Package ‘spheresmooth’

December 6, 2024

Title Piecewise Geodesic Smoothing for Spherical Data
Version 0.1.3

Description
Fitting a smooth path to a given set of noisy spherical data observed at known time points. It im-
plements a piecewise geodesic curve fitting method on the unit sphere based on a velocity-
based penalization scheme. The proposed approach is implemented using the Rie-
mannian block coordinate descent algorithm. To understand the method and algorithm, one can re-
fer to Bak, K. Y., Shin, J. K., & Koo, J. Y. (2023) <doi:10.1080/02664763.2022.2054962> for the case of or-
der 1. Additionally, this package includes various functions necessary for handling spherical data.

License GPL (>=2)

Encoding UTF-8

LazyData true

RoxygenNote 7.3.2

Depends R (>=3.5.0)

Suggests sphereplot, rgl, ggplot2, rworldmap, sf

URL https://kybak90.github.io/spheresmooth/,
https://github.com/kybak9@/spheresmooth

BugReports https://github.com/kybak90/spheresmooth/issues
NeedsCompilation no

Author Jae-Hwan Jhong [aut] (<https://orcid.org/0000-0003-2266-4986>, Chungbuk
National University),
Ja-Yong Koo [aut] (Korea University),
Seyoung Lee [aut] (Sungshin Women's University),
Kwan-Young Bak [aut, cre, cph]
(<https://orcid.org/0000-0002-4541-160X>, Sungshin Women's
University)

Maintainer Kwan-Young Bak <kybak@sungshin.ac.kr>
Repository CRAN
Date/Publication 2024-12-06 18:30:02 UTC

https://doi.org/10.1080/02664763.2022.2054962
https://kybak90.github.io/spheresmooth/
https://github.com/kybak90/spheresmooth
https://github.com/kybak90/spheresmooth/issues
https://orcid.org/0000-0003-2266-4986
https://orcid.org/0000-0002-4541-160X

2

calculate_loss

Contents
apw_spherical e 2
calculate 10SS L s 2
cartesian_to_sphericalo 3
CIOSS .« v v v e e e e e e e e e e e e 4
dot . . . e e e e 4
edp . . . e e 5
EXP_IMAD .+ .t e e e e e e e e e e e e e e e e 5
geodesiC e 6
geodesic_lower 6
goni_spherical L 7
knots_quantile L. e e e 7
1 70) ' 012/ 8
normalize e e e 8
normalize _lower e 9
penalized_linear_spherical_spline L. 9
piecewise_geodesiC e e e e e 11
spheresmooth L e 12
spherical_dist L 12
spherical_to_cartesian. 13

Index 14

apw_spherical A polar wander dataset
Description

A polar wander dataset presented in Kent and Irving (2010). The 17 Triassic/Jurassic cratonic poles
from other major cratons are rotated into North American coordinates and combined with the 14
observations from North America. Our method is applied to these 31 observations ranging in age
from 243 to 144 Ma (millions of years ago), which covers the late Triassic and Jurassic periods.
The first column represents the time points, and the remaining two columns provides the observed
spherical coordinates.

calculate_loss Calculate Loss Function

Description

This function calculates the loss function based on the squared spherical distances between observed
values and predicted values on the curve.

Usage

calculate_loss(y, gamma)

cartesian_to_spherical 3

Arguments
y Matrix of observed values.
gamma Matrix of predicted values.
Value
Loss value.

cartesian_to_spherical
Convert Cartesian coordinates to spherical coordinates

Description

This function converts Cartesian coordinates to spherical coordinates.

Usage

cartesian_to_spherical(x, byrow = TRUE)

Arguments
X A matrix where each row represents a point in Cartesian coordinates.
byrow logical. If TRUE (the default) the matrix is filled by rows, otherwise the matrix
is filled by columns.
Details

The Cartesian coordinates (X, y, z) are converted to spherical coordinates (theta, phi). Theta repre-
sents the inclination angle (0 to pi), and phi represents the azimuth angle (0 to 2*pi).

Value

A matrix where each row represents a point in spherical coordinates.

Examples

#examplel

cartesian_points1 <- matrix(c(1/sqrt(3), 1/sqrt(3), 1/sqrt(3),-1/sqrt(3), 1/sqrt(3), -1/sqrt(3)),
ncol = 3, byrow = TRUE)

cartesian_to_spherical(cartesian_points1)

#example2

cartesian_points2 <- matrix(c(1, @, @, @, 1, 0, @, @, 1),ncol = 3, byrow = TRUE)

cartesian_to_spherical(cartesian_points2)

4 dot

cross Compute the cross product of two vectors

Description

This function computes the cross product of two input vectors u and v.

Usage

cross(u, v, normalize = FALSE)

Arguments

u Numeric vector.

v Numeric vector.

normalize logical. If TRUE, returns the normalized vector of the cross product result.
Value

Numeric vector representing the cross product of u and v.

Examples

cross(c(1,0,0), c(0,1,0))

dot Compute the dot product of two vectors

Description

This function computes the dot product of two input vectors u and v.

Usage
dot(u, v)

Arguments

u Numeric vector.
% Numeric vector.

Value

Numeric value representing the dot product of u and v.

Examples

dot(c(1,2,3), c(4,5,6))

edp 5

edp Compute the equal-distance projection of a point onto the xy plane

Description

This function computes the equal-distance projection of a point p onto the xy plane.

Usage

edp(p)

Arguments

p Numeric vector representing a point in Cartesian coordinates.

Value

Numeric vector representing the equal-distance projection of p onto the xy plane.

exp_map Compute the exponential map on the unit sphere.

Description

This function computes the exponential map on the unit sphere given a base point x and a vector v.

Usage

exp_map(x, V)

Arguments
X Numeric vector representing the base point.
v Numeric vector representing a point.

Value

Numeric vector representing the result of the exponential map.

Examples

exp_map(c(0,0,1), c(1,1,0))

6 geodesic_lower

geodesic Compute the value of the geodesic curve connecting two points on the
unit sphere for a given set of time points t

Description

This function computes the value of the geodesic curve connecting two points p and q on the unit
sphere at specified time points.

Usage

geodesic(t, p, q, a, b)

Arguments
t Numeric vector representing time points for the geodesic path.
p Numeric vector representing the starting point on the sphere.
q Numeric vector representing the ending point on the sphere.
a Start time parameter.
b End time parameter.

Value

Numeric matrix representing points along the geodesic path at specified time points.

Examples

geodesic(c(0.25, 0.5, 0.75), c(1,0,0), c(0,1,0), 0, 1)

geodesic_lower Compute the value of the geodesic curve connecting two points on the
unit sphere for a given time point t

Description

This function computes points along the geodesic connecting two points p and q on the unit sphere.

Usage

geodesic_lower(t, p, q, a, b)

goni_spherical 7

Arguments
t Time parameter for the geodesic path.
p Numeric vector representing the starting point.
q Numeric vector representing the ending point.
a Start time parameter.
b End time parameter.

Value

Numeric vector representing a point along the geodesic path.

Examples

geodesic_lower(0.5, c(1,0,0), c(0,1,0), 0, 1)

goni_spherical A tropical cyclone dataset

Description

A tropical cyclone dataset provided by the Regional Specialized Meteorological Center (RSMC)
Tokyo Typhoon Center. We select a cyclone called *Goni’ observed over time on August, 2015.
The first column represents the time points, and the remaining two columns provides the observed
spherical coordinates.

knots_quantile Generate knots for the piecewise geodesic curve based on the quantiles

Description

This generates a sequence of knots for a given set of time points based on the quantiles.

Usage

knots_quantile(x, dimension, tiny = 1e-05)

Arguments
X Numeric vector representing time points for the geodesic path.
dimension Numeric vector the number of knots.

tiny Numeric value representing a small constant that slightly expands the boundary.

Value

Numeric vector representing knots sequence in the time domain.

Examples

knots_quantile(seq(@, 1, length.out = 100), 10)

normalize

normz2 Compute the L2 norm (Euclidean norm) of a vector

Description

This function computes the L2 norm (Euclidean norm) of the input vector u.

Usage

norm2(u)

Arguments

u Numeric vector.

Value

Numeric value representing the L2 norm of u.

Examples

norm2(c(1,2,3))

normalize Normalize a matrix row-wise

Description

This function normalizes the rows of the input matrix x by dividing each row by its L2 norm (Eu-

clidean norm).

Usage

normalize(x)

Arguments

X Numeric matrix.

normalize_lower

Value

Numeric matrix with normalized rows.

Examples

normalize(matrix(c(1,2,3,4,5,6), nrow = 2, byrow = TRUE))

normalize_lower This function normalizes the the input vector v by dividing its L2 norm
(Euclidean norm).

Description

This function normalizes the the input vector v by dividing its L2 norm (Euclidean norm).

Usage

normalize_lower(v)

Arguments

v Numeric vector.

Value

Numeric vector with normalized.

Examples

normalize_lower(1:6)

penalized_linear_spherical_spline
Penalized Linear Spherical Spline

Description

This function fits a penalized piecewise geodesic curve (linear spherical spline) to the given data.

10

Usage

penalized_linear_spherical_spline

penalized_linear_spherical_spline(

t,
Y

initial_control_points = NULL,

dimension,

initial_knots,

lambdas,

step_size = 1,
maxiter = 1000,
epsilon_iter = 0.001,

jump_eps =

le-04,

verbose = FALSE

Arguments
t
y

A numeric vector representing the time or location.

A matrix where each row represents a data point on the sphere.

initial_control_points

dimension
initial_knots
lambdas
step_size
maxiter

epsilon_iter

jump_eps

verbose

Details

An optional matrix specifying initial control points. Default is NULL.

An integer specifying the dimension of the spline.

An optional numeric vector specifying initial knots. Default is NULL.

A numeric vector specifying the penalization parameters.

A numeric value specifying the step size for optimization. Default is 1.
An integer specifying the maximum number of iterations. Default is 1000.

A numeric value specifying the convergence criterion for iterations. Default is
le-03.

A numeric value specifying the threshold for pruning control points based on
jump size. Default is 1e-04.

A logical value indicating whether to print progress information. Default is
FALSE.

The goal is to find the optimal piecewise geodesic curve for the given spherical data while control-
ling model complexity through penalty terms. This function computes the optimal control points
and knots for the given data and returns the fitted result. Internally, coordinate-wise gradient de-
scent is used to minimize the loss function, and a penalty term is added to control the complexity of
the model. The BIC (Bayesian Information Criterion) value is calculated according to the model’s
complexity to provide information for model selection. The function constructs piecewise curves
using the piecewise_geodesic function and employs penalty terms to control the complexity of the
model by updating control points and knots. To see how to use the function in practical applications,
refer to the README or https://github.com/kybak90/spheresmooth.

piecewise_geodesic 11

Value

A list containing the fitted result for each complexity parameter and BIC values for model selection.
One might choose the element that corresponds to the minimum BIC values as illustrated in the
example.

Examples

apw_cartesian = spherical_to_cartesian(apw_sphericall, 2:3])

t = apw_sphericall, 1]

dimension = 3

initial_knots = knots_quantile(t, dimension = dimension)

lambda_seq = exp(seq(log(1e-04), log(1), length = 3))

fit = penalized_linear_spherical_spline(t = t, y = apw_cartesian,
dimension = dimension,
initial_knots = initial_knots,
lambdas = lambda_seq)

choose a curve that minimizes the BIC

best_index = which.min(fit$bic_list)

best_index

obtained control points for the piecewise geodesic curve

fit[[best_index]]$control_points

piecewise_geodesic Piecewise Geodesic

Description

This function computes a piecewise geodesic path between control points.

Usage

piecewise_geodesic(t, control_points, knots)

Arguments

t A numeric vector representing the time or location.
control_points A matrix of control points where each row represents a control point.

knots A numeric vector of knot values.

Details

This function calculates the piecewise geodesic curve between control points based on the provided
knots. The geodesic curve is computed segment by segment between adjacent control points. It
interpolates the path between control points in a geodesic manner, ensuring the shortest path along
the surface.

Value

A matrix containing the piecewise geodesic path.

12 spherical_dist

Examples

“rgl” package and ~sphereplot” pacakges are needed for the visualizaiton of the following example.
Define control points and knots

library(rgl)

library(sphereplot)

control_points <- matrix(c(1, 0, 0, # Control point 1
1/sqrt(2), 1/sqrt(2), o, # Control point 2
-1/sqrt(3), 1/sqrt(3), 1/sqrt(3), # Control point 3
0, 0, 1), # Control point 4

nrow = 4, byrow = TRUE)
knots <- c(1, 2, 3, 3.5) # Knots indicating transitions
Example of generating piecewise geodesic curve
t_example <- seq(@, 4, by = 0.01)
gamma_example <- piecewise_geodesic(t_example, control_points, knots)
Plotting the piecewise geodesic curve
rgl.sphgrid(deggap = 45, col.long = "skyblue", col.lat = "skyblue")
spheres3d(x = 0, y =0, z = 0, radius = 1, col = "grey”, alpha = 0.05)
pch3d(control_points, col = "blue"”, cex = 0.2, pch = 19)
lines3d(gamma_example, col = "red”, 1ty = 1, lwd = 2)

spheresmooth Piecewise Geodesic Smoothing for Spherical Data

Description

Fitting a smooth path to a given set of noisy spherical data observed at known time points. It im-
plements a piecewise geodesic curve fitting method on the unit sphere based on a velocity-based
penalization scheme. The proposed approach is implemented using the Riemannian block coor-
dinate descent algorithm. To understand the method and algorithm, one can refer to Bak, K. Y.,
Shin, J. K., & Koo, J. Y. (2023) <doi:10.1080/02664763.2022.2054962> for the case of order 1.
Additionally, this package includes various functions necessary for handling spherical data.

Details

A spheresmooth package

spherical_dist Calculate spherical distance between two vectors

Description

This function calculates the spherical distance between two vectors.

Usage

spherical_dist(x, y)

spherical_to_cartesian 13

Arguments
X A numeric vector.
y A numeric vector.
Value

The distance between vectors x and y.

Examples

x <= c(1, 0, @)
y <- c(0, 1,)
spherical_dist(x, y)

spherical_to_cartesian
Convert spherical coordinates to Cartesian coordinates

Description

This function converts spherical coordinates (theta, phi) to Cartesian coordinates.

Usage

spherical_to_cartesian(theta_phi, byrow = TRUE)

Arguments
theta_phi A matrix where each row contains the spherical coordinates (theta, phi) of a
point.
byrow logical. If TRUE (the default) the matrix is filled by rows, otherwise the matrix
is filled by columns.
Value

A matrix where each row contains the Cartesian coordinates (x, y, z) of a point.

Examples

theta_phi <- matrix(c(pi/4, pi/3, pi/6, pi/4), ncol = 2, byrow = TRUE)
spherical_to_cartesian(theta_phi)

Index

apw_spherical, 2

calculate_loss, 2
cartesian_to_spherical, 3
cross, 4

dot, 4

edp, 5
exp_map, 5

geodesic, 6
geodesic_lower, 6
goni_spherical, 7

knots_quantile, 7

norm2, 8
normalize, 8
normalize_lower, 9

penalized_linear_spherical_spline, 9
piecewise_geodesic, 11

spheresmooth, 12
spherical_dist, 12
spherical_to_cartesian, 13

14

	apw_spherical
	calculate_loss
	cartesian_to_spherical
	cross
	dot
	edp
	exp_map
	geodesic
	geodesic_lower
	goni_spherical
	knots_quantile
	norm2
	normalize
	normalize_lower
	penalized_linear_spherical_spline
	piecewise_geodesic
	spheresmooth
	spherical_dist
	spherical_to_cartesian
	Index

