules are returned.

exclude A character vector of scoring rules to exclude from the list. If select is not
NULL, this argument is ignored.

... unused

See Also

Other get_metrics functions: get_metrics(), get_metrics.forecast_binary(), get_metrics.forecast_nominal(),
get_metrics.forecast_point(), get_metrics.forecast_quantile(), get_metrics.forecast_sample(),
get_metrics.scores()

Examples

get_metrics(example_ordinal)

get_metrics.forecast_point

Get default metrics for point forecasts

Description

For point forecasts, the default scoring rules are:

• "ae_point" = ae()

• "se_point" = se()

• "ape" = ape()

A note of caution: Every scoring rule for a point forecast is implicitly minimised by a specific aspect
of the predictive distribution (see Gneiting, 2011).

The mean squared error, for example, is only a meaningful scoring rule if the forecaster actually
reported the mean of their predictive distribution as a point forecast. If the forecaster reported the
median, then the mean absolute error would be the appropriate scoring rule. If the scoring rule and
the predictive task do not align, the results will be misleading.

Failure to respect this correspondence can lead to grossly misleading results! Consider the example
in the section below.

Usage

S3 method for class 'forecast_point'
get_metrics(x, select = NULL, exclude = NULL, ...)

get_metrics.forecast_point 57

Arguments

x A forecast object (a validated data.table with predicted and observed values, see
as_forecast_binary()).

select A character vector of scoring rules to select from the list. If select is NULL (the
default), all possible scoring rules are returned.

exclude A character vector of scoring rules to exclude from the list. If select is not
NULL, this argument is ignored.

... unused

Input format

References

Making and Evaluating Point Forecasts, Gneiting, Tilmann, 2011, Journal of the American Statisti-
cal Association.

See Also

Other get_metrics functions: get_metrics(), get_metrics.forecast_binary(), get_metrics.forecast_nominal(),
get_metrics.forecast_ordinal(), get_metrics.forecast_quantile(), get_metrics.forecast_sample(),
get_metrics.scores()

Examples

get_metrics(example_point, select = "ape")

library(magrittr)
set.seed(123)
n <- 500
observed <- rnorm(n, 5, 4)^2

predicted_mu <- mean(observed)
predicted_not_mu <- predicted_mu - rnorm(n, 10, 2)

df <- data.frame(
model = rep(c("perfect", "bad"), each = n),
predicted = c(rep(predicted_mu, n), predicted_not_mu),
observed = rep(observed, 2),
id = rep(1:n, 2)

) %>%
as_forecast_point()

58 get_metrics.forecast_quantile

score(df) %>%
summarise_scores()

get_metrics.forecast_quantile

Get default metrics for quantile-based forecasts

Description

For quantile-based forecasts, the default scoring rules are:

• "wis" = wis()

• "overprediction" = overprediction_quantile()

• "underprediction" = underprediction_quantile()

• "dispersion" = dispersion_quantile()

• "bias" = bias_quantile()

• "interval_coverage_50" = interval_coverage()

• "interval_coverage_90" = purrr::partial(interval_coverage, interval_range = 90)

• "ae_median" = ae_median_quantile()

Note: The interval_coverage_90 scoring rule is created by modifying interval_coverage(),
making use of the function purrr::partial(). This construct allows the function to deal with ar-
bitrary arguments in ..., while making sure that only those that interval_coverage() can accept
get passed on to it. interval_range = 90 is set in the function definition, as passing an argument
interval_range = 90 to score() would mean it would also get passed to interval_coverage_50.

Usage

S3 method for class 'forecast_quantile'
get_metrics(x, select = NULL, exclude = NULL, ...)

Arguments

x A forecast object (a validated data.table with predicted and observed values, see
as_forecast_binary()).

select A character vector of scoring rules to select from the list. If select is NULL (the
default), all possible scoring rules are returned.

exclude A character vector of scoring rules to exclude from the list. If select is not
NULL, this argument is ignored.

... unused

get_metrics.forecast_sample 59

Input format

See Also

Other get_metrics functions: get_metrics(), get_metrics.forecast_binary(), get_metrics.forecast_nominal(),
get_metrics.forecast_ordinal(), get_metrics.forecast_point(), get_metrics.forecast_sample(),
get_metrics.scores()

Examples

get_metrics(example_quantile, select = "wis")

get_metrics.forecast_sample

Get default metrics for sample-based forecasts

Description

For sample-based forecasts, the default scoring rules are:

• "crps" = crps_sample()

• "overprediction" = overprediction_sample()

• "underprediction" = underprediction_sample()

• "dispersion" = dispersion_sample()

• "log_score" = logs_sample()

• "dss" = dss_sample()

• "mad" = mad_sample()

• "bias" = bias_sample()

• "ae_median" = ae_median_sample()

• "se_mean" = se_mean_sample()

Usage

S3 method for class 'forecast_sample'
get_metrics(x, select = NULL, exclude = NULL, ...)

60 get_metrics.scores

Arguments

x A forecast object (a validated data.table with predicted and observed values, see
as_forecast_binary()).

select A character vector of scoring rules to select from the list. If select is NULL (the
default), all possible scoring rules are returned.

exclude A character vector of scoring rules to exclude from the list. If select is not
NULL, this argument is ignored.

... unused

Input format

See Also

Other get_metrics functions: get_metrics(), get_metrics.forecast_binary(), get_metrics.forecast_nominal(),
get_metrics.forecast_ordinal(), get_metrics.forecast_point(), get_metrics.forecast_quantile(),
get_metrics.scores()

Examples

get_metrics(example_sample_continuous, exclude = "mad")

get_metrics.scores Get names of the metrics that were used for scoring

Description

When applying a scoring rule via score(), the names of the scoring rules become column names
of the resulting data.table. In addition, an attribute metrics will be added to the output, holding the
names of the scores as a vector.

This is done so that functions like get_forecast_unit() or summarise_scores() can still iden-
tify which columns are part of the forecast unit and which hold a score.

get_metrics() accesses and returns the metrics attribute. If there is no attribute, the function will
return NULL (or, if error = TRUE will produce an error instead). In addition, it checks the column
names of the input for consistency with the data stored in the metrics attribute.

Handling a missing or inconsistent metrics attribute:

If the metrics attribute is missing or is not consistent with the column names of the data.table, you
can either

get_pairwise_comparisons 61

• run score() again, specifying names for the scoring rules manually, or

• add/update the attribute manually using attr(scores, "metrics") <- c("names", "of",
"your", "scores") (the order does not matter).

Usage

S3 method for class 'scores'
get_metrics(x, error = FALSE, ...)

Arguments

x A scores object, (a data.table with an attribute metrics as produced by score()).

error Throw an error if there is no attribute called metrics? Default is FALSE.

... unused

Value

Character vector with the names of the scoring rules that were used for scoring.

See Also

Other get_metrics functions: get_metrics(), get_metrics.forecast_binary(), get_metrics.forecast_nominal(),
get_metrics.forecast_ordinal(), get_metrics.forecast_point(), get_metrics.forecast_quantile(),
get_metrics.forecast_sample()

get_pairwise_comparisons

Obtain pairwise comparisons between models

Description

Compare scores obtained by different models in a pairwise tournament. All combinations of two
models are compared against each other based on the overlapping set of available forecasts common
to both models.

The input should be a scores object as produced by score(). Note that adding additional unrelated
columns can unpredictably change results, as all present columns are taken into account when
determining the set of overlapping forecasts between two models.

The output of the pairwise comparisons is a set of mean score ratios, relative skill scores and p-
values.

62 get_pairwise_comparisons

Mean score ratios

For every pair of two models, a mean score ratio is computed. This is simply the mean score of the
first model divided by the mean score of the second. Mean score ratios are computed based on the
set of overlapping forecasts between the two models. That means that only scores for those targets
are taken into account for which both models have submitted a forecast.

(Scaled) Relative skill scores

The relative score of a model is the geometric mean of all mean score ratios which involve that
model. If a baseline is provided, scaled relative skill scores will be calculated as well. Scaled
relative skill scores are simply the relative skill score of a model divided by the relative skill score
of the baseline model.

p-values

In addition, the function computes p-values for the comparison between two models (again based on
the set of overlapping forecasts). P-values can be computed in two ways: based on a nonparametric
Wilcoxon signed-rank test (internally using wilcox.test() with paired = TRUE) or based on a per-
mutation test. The permutation test is based on the difference in mean scores between two models.
The default null hypothesis is that the mean score difference is zero (see permutation_test()).
Adjusted p-values are computed by calling p.adjust() on the raw p-values.

The code for the pairwise comparisons is inspired by an implementation by Johannes Bracher. The
implementation of the permutation test follows the function permutationTest from the surveillance
package by Michael Höhle, Andrea Riebler and Michaela Paul.

Usage

get_pairwise_comparisons(
scores,
compare = "model",
by = NULL,
metric = intersect(c("wis", "crps", "brier_score"), names(scores)),
baseline = NULL,
...

)

Arguments

scores An object of class scores (a data.table with scores and an additional attribute
metrics as produced by score()).

get_pairwise_comparisons 63

compare Character vector with a single colum name that defines the elements for the
pairwise comparison. For example, if this is set to "model" (the default), then
elements of the "model" column will be compared.

by Character vector with column names that define further grouping levels for the
pairwise comparisons. By default this is NULL and there will be one relative skill
score per distinct entry of the column selected in compare. If further columns
are given here, for example, by = "location" with compare = "model", then
one separate relative skill score is calculated for every model in every location.

metric A string with the name of the metric for which a relative skill shall be com-
puted. By default this is either "crps", "wis" or "brier_score" if any of these are
available.

baseline A string with the name of a model. If a baseline is given, then a scaled relative
skill with respect to the baseline will be returned. By default (NULL), relative
skill will not be scaled with respect to a baseline model.

... Additional arguments for the comparison between two models. See compare_forecasts()
for more information.

Value

A data.table with the results of pairwise comparisons containing the mean score ratios (mean_scores_ratio),
unadjusted (pval) and adjusted (adj_pval) p-values, and relative skill values of each model (..._relative_skill).
If a baseline model is given then the scaled relative skill is reported as well (..._scaled_relative_skill).

Author(s)

Nikos Bosse <nikosbosse@gmail.com>

Johannes Bracher, <johannes.bracher@kit.edu>

Examples

library(magrittr) # pipe operator

scores <- example_quantile %>%
as_forecast_quantile() %>%
score()

pairwise <- get_pairwise_comparisons(scores, by = "target_type")
pairwise2 <- get_pairwise_comparisons(

scores, by = "target_type", baseline = "EuroCOVIDhub-baseline"
)

library(ggplot2)
plot_pairwise_comparisons(pairwise, type = "mean_scores_ratio") +

facet_wrap(~target_type)

64 get_pit_histogram.forecast_quantile

get_pit_histogram.forecast_quantile

Probability integral transformation histogram

Description

Generate a Probability Integral Transformation (PIT) histogram for validated forecast objects.

See the examples for how to plot the result of this function.

Usage

S3 method for class 'forecast_quantile'
get_pit_histogram(forecast, num_bins = NULL, breaks = NULL, by, ...)

S3 method for class 'forecast_sample'
get_pit_histogram(
forecast,
num_bins = 10,
breaks = NULL,
by,
integers = c("nonrandom", "random", "ignore"),
n_replicates = NULL,
...

)

get_pit_histogram(forecast, num_bins, breaks, by, ...)

Default S3 method:
get_pit_histogram(forecast, num_bins, breaks, by, ...)

Arguments

forecast A forecast object (a validated data.table with predicted and observed values).

num_bins The number of bins in the PIT histogram. For sample-based forecasts, the de-
fault is 10 bins. For quantile-based forecasts, the default is one bin for each
available quantile. You can control the number of bins by supplying a num-
ber. This is fine for sample-based pit histograms, but may fail for quantile-based
formats. In this case it is preferred to supply explicit breaks points using the
breaks argument.

breaks Numeric vector with the break points for the bins in the PIT histogram. This
is preferred when creating a PIT histogram based on quantile-based data. De-
fault is NULL and breaks will be determined by num_bins. If breaks is used,
num_bins will be ignored. 0 and 1 will always be added as left and right bounds,
respectively.

get_pit_histogram.forecast_quantile 65

by Character vector with the columns according to which the PIT values shall be
grouped. If you e.g. have the columns ’model’ and ’location’ in the input data
and want to have a PIT histogram for every model and location, specify by =
c("model", "location").

... Currently unused. You cannot pass additional arguments to scoring functions
via See the Customising metrics section below for details on how to use
purrr::partial() to pass arguments to individual metrics.

integers How to handle integer forecasts (count data). This is based on methods de-
scribed Czado et al. (2007). If "nonrandom" (default) the function will use the
non-randomised PIT method. If "random", will use the randomised PIT method.
If "ignore", will treat integer forecasts as if they were continuous.

n_replicates The number of draws for the randomised PIT for discrete predictions. Will be
ignored if forecasts are continuous or integers is not set to random.

Value

A data.table with density values for each bin in the PIT histogram.

References

Sebastian Funk, Anton Camacho, Adam J. Kucharski, Rachel Lowe, Rosalind M. Eggo, W. John
Edmunds (2019) Assessing the performance of real-time epidemic forecasts: A case study of Ebola
in the Western Area region of Sierra Leone, 2014-15, doi:10.1371/journal.pcbi.1006785

See Also

pit_histogram_sample()

Examples

library("ggplot2")

result <- get_pit_histogram(example_sample_continuous, by = "model")
ggplot(result, aes(x = mid, y = density)) +

geom_col() +
facet_wrap(. ~ model) +
labs(x = "Quantile", "Density")

example with quantile data
result <- get_pit_histogram(example_quantile, by = "model")
ggplot(result, aes(x = mid, y = density)) +

geom_col() +
facet_wrap(. ~ model) +
labs(x = "Quantile", "Density")

https://doi.org/10.1371/journal.pcbi.1006785

66 interval_coverage

get_type Get type of a vector or matrix of observed values or predictions

Description

Internal helper function to get the type of a vector (usually of observed or predicted values). The
function checks whether the input is a factor, or else whether it is integer (or can be coerced to
integer) or whether it’s continuous.

Usage

get_type(x)

Arguments

x Input the type should be determined for.

Value

Character vector of length one with either "classification", "integer", or "continuous".

interval_coverage Interval coverage (for quantile-based forecasts)

Description

Check whether the observed value is within a given central prediction interval. The prediction inter-
val is defined by a lower and an upper bound formed by a pair of predictive quantiles. For example,
a 50% prediction interval is formed by the 0.25 and 0.75 quantiles of the predictive distribution.

Usage

interval_coverage(observed, predicted, quantile_level, interval_range = 50)

Arguments

observed Numeric vector of size n with the observed values.

predicted Numeric nxN matrix of predictive quantiles, n (number of rows) being the num-
ber of forecasts (corresponding to the number of observed values) and N (num-
ber of columns) the number of quantiles per forecast. If observed is just a single
number, then predicted can just be a vector of size N.

quantile_level Vector of of size N with the quantile levels for which predictions were made.

interval_range A single number with the range of the prediction interval in percent (e.g. 50 for
a 50% prediction interval) for which you want to compute interval coverage.

interval_score 67

Value

A vector of length n with elements either TRUE, if the observed value is within the corresponding
prediction interval, and FALSE otherwise.

Input format

Examples

observed <- c(1, -15, 22)
predicted <- rbind(

c(-1, 0, 1, 2, 3),
c(-2, 1, 2, 2, 4),
c(-2, 0, 3, 3, 4)

)
quantile_level <- c(0.1, 0.25, 0.5, 0.75, 0.9)
interval_coverage(observed, predicted, quantile_level)

interval_score Interval score

Description

Proper Scoring Rule to score quantile predictions, following Gneiting and Raftery (2007). Smaller
values are better.

The score is computed as

score = (upper−lower)+
2

α
(lower−observed)∗1(observed < lower)+

2

α
(observed−upper)∗1(observed > upper)

where 1() is the indicator function and indicates how much is outside the prediction interval. α is
the decimal value that indicates how much is outside the prediction interval.

To improve usability, the user is asked to provide an interval range in percentage terms, i.e. inter-
val_range = 90 (percent) for a 90 percent prediction interval. Correspondingly, the user would have
to provide the 5% and 95% quantiles (the corresponding alpha would then be 0.1). No specific dis-
tribution is assumed, but the interval has to be symmetric around the median (i.e you can’t use the
0.1 quantile as the lower bound and the 0.7 quantile as the upper bound). Non-symmetric quantiles
can be scored using the function quantile_score().

68 interval_score

Usage

interval_score(
observed,
lower,
upper,
interval_range,
weigh = TRUE,
separate_results = FALSE

)

Arguments

observed A vector with observed values of size n

lower Vector of size n with the prediction for the lower quantile of the given interval
range.

upper Vector of size n with the prediction for the upper quantile of the given interval
range.

interval_range Numeric vector (either a single number or a vector of size n) with the range of
the prediction intervals. For example, if you’re forecasting the 0.05 and 0.95
quantile, the interval range would be 90. The interval range corresponds to
(100−α)/100, where α is the decimal value that indicates how much is outside
the prediction interval (see e.g. Gneiting and Raftery (2007)).

weigh Logical. If TRUE (the default), weigh the score by α/2, so it can be averaged into
an interval score that, in the limit (for an increasing number of equally spaced
quantiles/prediction intervals), corresponds to the CRPS. α is the value that cor-
responds to the (α/2) or (1 − α/2), i.e. it is the decimal value that represents
how much is outside a central prediction interval (E.g. for a 90 percent central
prediction interval, alpha is 0.1).

separate_results

Logical. If TRUE (default is FALSE), then the separate parts of the interval score
(dispersion penalty, penalties for over- and under-prediction get returned as
separate elements of a list). If you want a data.frame instead, simply call
as.data.frame() on the output.

Value

Vector with the scoring values, or a list with separate entries if separate_results is TRUE.

References

Strictly Proper Scoring Rules, Prediction,and Estimation, Tilmann Gneiting and Adrian E. Raftery,
2007, Journal of the American Statistical Association, Volume 102, 2007 - Issue 477

Evaluating epidemic forecasts in an interval format, Johannes Bracher, Evan L. Ray, Tilmann
Gneiting and Nicholas G. Reich, https://journals.plos.org/ploscompbiol/article?id=10.
1371/journal.pcbi.1008618 # nolint

https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008618
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008618

is_forecast_binary 69

Examples

observed <- rnorm(30, mean = 1:30)
interval_range <- rep(90, 30)
alpha <- (100 - interval_range) / 100
lower <- qnorm(alpha / 2, rnorm(30, mean = 1:30))
upper <- qnorm((1 - alpha / 2), rnorm(30, mean = 11:40))

scoringutils:::interval_score(
observed = observed,
lower = lower,
upper = upper,
interval_range = interval_range

)

gives a warning, as the interval_range should likely be 50 instead of 0.5
scoringutils:::interval_score(

observed = 4, upper = 8, lower = 2, interval_range = 0.5
)

example with missing values and separate results
scoringutils:::interval_score(

observed = c(observed, NA),
lower = c(lower, NA),
upper = c(NA, upper),
separate_results = TRUE,
interval_range = 90

)

is_forecast_binary Test whether an object is a forecast object

Description

Test whether an object is a forecast object.

You can test for a specific forecast_<type> class using the appropriate is_forecast_<type>
function.

Usage

is_forecast_binary(x)

is_forecast_nominal(x)

is_forecast_ordinal(x)

is_forecast_point(x)

is_forecast_quantile(x)

70 logs_categorical

is_forecast_sample(x)

is_forecast(x)

Arguments

x An R object.

Value

is_forecast: TRUE if the object is of class forecast, FALSE otherwise.

is_forecast_<type>*: TRUE if the object is of class forecast_* in addition to class forecast,
FALSE otherwise.

Examples

forecast_binary <- as_forecast_binary(example_binary)
is_forecast(forecast_binary)

logs_categorical Log score for categorical outcomes

Description

Log score for categorical (nominal or ordinal) outcomes

The Log Score is the negative logarithm of the probability assigned to the observed value. It is a
proper scoring rule. Small values are better (best is zero, worst is infinity).

Usage

logs_categorical(observed, predicted, predicted_label)

Arguments

observed Factor of length n with N levels holding the observed values.

predicted nxN matrix of predictive probabilities, n (number of rows) being the number of
observations and N (number of columns) the number of possible outcomes.

predicted_label

Factor of length N, denoting the outcome that the probabilities in predicted
correspond to.

Value

A numeric vector of size n with log scores

logs_sample 71

Input format

See Also

Other log score functions: logs_sample(), scoring-functions-binary

Examples

factor_levels <- c("one", "two", "three")
predicted_label <- factor(c("one", "two", "three"), levels = factor_levels)
observed <- factor(c("one", "three", "two"), levels = factor_levels)
predicted <- matrix(

c(0.8, 0.1, 0.1,
0.1, 0.2, 0.7,
0.4, 0.4, 0.2),

nrow = 3,
byrow = TRUE

)
logs_categorical(observed, predicted, predicted_label)

logs_sample Logarithmic score (sample-based version)

Description

This function is a wrapper around the logs_sample() function from the scoringRules package.

The log score is the negative logarithm of the predictive density evaluated at the observed value.

The function should be used to score continuous predictions only. While the Log Score is in theory
also applicable to discrete forecasts, the problem lies in the implementation: The function uses
a kernel density estimation, which is not well defined with integer-valued Monte Carlo Samples.
See the scoringRules package for more details and alternatives, e.g. calculating scores for specific
discrete probability distributions.

Usage

logs_sample(observed, predicted, ...)

72 log_shift

Arguments

observed A vector with observed values of size n

predicted nxN matrix of predictive samples, n (number of rows) being the number of data
points and N (number of columns) the number of Monte Carlo samples. Alter-
natively, predicted can just be a vector of size n.

... Additional arguments passed to logs_sample() from the scoringRules package.

Value

Vector with scores.

Input format

References

Alexander Jordan, Fabian Krüger, Sebastian Lerch, Evaluating Probabilistic Forecasts with scor-
ingRules, https://www.jstatsoft.org/article/view/v090i12

See Also

Other log score functions: logs_categorical(), scoring-functions-binary

Examples

observed <- rpois(30, lambda = 1:30)
predicted <- replicate(200, rpois(n = 30, lambda = 1:30))
logs_sample(observed, predicted)

log_shift Log transformation with an additive shift

Description

Function that shifts a value by some offset and then applies the natural logarithm to it.

Usage

log_shift(x, offset = 0, base = exp(1))

https://www.jstatsoft.org/article/view/v090i12

mad_sample 73

Arguments

x vector of input values to be transformed

offset Number to add to the input value before taking the natural logarithm.

base A positive number: the base with respect to which logarithms are computed.
Defaults to e = exp(1).

Details

The output is computed as log(x + offset)

Value

A numeric vector with transformed values

References

Transformation of forecasts for evaluating predictive performance in an epidemiological context
Nikos I. Bosse, Sam Abbott, Anne Cori, Edwin van Leeuwen, Johannes Bracher, Sebastian Funk
medRxiv 2023.01.23.23284722 doi:10.1101/2023.01.23.23284722 https://www.medrxiv.org/
content/10.1101/2023.01.23.23284722v1 # nolint

Examples

library(magrittr) # pipe operator
log_shift(1:10)
log_shift(0:9, offset = 1)

example_quantile[observed > 0,] %>%
as_forecast_quantile() %>%
transform_forecasts(fun = log_shift, offset = 1)

mad_sample Determine dispersion of a probabilistic forecast

Description

Sharpness is the ability of the model to generate predictions within a narrow range and dispersion is
the lack thereof. It is a data-independent measure, and is purely a feature of the forecasts themselves.

Dispersion of predictive samples corresponding to one single observed value is measured as the
normalised median of the absolute deviation from the median of the predictive samples. For details,
see mad() and the explanations given in Funk et al. (2019)

Usage

mad_sample(observed = NULL, predicted, ...)

https://doi.org/10.1101/2023.01.23.23284722
https://www.medrxiv.org/content/10.1101/2023.01.23.23284722v1
https://www.medrxiv.org/content/10.1101/2023.01.23.23284722v1

74 pit_histogram_sample

Arguments

observed Place holder, argument will be ignored and exists only for consistency with other
scoring functions. The output does not depend on any observed values.

predicted nxN matrix of predictive samples, n (number of rows) being the number of data
points and N (number of columns) the number of Monte Carlo samples. Alter-
natively, predicted can just be a vector of size n.

... Additional arguments passed to mad().

Value

Vector with dispersion values.

Input format

References

Funk S, Camacho A, Kucharski AJ, Lowe R, Eggo RM, Edmunds WJ (2019) Assessing the perfor-
mance of real-time epidemic forecasts: A case study of Ebola in the Western Area region of Sierra
Leone, 2014-15. PLoS Comput Biol 15(2): e1006785. doi:10.1371/journal.pcbi.1006785

Examples

predicted <- replicate(200, rpois(n = 30, lambda = 1:30))
mad_sample(predicted = predicted)

pit_histogram_sample Probability integral transformation for counts

Description

Uses a Probability integral transformation (PIT) (or a randomised PIT for integer forecasts) to assess
the calibration of predictive Monte Carlo samples.

https://doi.org/10.1371/journal.pcbi.1006785

pit_histogram_sample 75

Usage

pit_histogram_sample(
observed,
predicted,
quantiles,
integers = c("nonrandom", "random", "ignore"),
n_replicates = NULL

)

Arguments

observed A vector with observed values of size n

predicted nxN matrix of predictive samples, n (number of rows) being the number of data
points and N (number of columns) the number of Monte Carlo samples. Alter-
natively, predicted can just be a vector of size n.

quantiles A vector of quantiles between which to calculate the PIT.

integers How to handle integer forecasts (count data). This is based on methods de-
scribed Czado et al. (2007). If "nonrandom" (default) the function will use the
non-randomised PIT method. If "random", will use the randomised PIT method.
If "ignore", will treat integer forecasts as if they were continuous.

n_replicates The number of draws for the randomised PIT for discrete predictions. Will be
ignored if forecasts are continuous or integers is not set to random.

Details

Calibration or reliability of forecasts is the ability of a model to correctly identify its own uncertainty
in making predictions. In a model with perfect calibration, the observed data at each time point look
as if they came from the predictive probability distribution at that time.

Equivalently, one can inspect the probability integral transform of the predictive distribution at time
t,

ut = Ft(xt)

where xt is the observed data point at time t in t1, . . . , tn, n being the number of forecasts, and Ft

is the (continuous) predictive cumulative probability distribution at time t. If the true probability
distribution of outcomes at time t is Gt then the forecasts Ft are said to be ideal if Ft = Gt at all
times t. In that case, the probabilities ut are distributed uniformly.

In the case of discrete nonnegative outcomes such as incidence counts, the PIT is no longer uniform
even when forecasts are ideal. In that case two methods are available ase described by Czado et al.
(2007).

By default, a nonrandomised PIT is calculated using the conditional cumulative distribution func-
tion

F (u) =


0 if v < Pt(kt − 1)

(v − Pt(kt − 1))/(Pt(kt)− Pt(kt − 1)) if Pt(kt − 1) ≤ v < Pt(kt)

1 if v ≥ Pt(kt)

76 pit_histogram_sample

where kt is the observed count, Pt(x) is the predictive cumulative probability of observing inci-
dence k at time t and Pt(−1) = 0 by definition. Values of the PIT histogram are then created by
averaging over the n predictions,

F̄ (u) =
i = 1

n

n∑
i=1

F (i)(u)

And calculating the value at each bin between quantile qi and quantile qi+1 as

F̄ (qi)− F̄ (qi+1)

Alternatively, a randomised PIT can be used instead. In this case, the PIT is

ut = Pt(kt) + v ∗ (Pt(kt)− Pt(kt − 1))

where v is standard uniform and independent of k. The values of the PIT histogram are then
calculated by binning the ut values as above.

Value

A vector with PIT histogram densities for the bins corresponding to the given quantiles.

References

Claudia Czado, Tilmann Gneiting Leonhard Held (2009) Predictive model assessment for count
data. Biometrika, 96(4), 633-648. Sebastian Funk, Anton Camacho, Adam J. Kucharski, Rachel
Lowe, Rosalind M. Eggo, W. John Edmunds (2019) Assessing the performance of real-time epi-
demic forecasts: A case study of Ebola in the Western Area region of Sierra Leone, 2014-15,
doi:10.1371/journal.pcbi.1006785

See Also

get_pit_histogram()

Examples

continuous predictions
observed <- rnorm(20, mean = 1:20)
predicted <- replicate(100, rnorm(n = 20, mean = 1:20))
pit <- pit_histogram_sample(observed, predicted, quantiles = seq(0, 1, 0.1))

integer predictions
observed <- rpois(20, lambda = 1:20)
predicted <- replicate(100, rpois(n = 20, lambda = 1:20))
pit <- pit_histogram_sample(observed, predicted, quantiles = seq(0, 1, 0.1))

integer predictions, randomised PIT
observed <- rpois(20, lambda = 1:20)
predicted <- replicate(100, rpois(n = 20, lambda = 1:20))

https://doi.org/10.1371/journal.pcbi.1006785

plot_correlations 77

pit <- pit_histogram_sample(
observed, predicted, quantiles = seq(0, 1, 0.1),
integers = "random", n_replicates = 30

)

plot_correlations Plot correlation between metrics

Description

Plots a heatmap of correlations between different metrics.

Usage

plot_correlations(correlations, digits = NULL)

Arguments

correlations A data.table of correlations between scores as produced by get_correlations().

digits A number indicating how many decimal places the correlations should be rounded
to. By default (digits = NULL) no rounding takes place.

Value

A ggplot object showing a coloured matrix of correlations between metrics.

A ggplot object with a visualisation of correlations between metrics

Examples

library(magrittr) # pipe operator
scores <- example_quantile %>%

as_forecast_quantile %>%
score()

correlations <- scores %>%
summarise_scores() %>%
get_correlations()

plot_correlations(correlations, digits = 2)

78 plot_forecast_counts

plot_forecast_counts Visualise the number of available forecasts

Description

Visualise Where Forecasts Are Available.

Usage

plot_forecast_counts(
forecast_counts,
x,
y = "model",
x_as_factor = TRUE,
show_counts = TRUE

)

Arguments

forecast_counts

A data.table (or similar) with a column count holding forecast counts, as pro-
duced by get_forecast_counts().

x Character vector of length one that denotes the name of the column to appear on
the x-axis of the plot.

y Character vector of length one that denotes the name of the column to appear on
the y-axis of the plot. Default is "model".

x_as_factor Logical (default is TRUE). Whether or not to convert the variable on the x-axis to
a factor. This has an effect e.g. if dates are shown on the x-axis.

show_counts Logical (default is TRUE) that indicates whether or not to show the actual count
numbers on the plot.

Value

A ggplot object with a plot of forecast counts

Examples

library(ggplot2)
library(magrittr) # pipe operator
forecast_counts <- example_quantile %>%

as_forecast_quantile %>%
get_forecast_counts(by = c("model", "target_type", "target_end_date"))

plot_forecast_counts(
forecast_counts, x = "target_end_date", show_counts = FALSE

) +
facet_wrap("target_type")

plot_heatmap 79

plot_heatmap Create a heatmap of a scoring metric

Description

This function can be used to create a heatmap of one metric across different groups, e.g. the interval
score obtained by several forecasting models in different locations.

Usage

plot_heatmap(scores, y = "model", x, metric)

Arguments

scores A data.frame of scores based on quantile forecasts as produced by score().

y The variable from the scores you want to show on the y-Axis. The default for
this is "model"

x The variable from the scores you want to show on the x-Axis. This could be
something like "horizon", or "location"

metric String, the metric that determines the value and colour shown in the tiles of the
heatmap.

Value

A ggplot object showing a heatmap of the desired metric

Examples

library(magrittr) # pipe operator
scores <- example_quantile %>%

as_forecast_quantile %>%
score()

scores <- summarise_scores(scores, by = c("model", "target_type"))
scores <- summarise_scores(

scores, by = c("model", "target_type"),
fun = signif, digits = 2

)

plot_heatmap(scores, x = "target_type", metric = "bias")

80 plot_pairwise_comparisons

plot_interval_coverage

Plot interval coverage

Description

Plot interval coverage values (see get_coverage() for more information).

Usage

plot_interval_coverage(coverage, colour = "model")

Arguments

coverage A data frame of coverage values as produced by get_coverage().

colour According to which variable shall the graphs be coloured? Default is "model".

Value

ggplot object with a plot of interval coverage

Examples

example <- as_forecast_quantile(example_quantile)
coverage <- get_coverage(example, by = "model")
plot_interval_coverage(coverage)

plot_pairwise_comparisons

Plot heatmap of pairwise comparisons

Description

Creates a heatmap of the ratios or pvalues from a pairwise comparison between models.

Usage

plot_pairwise_comparisons(
comparison_result,
type = c("mean_scores_ratio", "pval")

)

plot_quantile_coverage 81

Arguments

comparison_result

A data.frame as produced by get_pairwise_comparisons().
type Character vector of length one that is either "mean_scores_ratio" or "pval". This

denotes whether to visualise the ratio or the p-value of the pairwise comparison.
Default is "mean_scores_ratio".

Value

A ggplot object with a heatmap of mean score ratios from pairwise comparisons.

Examples

library(ggplot2)
library(magrittr) # pipe operator
scores <- example_quantile %>%

as_forecast_quantile %>%
score()

pairwise <- get_pairwise_comparisons(scores, by = "target_type")
plot_pairwise_comparisons(pairwise, type = "mean_scores_ratio") +

facet_wrap(~target_type)

plot_quantile_coverage

Plot quantile coverage

Description

Plot quantile coverage values (see get_coverage() for more information).

Usage

plot_quantile_coverage(coverage, colour = "model")

Arguments

coverage A data frame of coverage values as produced by get_coverage().
colour String, according to which variable shall the graphs be coloured? Default is

"model".

Value

A ggplot object with a plot of interval coverage

Examples

example <- as_forecast_quantile(example_quantile)
coverage <- get_coverage(example, by = "model")
plot_quantile_coverage(coverage)

82 plot_wis

plot_wis Plot contributions to the weighted interval score

Description

Visualise the components of the weighted interval score: penalties for over-prediction, under-
prediction and for high dispersion (lack of sharpness).

Usage

plot_wis(scores, x = "model", relative_contributions = FALSE, flip = FALSE)

Arguments

scores A data.table of scores based on quantile forecasts as produced by score() and
summarised using summarise_scores().

x The variable from the scores you want to show on the x-Axis. Usually this will
be "model".

relative_contributions

Logical. Show relative contributions instead of absolute contributions? Default
is FALSE and this functionality is not available yet.

flip Boolean (default is FALSE), whether or not to flip the axes.

Value

A ggplot object showing a contributions from the three components of the weighted interval score.

A ggplot object with a visualisation of the WIS decomposition

References

Bracher J, Ray E, Gneiting T, Reich, N (2020) Evaluating epidemic forecasts in an interval format.
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008618

Examples

library(ggplot2)
library(magrittr) # pipe operator
scores <- example_quantile %>%

as_forecast_quantile %>%
score()

scores <- summarise_scores(scores, by = c("model", "target_type"))

plot_wis(scores,
x = "model",
relative_contributions = TRUE

) +
facet_wrap(~target_type)

plot_wis(scores,

https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008618

print.forecast 83

x = "model",
relative_contributions = FALSE

) +
facet_wrap(~target_type, scales = "free_x")

print.forecast Print information about a forecast object

Description

This function prints information about a forecast object, including "Forecast type", "Score columns",
"Forecast unit".

Usage

S3 method for class 'forecast'
print(x, ...)

Arguments

x A forecast object

... Additional arguments for print().

Value

Returns x invisibly.

Examples

dat <- as_forecast_quantile(example_quantile)
print(dat)

quantile_score Quantile score

Description

Proper Scoring Rule to score quantile predictions. Smaller values are better. The quantile score is
closely related to the interval score (see wis()) and is the quantile equivalent that works with single
quantiles instead of central prediction intervals.

The quantile score, also called pinball loss, for a single quantile level τ is defined as

QSτ (F, y) = 2 · {1(y ≤ qτ)− τ} · (qτ − y) =

{
2 · (1− τ) ∗ qτ − y, if y ≤ qτ

2 · τ ∗ |qτ − y|, if y > qτ ,

with qτ being the τ -quantile of the predictive distribution F , and 1(·) the indicator function.

84 quantile_score

The weighted interval score for a single prediction interval can be obtained as the average of the
quantile scores for the lower and upper quantile of that prediction interval:

WISα(F, y) =
QSα/2(F, y) + QS1−α/2(F, y)

2
.

See the SI of Bracher et al. (2021) for more details.

quantile_score() returns the average quantile score across the quantile levels provided. For a set
of quantile levels that form pairwise central prediction intervals, the quantile score is equivalent to
the interval score.

Usage

quantile_score(observed, predicted, quantile_level, weigh = TRUE)

Arguments

observed Numeric vector of size n with the observed values.

predicted Numeric nxN matrix of predictive quantiles, n (number of rows) being the num-
ber of forecasts (corresponding to the number of observed values) and N (num-
ber of columns) the number of quantiles per forecast. If observed is just a single
number, then predicted can just be a vector of size N.

quantile_level Vector of of size N with the quantile levels for which predictions were made.

weigh Logical. If TRUE (the default), weigh the score by α/2, so it can be averaged into
an interval score that, in the limit (for an increasing number of equally spaced
quantiles/prediction intervals), corresponds to the CRPS. α is the value that cor-
responds to the (α/2) or (1 − α/2), i.e. it is the decimal value that represents
how much is outside a central prediction interval (E.g. for a 90 percent central
prediction interval, alpha is 0.1).

Value

Numeric vector of length n with the quantile score. The scores are averaged across quantile levels
if multiple quantile levels are provided (the result of calling rowMeans() on the matrix of quantile
scores that is computed based on the observed and predicted values).

Input format

rps_ordinal 85

References

Strictly Proper Scoring Rules, Prediction,and Estimation, Tilmann Gneiting and Adrian E. Raftery,
2007, Journal of the American Statistical Association, Volume 102, 2007 - Issue 477

Evaluating epidemic forecasts in an interval format, Johannes Bracher, Evan L. Ray, Tilmann Gneit-
ing and Nicholas G. Reich, 2021, https://journals.plos.org/ploscompbiol/article?id=
10.1371/journal.pcbi.1008618

Examples

observed <- rnorm(10, mean = 1:10)
alpha <- 0.5

lower <- qnorm(alpha / 2, observed)
upper <- qnorm((1 - alpha / 2), observed)

qs_lower <- quantile_score(observed,
predicted = matrix(lower),
quantile_level = alpha / 2

)
qs_upper <- quantile_score(observed,

predicted = matrix(upper),
quantile_level = 1 - alpha / 2

)
interval_score <- (qs_lower + qs_upper) / 2
interval_score2 <- quantile_score(

observed,
predicted = cbind(lower, upper),
quantile_level = c(alpha / 2, 1 - alpha / 2)

)

this is the same as the following
wis(

observed,
predicted = cbind(lower, upper),
quantile_level = c(alpha / 2, 1 - alpha / 2)

)

rps_ordinal Ranked Probability Score for ordinal outcomes

Description

The Ranked Probability Score (RPS) measures the difference between the predicted and observed
cumulative distribution functions. It is a proper scoring rule that takes the ordering of categories into
account. Small values are better (best is zero, worst is N - 1 where N is the number of categories).

Usage

rps_ordinal(observed, predicted, predicted_label)

https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008618
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008618

86 score.forecast_binary

Arguments

observed A factor of length n with N levels holding the observed values.
predicted nxN matrix of predictive probabilities, n (number of rows) being the number of

observations and N (number of columns) the number of possible outcomes.
predicted_label

A factor of length N, denoting the outcome that the probabilities in predicted
correspond to.

Value

A numeric vector of size n with ranked probability scores

Input format

Examples

factor_levels <- c("one", "two", "three")
predicted_label <- factor(factor_levels, levels = factor_levels, ordered = TRUE)
observed <- factor(c("three", "three", "two"), levels = factor_levels, ordered = TRUE)
predicted <- matrix(

c(0.8, 0.1, 0.1,
0.1, 0.2, 0.7,
0.4, 0.4, 0.2),

nrow = 3,
byrow = TRUE

)
rps_ordinal(observed, predicted, predicted_label)

score.forecast_binary Evaluate forecasts

Description

score() applies a selection of scoring metrics to a forecast object. score() is a generic that
dispatches to different methods depending on the class of the input data.

See as_forecast_binary(), as_forecast_quantile() etc. for information on how to create a
forecast object.

See get_forecast_unit() for more information on the concept of a forecast unit.

For additional help and examples, check out the paper Evaluating Forecasts with scoringutils in R.

https://arxiv.org/abs/2205.07090

score.forecast_binary 87

Usage

S3 method for class 'forecast_binary'
score(forecast, metrics = get_metrics(forecast), ...)

S3 method for class 'forecast_nominal'
score(forecast, metrics = get_metrics(forecast), ...)

S3 method for class 'forecast_ordinal'
score(forecast, metrics = get_metrics(forecast), ...)

S3 method for class 'forecast_point'
score(forecast, metrics = get_metrics(forecast), ...)

S3 method for class 'forecast_quantile'
score(forecast, metrics = get_metrics(forecast), ...)

S3 method for class 'forecast_sample'
score(forecast, metrics = get_metrics(forecast), ...)

score(forecast, metrics, ...)

Arguments

forecast A forecast object (a validated data.table with predicted and observed values).

metrics A named list of scoring functions. Names will be used as column names in
the output. See get_metrics() for more information on the default metrics
used. See the Customising metrics section below for information on how to pass
custom arguments to scoring functions.

... Currently unused. You cannot pass additional arguments to scoring functions
via See the Customising metrics section below for details on how to use
purrr::partial() to pass arguments to individual metrics.

Details

Customising metrics
If you want to pass arguments to a scoring function, you need change the scoring function itself
via e.g. purrr::partial() and pass an updated list of functions with your custom metric to the
metrics argument in score(). For example, to use interval_coverage() with interval_range
= 90, you would define a new function, e.g. interval_coverage_90 <- purrr::partial(interval_coverage,
interval_range = 90) and pass this new function to metrics in score().

Note that if you want to pass a variable as an argument, you can unquote it with !! to make sure
the value is evaluated only once when the function is created. Consider the following example:

custom_arg <- "foo"
print1 <- purrr::partial(print, x = custom_arg)
print2 <- purrr::partial(print, x = !!custom_arg)

88 score.forecast_binary

custom_arg <- "bar"
print1() # prints 'bar'
print2() # prints 'foo'

Value

An object of class scores. This object is a data.table with unsummarised scores (one score per
forecast) and has an additional attribute metrics with the names of the metrics used for scoring.
See summarise_scores()) for information on how to summarise scores.

Author(s)

Nikos Bosse <nikosbosse@gmail.com>

References

Bosse NI, Gruson H, Cori A, van Leeuwen E, Funk S, Abbott S (2022) Evaluating Forecasts with
scoringutils in R. doi:10.48550/arXiv.2205.07090

Examples

library(magrittr) # pipe operator

validated <- as_forecast_quantile(example_quantile)
score(validated) %>%

summarise_scores(by = c("model", "target_type"))

set forecast unit manually (to avoid issues with scoringutils trying to
determine the forecast unit automatically)
example_quantile %>%

as_forecast_quantile(
forecast_unit = c(

"location", "target_end_date", "target_type", "horizon", "model"
)

) %>%
score()

forecast formats with different metrics
Not run:
score(as_forecast_binary(example_binary))
score(as_forecast_quantile(example_quantile))
score(as_forecast_point(example_point))
score(as_forecast_sample(example_sample_discrete))
score(as_forecast_sample(example_sample_continuous))

End(Not run)

https://doi.org/10.48550/arXiv.2205.07090

scoring-functions-binary 89

scoring-functions-binary

Metrics for binary outcomes

Description

Brier score
The Brier Score is the mean squared error between the probabilistic prediction and the observed
outcome. The Brier score is a proper scoring rule. Small values are better (best is 0, the worst is 1).

Brier_Score = (prediction − outcome)2,

where outcome ∈ {0, 1}, and prediction ∈ [0, 1] represents the probability that the outcome is equal
to 1.

Log score for binary outcomes
The Log Score is the negative logarithm of the probability assigned to the observed value. It is a
proper scoring rule. Small values are better (best is zero, worst is infinity).

Usage

brier_score(observed, predicted)

logs_binary(observed, predicted)

Arguments

observed A factor of length n with exactly two levels, holding the observed values. The
highest factor level is assumed to be the reference level. This means that predicted
represents the probability that the observed value is equal to the highest factor
level.

predicted A numeric vector of length n, holding probabilities. Values represent the prob-
ability that the corresponding outcome is equal to the highest level of the factor
observed.

Details

The functions require users to provide observed values as a factor in order to distinguish its input
from the input format required for scoring point forecasts. Internally, however, factors will be
converted to numeric values. A factor observed = factor(c(0, 1, 1, 0, 1) with two levels
(0 and 1) would internally be coerced to a numeric vector (in this case this would result in the
numeric vector c(1, 2, 2, 1, 1)). After subtracting 1, the resulting vector (c(0, 1, 1, 0) in this
case) is used for internal calculations. All predictions are assumed represent the probability that the
outcome is equal of the last/highest factor level (in this case that the outcome is equal to 1).

You could alternatively also provide a vector like observed = factor(c("a", "b", "b", "a"))
(with two levels, a and b), which would result in exactly the same internal representation. Proba-
bilities then represent the probability that the outcome is equal to "b". If you want your predictions

90 select_metrics

to be probabilities that the outcome is "a", then you could of course make observed a factor with
levels swapped, i.e. observed = factor(c("a", "b", "b", "a"), levels = c("b", "a"))

Value

A numeric vector of size n with the Brier scores

A numeric vector of size n with log scores

Input format

See Also

Other log score functions: logs_categorical(), logs_sample()

Examples

observed <- factor(sample(c(0, 1), size = 30, replace = TRUE))
predicted <- runif(n = 30, min = 0, max = 1)

brier_score(observed, predicted)
logs_binary(observed, predicted)

select_metrics Select metrics from a list of functions

Description

Helper function to return only the scoring rules selected by the user from a list of possible functions.

Usage

select_metrics(metrics, select = NULL, exclude = NULL)

Arguments

metrics A list of scoring functions.

select A character vector of scoring rules to select from the list. If select is NULL (the
default), all possible scoring rules are returned.

exclude A character vector of scoring rules to exclude from the list. If select is not
NULL, this argument is ignored.

set_forecast_unit 91

Value

A list of scoring functions.

Examples

select_metrics(
metrics = get_metrics(example_binary),
select = "brier_score"

)
select_metrics(

metrics = get_metrics(example_binary),
exclude = "log_score"

)

set_forecast_unit Set unit of a single forecast manually

Description

Helper function to set the unit of a single forecast (i.e. the combination of columns that uniquely de-
fine a single forecast) manually. This simple function keeps the columns specified in forecast_unit
(plus additional protected columns, e.g. for observed values, predictions or quantile levels) and re-
moves duplicate rows. set_forecast_unit() will mainly be called when constructing a forecast
object via the forecast_unit argument in as_forecast_<type>.

If not done explicitly, scoringutils attempts to determine the unit of a single forecast automat-
ically by simply assuming that all column names are relevant to determine the forecast unit. This
may lead to unexpected behaviour, so setting the forecast unit explicitly can help make the code
easier to debug and easier to read.

Usage

set_forecast_unit(data, forecast_unit)

Arguments

data A data.frame (or similar) with predicted and observed values. See the details
section of for additional information on the required input format.

forecast_unit Character vector with the names of the columns that uniquely identify a single
forecast.

Value

A data.table with only those columns kept that are relevant to scoring or denote the unit of a single
forecast as specified by the user.

92 se_mean_sample

Examples

library(magrittr) # pipe operator
example_quantile %>%

scoringutils:::set_forecast_unit(
c("location", "target_end_date", "target_type", "horizon", "model")

)

se_mean_sample Squared error of the mean (sample-based version)

Description

Squared error of the mean calculated as

mean(observed − mean prediction)2

The mean prediction is calculated as the mean of the predictive samples.

Usage

se_mean_sample(observed, predicted)

Arguments

observed A vector with observed values of size n

predicted nxN matrix of predictive samples, n (number of rows) being the number of data
points and N (number of columns) the number of Monte Carlo samples. Alter-
natively, predicted can just be a vector of size n.

Input format

Examples

observed <- rnorm(30, mean = 1:30)
predicted_values <- matrix(rnorm(30, mean = 1:30))
se_mean_sample(observed, predicted_values)

summarise_scores 93

summarise_scores Summarise scores as produced by score()

Description

Summarise scores as produced by score().

summarise_scores relies on a way to identify the names of the scores and distinguish them from
columns that denote the unit of a single forecast. Internally, this is done via a stored attribute,
metrics that stores the names of the scores. This means, however, that you need to be careful with
renaming scores after they have been produced by score(). If you do, you also have to manually
update the attribute by calling attr(scores, "metrics") <- new_names.

Usage

summarise_scores(scores, by = "model", fun = mean, ...)

summarize_scores(scores, by = "model", fun = mean, ...)

Arguments

scores An object of class scores (a data.table with scores and an additional attribute
metrics as produced by score()).

by Character vector with column names to summarise scores by. Default is "model",
i.e. scores are summarised by the "model" column.

fun A function used for summarising scores. Default is mean().

... Additional parameters that can be passed to the summary function provided to
fun. For more information see the documentation of the respective function.

Value

A data.table with summarised scores. Scores are summarised according to the names of the columns
of the original data specified in by using the fun passed to summarise_scores().

Examples

library(magrittr) # pipe operator
scores <- example_sample_continuous %>%
as_forecast_sample() %>%
score()

get scores by model
summarise_scores(scores, by = "model")

get scores by model and target type
summarise_scores(scores, by = c("model", "target_type"))

get standard deviation

94 test_columns_present

summarise_scores(scores, by = "model", fun = sd)

round digits
summarise_scores(scores, by = "model") %>%

summarise_scores(fun = signif, digits = 2)

test_columns_not_present

Test whether column names are NOT present in a data.frame

Description

The function checks whether all column names are NOT present. If none of the columns are present,
the function returns TRUE. If one or more columns are present, the function returns FALSE.

Usage

test_columns_not_present(data, columns)

Arguments

data A data.frame or similar to be checked
columns A character vector of column names to check

Value

Returns TRUE if none of the columns are present and FALSE otherwise

test_columns_present Test whether all column names are present in a data.frame

Description

The function checks whether all column names are present. If one or more columns are missing,
the function returns FALSE. If all columns are present, the function returns TRUE.

Usage

test_columns_present(data, columns)

Arguments

data A data.frame or similar to be checked
columns A character vector of column names to check

Value

Returns TRUE if all columns are present and FALSE otherwise

theme_scoringutils 95

theme_scoringutils Scoringutils ggplot2 theme

Description

A theme for ggplot2 plots used in scoringutils.

Usage

theme_scoringutils()

Value

A ggplot2 theme

transform_forecasts Transform forecasts and observed values

Description

Function to transform forecasts and observed values before scoring.

Usage

transform_forecasts(
forecast,
fun = log_shift,
append = TRUE,
label = "log",
...

)

Arguments

forecast A forecast object (a validated data.table with predicted and observed values).

fun A function used to transform both observed values and predictions. The de-
fault function is log_shift(), a custom function that is essentially the same as
log(), but has an additional arguments (offset) that allows you add an offset
before applying the logarithm. This is often helpful as the natural log trans-
formation is not defined at zero. A common, and pragmatic solution, is to add
a small offset to the data before applying the log transformation. In our work
we have often used an offset of 1 but the precise value will depend on your
application.

96 transform_forecasts

append Logical, defaults to TRUE. Whether or not to append a transformed version of the
data to the currently existing data (TRUE). If selected, the data gets transformed
and appended to the existing data, making it possible to use the outcome directly
in score(). An additional column, ’scale’, gets created that denotes which
rows or untransformed (’scale’ has the value "natural") and which have been
transformed (’scale’ has the value passed to the argument label).

label A string for the newly created ’scale’ column to denote the newly transformed
values. Only relevant if append = TRUE.

... Additional parameters to pass to the function you supplied. For the default op-
tion of log_shift() this could be the offset argument.

Details

There are a few reasons, depending on the circumstances, for why this might be desirable (check
out the linked reference for more info). In epidemiology, for example, it may be useful to log-
transform incidence counts before evaluating forecasts using scores such as the weighted interval
score (WIS) or the continuous ranked probability score (CRPS). Log-transforming forecasts and
observations changes the interpretation of the score from a measure of absolute distance between
forecast and observation to a score that evaluates a forecast of the exponential growth rate. Another
motivation can be to apply a variance-stabilising transformation or to standardise incidence counts
by population.

Note that if you want to apply a transformation, it is important to transform the forecasts and obser-
vations and then apply the score. Applying a transformation after the score risks losing propriety of
the proper scoring rule.

Value

A forecast object with either a transformed version of the data, or one with both the untransformed
and the transformed data. includes the original data as well as a transformation of the original
data. There will be one additional column, ‘scale’, present which will be set to "natural" for the
untransformed forecasts.

Author(s)

Nikos Bosse <nikosbosse@gmail.com>

References

Transformation of forecasts for evaluating predictive performance in an epidemiological context
Nikos I. Bosse, Sam Abbott, Anne Cori, Edwin van Leeuwen, Johannes Bracher, Sebastian Funk
medRxiv 2023.01.23.23284722 doi:10.1101/2023.01.23.23284722 https://www.medrxiv.org/
content/10.1101/2023.01.23.23284722v1

Examples

library(magrittr) # pipe operator

transform forecasts using the natural logarithm
negative values need to be handled (here by replacing them with 0)

https://doi.org/10.1101/2023.01.23.23284722
https://www.medrxiv.org/content/10.1101/2023.01.23.23284722v1
https://www.medrxiv.org/content/10.1101/2023.01.23.23284722v1

validate_metrics 97

example_quantile %>%
.[, observed := ifelse(observed < 0, 0, observed)] %>%
as_forecast_quantile() %>%

Here we use the default function log_shift() which is essentially the same
as log(), but has an additional arguments (offset) that allows you add an
offset before applying the logarithm.

transform_forecasts(append = FALSE) %>%
head()

alternatively, integrating the truncation in the transformation function:
example_quantile %>%

as_forecast_quantile() %>%
transform_forecasts(
fun = function(x) {log_shift(pmax(0, x))}, append = FALSE

) %>%
head()

specifying an offset for the log transformation removes the
warning caused by zeros in the data
example_quantile %>%

as_forecast_quantile() %>%
.[, observed := ifelse(observed < 0, 0, observed)] %>%
transform_forecasts(offset = 1, append = FALSE) %>%
head()

adding square root transformed forecasts to the original ones
example_quantile %>%

.[, observed := ifelse(observed < 0, 0, observed)] %>%
as_forecast_quantile() %>%
transform_forecasts(fun = sqrt, label = "sqrt") %>%
score() %>%
summarise_scores(by = c("model", "scale"))

adding multiple transformations
example_quantile %>%

as_forecast_quantile() %>%
.[, observed := ifelse(observed < 0, 0, observed)] %>%
transform_forecasts(fun = log_shift, offset = 1) %>%
transform_forecasts(fun = sqrt, label = "sqrt") %>%
head()

validate_metrics Validate metrics

Description

This function validates whether the list of metrics is a list of valid functions.

The function is used in score() to make sure that all metrics are valid functions.

98 wis

Usage

validate_metrics(metrics)

Arguments

metrics A named list with metrics. Every element should be a scoring function to be
applied to the data.

Value

A named list of metrics, with those filtered out that are not valid functions

wis Weighted interval score (WIS)

Description

The WIS is a proper scoring rule used to evaluate forecasts in an interval- / quantile-based format.
See Bracher et al. (2021). Smaller values are better.

As the name suggest the score assumes that a forecast comes in the form of one or multiple central
prediction intervals. A prediction interval is characterised by a lower and an upper bound formed
by a pair of predictive quantiles. For example, a 50% central prediction interval is formed by the
0.25 and 0.75 quantiles of the predictive distribution.

Interval score
The interval score (IS) is the sum of three components: overprediction, underprediction and dis-
persion. For a single prediction interval only one of the components is non-zero. If for a single
prediction interval the observed value is below the lower bound, then the interval score is equal to
the absolute difference between the lower bound and the observed value ("underprediction"). "Over-
prediction" is defined analogously. If the observed value falls within the bounds of the prediction
interval, then the interval score is equal to the width of the prediction interval, i.e. the difference
between the upper and lower bound. For a single interval, we therefore have:

IS = (upper−lower)+
2

α
(lower−observed)∗1(observed < lower)+

2

α
(observed−upper)∗1(observed > upper)

where 1() is the indicator function and indicates how much is outside the prediction interval. α is
the decimal value that indicates how much is outside the prediction interval. For a 90% prediction
interval, for example, α is equal to 0.1. No specific distribution is assumed, but the interval formed
by the quantiles has to be symmetric around the median (i.e you can’t use the 0.1 quantile as the
lower bound and the 0.7 quantile as the upper bound). Non-symmetric quantiles can be scored using
the function quantile_score().

For a set of k = 1, . . . ,K prediction intervals and the median m, we can compute a weighted
interval score (WIS) as the sum of the interval scores for individual intervals:

WISα{0:K}(F, y) =
1

K + 1/2
×

(
w0 × |y −m|+

K∑
k=1

{wk × ISαk
(F, y)}

)

wis 99

The individual scores are usually weighted with wk = αk

2 . This weight ensures that for an increas-
ing number of equally spaced quantiles, the WIS converges to the continuous ranked probability
score (CRPS).

Quantile score
In addition to the interval score, there also exists a quantile score (QS) (see quantile_score()),
which is equal to the so-called pinball loss. The quantile score can be computed for a single quantile
(whereas the interval score requires two quantiles that form an interval). However, the intuitive
decomposition into overprediction, underprediction and dispersion does not exist for the quantile
score.

Two versions of the weighted interval score
There are two ways to conceptualise the weighted interval score across several quantiles / prediction
intervals and the median.

In one view, you would treat the WIS as the average of quantile scores (and the median as 0.5-
quantile) (this is the default for wis()). In another view, you would treat the WIS as the average
of several interval scores + the difference between the observed value and median forecast. The
effect of that is that in contrast to the first view, the median has twice as much weight (because
it is weighted like a prediction interval, rather than like a single quantile). Both are valid ways to
conceptualise the WIS and you can control the behaviour with the count_median_twice-argument.

WIS components: WIS components can be computed individually using the functions overprediction,
underprediction, and dispersion.

Usage

wis(
observed,
predicted,
quantile_level,
separate_results = FALSE,
weigh = TRUE,
count_median_twice = FALSE,
na.rm = FALSE

)

dispersion_quantile(observed, predicted, quantile_level, ...)

overprediction_quantile(observed, predicted, quantile_level, ...)

underprediction_quantile(observed, predicted, quantile_level, ...)

Arguments

observed Numeric vector of size n with the observed values.

predicted Numeric nxN matrix of predictive quantiles, n (number of rows) being the num-
ber of forecasts (corresponding to the number of observed values) and N (num-
ber of columns) the number of quantiles per forecast. If observed is just a single
number, then predicted can just be a vector of size N.

quantile_level Vector of of size N with the quantile levels for which predictions were made.

100 wis

separate_results

Logical. If TRUE (default is FALSE), then the separate parts of the interval score
(dispersion penalty, penalties for over- and under-prediction get returned as
separate elements of a list). If you want a data.frame instead, simply call
as.data.frame() on the output.

weigh Logical. If TRUE (the default), weigh the score by α/2, so it can be averaged into
an interval score that, in the limit (for an increasing number of equally spaced
quantiles/prediction intervals), corresponds to the CRPS. α is the value that cor-
responds to the (α/2) or (1 − α/2), i.e. it is the decimal value that represents
how much is outside a central prediction interval (E.g. for a 90 percent central
prediction interval, alpha is 0.1).

count_median_twice

If TRUE, count the median twice in the score.

na.rm If TRUE, ignore NA values when computing the score.

... Additional arguments passed on to wis() from functions overprediction_quantile(),
underprediction_quantile() and dispersion_quantile().

Value

wis(): a numeric vector with WIS values of size n (one per observation), or a list with separate
entries if separate_results is TRUE.

dispersion_quantile(): a numeric vector with dispersion values (one per observation).

overprediction_quantile(): a numeric vector with overprediction values (one per observation).

underprediction_quantile(): a numeric vector with underprediction values (one per observa-
tion)

Input format

References

Evaluating epidemic forecasts in an interval format, Johannes Bracher, Evan L. Ray, Tilmann Gneit-
ing and Nicholas G. Reich, 2021, https://journals.plos.org/ploscompbiol/article?id=
10.1371/journal.pcbi.1008618

Examples

observed <- c(1, -15, 22)
predicted <- rbind(

c(-1, 0, 1, 2, 3),

https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008618
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008618

wis 101

c(-2, 1, 2, 2, 4),
c(-2, 0, 3, 3, 4)

)
quantile_level <- c(0.1, 0.25, 0.5, 0.75, 0.9)
wis(observed, predicted, quantile_level)

Index

∗ as_forecast
as_forecast_binary, 15
as_forecast_doc_template, 17
as_forecast_generic, 18
as_forecast_nominal, 19
as_forecast_ordinal, 21
as_forecast_point, 23
as_forecast_quantile, 25
as_forecast_sample, 27
set_forecast_unit, 91

∗ datasets
example_binary, 41
example_nominal, 42
example_ordinal, 43
example_point, 44
example_quantile, 45
example_sample_continuous, 46
example_sample_discrete, 47

∗ diagnose-inputs
get_duplicate_forecasts, 50
get_forecast_unit, 52

∗ functions to create forecast objects
as_forecast_binary, 15
as_forecast_nominal, 19
as_forecast_ordinal, 21
as_forecast_point, 23
as_forecast_quantile, 25
as_forecast_sample, 27

∗ gain-insights
get_forecast_counts, 50
print.forecast, 83

∗ get_metrics functions
get_metrics, 53
get_metrics.forecast_binary, 53
get_metrics.forecast_nominal, 54
get_metrics.forecast_ordinal, 55
get_metrics.forecast_point, 56
get_metrics.forecast_quantile, 58
get_metrics.forecast_sample, 59

get_metrics.scores, 60
∗ handle-metrics

get_metrics, 53
get_metrics.forecast_binary, 53
get_metrics.forecast_nominal, 54
get_metrics.forecast_ordinal, 55
get_metrics.forecast_point, 56
get_metrics.forecast_quantile, 58
get_metrics.forecast_sample, 59
get_metrics.scores, 60
select_metrics, 90

∗ internal_input_check
assert_dims_ok_point, 7
assert_forecast_generic, 9
assert_forecast_type, 9
assert_input_binary, 10
assert_input_categorical, 10
assert_input_interval, 11
assert_input_nominal, 12
assert_input_ordinal, 12
assert_input_point, 13
assert_input_quantile, 14
assert_input_sample, 14
check_columns_present, 32
check_dims_ok_point, 32
check_duplicates, 33
check_input_binary, 34
check_input_interval, 34
check_input_point, 35
check_input_quantile, 35
check_input_sample, 36
check_number_per_forecast, 37
check_numeric_vector, 37
check_try, 38
get_forecast_type, 51
get_type, 66
test_columns_not_present, 94
test_columns_present, 94
validate_metrics, 97

102

INDEX 103

∗ log score functions
logs_categorical, 70
logs_sample, 71
scoring-functions-binary, 89

∗ metric
ae_median_quantile, 5
ae_median_sample, 6
bias_quantile, 29
bias_sample, 30
crps_sample, 39
dss_sample, 40
interval_coverage, 66
interval_score, 67
logs_categorical, 70
logs_sample, 71
mad_sample, 73
pit_histogram_sample, 74
quantile_score, 83
rps_ordinal, 85
scoring-functions-binary, 89
se_mean_sample, 92
wis, 98

∗ plotting
theme_scoringutils, 95

∗ scoring functions
rps_ordinal, 85

∗ scoring
add_relative_skill, 4
get_correlations, 48
get_coverage, 48
get_pairwise_comparisons, 61
get_pit_histogram.forecast_quantile,

64
score.forecast_binary, 86
summarise_scores, 93

∗ transform
as_forecast_binary, 15
as_forecast_nominal, 19
as_forecast_ordinal, 21
as_forecast_point, 23
as_forecast_quantile, 25
as_forecast_sample, 27
log_shift, 72
transform_forecasts, 95

∗ validate-forecast-object
assert_forecast.forecast_binary, 8
is_forecast_binary, 69

add_relative_skill, 4

ae(), 56
ae_median_quantile, 5
ae_median_quantile(), 7, 58
ae_median_sample, 6
ae_median_sample(), 6, 59
ape(), 56
as.data.frame(), 39, 68, 100
as_forecast_binary, 15, 21, 23, 24, 27, 29
as_forecast_binary(), 41, 54–58, 60, 86
as_forecast_doc_template, 17
as_forecast_generic, 18
as_forecast_nominal, 17, 19, 23, 24, 27, 29
as_forecast_nominal(), 42
as_forecast_ordinal, 17, 21, 21, 24, 27, 29
as_forecast_ordinal(), 43
as_forecast_point, 17, 21, 23, 23, 27, 29
as_forecast_point(), 44
as_forecast_quantile, 17, 21, 23, 24, 25, 29
as_forecast_quantile(), 45, 48, 86
as_forecast_sample, 17, 21, 23, 24, 27, 27
as_forecast_sample(), 46, 47
assert_dims_ok_point, 7
assert_forecast

(assert_forecast.forecast_binary),
8

assert_forecast.forecast_binary, 8
assert_forecast_generic, 9
assert_forecast_type, 9
assert_input_binary, 10
assert_input_categorical, 10
assert_input_interval, 11
assert_input_nominal, 12
assert_input_ordinal, 12
assert_input_point, 13
assert_input_quantile, 14
assert_input_sample, 14

bias_quantile, 29
bias_quantile(), 58
bias_sample, 30
bias_sample(), 30, 59
brier_score (scoring-functions-binary),

89
brier_score(), 53

check_columns_present, 32
check_dims_ok_point, 32
check_duplicates, 33
check_input_binary, 34

104 INDEX

check_input_interval, 34
check_input_point, 35
check_input_quantile, 35
check_input_sample, 36
check_number_per_forecast, 37
check_numeric_vector, 37
check_try, 38
checkmate::check_numeric, 37
checkNamed, 38
checkSubset, 38
compare_forecasts(), 5, 63
cor(), 48
crps_sample, 39
crps_sample(), 39, 59

dispersion_quantile (wis), 98
dispersion_quantile(), 58
dispersion_sample (crps_sample), 39
dispersion_sample(), 59
dss_sample, 40
dss_sample(), 40, 59

example_binary, 16, 41
example_nominal, 20, 42
example_ordinal, 22, 43
example_point, 24, 44
example_quantile, 26, 45
example_sample_continuous, 28, 46
example_sample_discrete, 28, 47

get_correlations, 48
get_correlations(), 77
get_coverage, 48
get_coverage(), 80, 81
get_duplicate_forecasts, 50
get_duplicate_forecasts(), 33
get_forecast_counts, 50
get_forecast_counts(), 78
get_forecast_type, 51
get_forecast_unit, 52
get_forecast_unit(), 16–19, 22, 24, 25, 28,

50, 60, 86
get_metrics, 53, 54–57, 59–61
get_metrics(), 87
get_metrics.forecast_binary, 53, 53,

55–57, 59–61
get_metrics.forecast_nominal, 53, 54, 54,

56, 57, 59–61

get_metrics.forecast_ordinal, 53–55, 55,
57, 59–61

get_metrics.forecast_point, 53–56, 56,
59–61

get_metrics.forecast_quantile, 53–57,
58, 60, 61

get_metrics.forecast_sample, 53–57, 59,
59, 61

get_metrics.scores, 53–57, 59, 60, 60
get_pairwise_comparisons, 61
get_pairwise_comparisons(), 4, 81
get_pit_histogram

(get_pit_histogram.forecast_quantile),
64

get_pit_histogram(), 76
get_pit_histogram.forecast_quantile,

64
get_protected_columns(), 52
get_type, 66

interval_coverage, 66
interval_coverage(), 58, 87
interval_score, 67
is_forecast (is_forecast_binary), 69
is_forecast_binary, 69
is_forecast_nominal

(is_forecast_binary), 69
is_forecast_ordinal

(is_forecast_binary), 69
is_forecast_point (is_forecast_binary),

69
is_forecast_quantile

(is_forecast_binary), 69
is_forecast_sample

(is_forecast_binary), 69

log(), 95
log_shift, 72
log_shift(), 95, 96
logs_binary (scoring-functions-binary),

89
logs_binary(), 53
logs_categorical, 70, 72, 90
logs_categorical(), 54, 55
logs_sample, 71, 71, 90
logs_sample(), 59, 71, 72

mad(), 73, 74
mad_sample, 73

INDEX 105

mad_sample(), 59
mean(), 93

overprediction_quantile (wis), 98
overprediction_quantile(), 58
overprediction_sample (crps_sample), 39
overprediction_sample(), 59

p.adjust(), 62
permutation_test(), 62
pit_histogram_sample, 74
pit_histogram_sample(), 65
plot_correlations, 77
plot_forecast_counts, 78
plot_heatmap, 79
plot_interval_coverage, 80
plot_pairwise_comparisons, 80
plot_quantile_coverage, 81
plot_wis, 82
print(), 83
print.forecast, 83
purrr::partial(), 8, 58, 65, 87

quantile(), 26
quantile_score, 83
quantile_score(), 67, 98, 99

rps_ordinal, 85
rps_ordinal(), 55

score (score.forecast_binary), 86
score(), 4, 48, 53, 58, 60–62, 79, 82, 93, 96,

97
score.forecast_binary, 86
scoring-functions-binary, 89
se(), 56
se_mean_sample, 92
se_mean_sample(), 59
select_metrics, 90
set_forecast_unit, 91
summarise_scores, 93
summarise_scores(), 60, 82, 88
summarize_scores (summarise_scores), 93

test_columns_not_present, 94
test_columns_present, 94
theme_scoringutils, 95
transform_forecasts, 95

underprediction_quantile (wis), 98

underprediction_quantile(), 58
underprediction_sample (crps_sample), 39
underprediction_sample(), 59

validate_metrics, 97

wilcox.test(), 62
wis, 98
wis(), 39, 58, 83

	add_relative_skill
	ae_median_quantile
	ae_median_sample
	assert_dims_ok_point
	assert_forecast.forecast_binary
	assert_forecast_generic
	assert_forecast_type
	assert_input_binary
	assert_input_categorical
	assert_input_interval
	assert_input_nominal
	assert_input_ordinal
	assert_input_point
	assert_input_quantile
	assert_input_sample
	as_forecast_binary
	as_forecast_doc_template
	as_forecast_generic
	as_forecast_nominal
	as_forecast_ordinal
	as_forecast_point
	as_forecast_quantile
	as_forecast_sample
	bias_quantile
	bias_sample
	check_columns_present
	check_dims_ok_point
	check_duplicates
	check_input_binary
	check_input_interval
	check_input_point
	check_input_quantile
	check_input_sample
	check_number_per_forecast
	check_numeric_vector
	check_try
	crps_sample
	dss_sample
	example_binary
	example_nominal
	example_ordinal
	example_point
	example_quantile
	example_sample_continuous
	example_sample_discrete
	get_correlations
	get_coverage
	get_duplicate_forecasts
	get_forecast_counts
	get_forecast_type
	get_forecast_unit
	get_metrics
	get_metrics.forecast_binary
	get_metrics.forecast_nominal
	get_metrics.forecast_ordinal
	get_metrics.forecast_point
	get_metrics.forecast_quantile
	get_metrics.forecast_sample
	get_metrics.scores
	get_pairwise_comparisons
	get_pit_histogram.forecast_quantile
	get_type
	interval_coverage
	interval_score
	is_forecast_binary
	logs_categorical
	logs_sample
	log_shift
	mad_sample
	pit_histogram_sample
	plot_correlations
	plot_forecast_counts
	plot_heatmap
	plot_interval_coverage
	plot_pairwise_comparisons
	plot_quantile_coverage
	plot_wis
	print.forecast
	quantile_score
	rps_ordinal
	score.forecast_binary
	scoring-functions-binary
	select_metrics
	set_forecast_unit
	se_mean_sample
	summarise_scores
	test_columns_not_present
	test_columns_present
	theme_scoringutils
	transform_forecasts
	validate_metrics
	wis
	Index

