Package 'theorytools'

July 13, 2025

Type Package

Title FAIR Theory Construction

Version 0.1.2

Description An integrated suite of tools for creating, maintaining, and reusing FAIR (Findable, Accessible, Interoperable, Reusable) theories.
Designed to support transparent and collaborative theory development, the package enables users to formalize theories, track changes with version control, assess pre-empirical coherence, and derive testable hypotheses.
Aligning with open science principles and workflows, 'theorytools' facilitates the systematic improvement of theoretical frameworks and enhances their discoverability and usability.

License GPL (>= 3)

Encoding UTF-8

URL https://cjvanlissa.github.io/theorytools/

RoxygenNote 7.3.2

Imports worcs (>= 0.1.16), gert, gh, cli, jsonlite, curl, knitr, dagitty, yaml, tidySEM (>= 0.2.8), methods, Deriv

Suggests rmarkdown, testthat (>= 3.0.0), pkgdown, webexercises, withr, usethis, fs, ggplot2, igraph, bookdown

VignetteBuilder knitr

Config/testthat/edition 3

Depends R (>= 3.5)

LazyData true

Config/Needs/website rmarkdown

NeedsCompilation no

Author Caspar J. Van Lissa [aut, cre] (ORCID: https://orcid.org/0000-0002-0808-5024>)

Maintainer Caspar J. Van Lissa <c.j.vanlissa@tilburguniversity.edu>

Repository CRAN

Date/Publication 2025-07-13 09:10:02 UTC

Contents

add_readme_fair_theory	. 2
add_significance	. 3
add_theory_file	. 3
add_to_pkgdown	. 4
add_zenodo_json	. 4
create_fair_theory	. 5
derive_formula	. 7
download_theory	. 8
filter_conditional_independencies	. 9
lsac	. 9
mottistefanidi2012	. 10
prune_dag	. 11
quizz	. 12
select_controls	. 14
simulate_data	. 15
use_webex_vignette	. 16
webex_vignette	. 17

Index

 ${\tt add_readme_fair_theory}$

Add Readme File

Description

Writes a README file to a specific path.

Usage

```
add_readme_fair_theory(path, title, ...)
```

Arguments

path	Character, indicating the directory in which to create the FAIR theory.
title	Character, indicating the theory title. Default: NULL
	Additional arguments passed to other functions.

Value

Invisibly returns a logical value, indicating whether the function was successful or not.

Examples

add_readme_fair_theory(path = tempdir(), title = "My Theory")

18

Description

Given a data.frame with a column containing p-values or two columns containing the lower- and upper bounds of a confidence interval, adds a column of significance asterisks.

Usage

```
add_significance(x, p_column = NULL, ci_lb = NULL, ci_up = NULL, alpha = 0.05)
```

Arguments

x	A data.frame
p_column	Atomic character, referring to the name of the column of p-values. If this is provided, the confidence interval is ignored. Default: NULL
ci_lb	Atomic character, referring to the name of the column of the lower bound of a confidence interval. Default: NULL
ci_up	Atomic character, referring to the name of the column of the upper bound of a confidence interval. Default: NULL
alpha	Significance level, default: .05

Value

A data.frame

Examples

```
tmp <- add_significance(head(iris))</pre>
```

add_theory_file Add Theory File

Description

Writes a theory file to a specific path.

Usage

```
add_theory_file(path, theory_file = "theory.txt")
```

Arguments

path	Character, indicating the directory in which to create the FAIR theory.
theory_file	Character, referring to existing theory file(s) to be copied, or a new theory file to
	be created. Default NULL does nothing.

Value

Invisibly returns a logical value, indicating whether the function was successful or not.

Examples

```
add_theory_file(path = tempdir(), theory_file = "theory.txt")
```

add_to_pkgdown Add webexercises helper files to pkgdown

Description

Adds the necessary helper files to an existing pkgdown project.

Usage

```
add_to_pkgdown(pkgdown_dir = ".")
```

Arguments

pkgdown_dir The base directory for your pkgdown project

Value

No return value, called for side effects.

add_zenodo_json Add 'Zenodo' JSON File

Description

Writes a '.zenodo.json' file to the specified path. Writes a README file to a specific path.

Usage

add_zenodo_json(path, title, upload_type, keywords)

```
add_zenodo_json_theory(path, title, keywords)
```

Arguments

path	Character, indicating the directory in which to create the FAIR theory.
title	Character, indicating the theory title. Default: NULL
upload_type	Character, indicating the upload type.
keywords	Character vector of keywords.

Value

Invisibly returns a logical value, indicating whether the function was successful or not.

See Also

read_json

Examples

create_fair_theory Create FAIR Theory Repository

Description

Partly automates the process of creating a FAIR theory repository, see Details.

Usage

```
create_fair_theory(
  path,
  title = NULL,
  theory_file = NULL,
  remote_repo = NULL,
  add_license = "cc0",
  ...
)
```

Arguments

path	Character, indicating the directory in which to create the FAIR theory.
title	Character, indicating the theory title. Default: NULL
theory_file	Character, referring to existing theory file(s) to be copied, or a new theory file to be created. Default NULL does nothing.
remote_repo	Name of a 'GitHub' repository that exists or should be created on the current authenticated user's account, see gh_whoami, Default: NULL
add_license	PARAM_DESCRIPTION, Default: 'cc0'
	Additional arguments passed to other functions.

Details

The following steps are executed sequentially:

- 1. Create a project folder at path
- 2. Initialize a local 'Git' repository at path
- 3. If remote_repo refers to a user's existing 'GitHub' repository, add it as remote to the local 'Git' repository. Otherwise, create a new 'GitHub' repository by that name and add it as remote.
- 4. Add theory file. If theory_file refers to an existing file, copy it to path. If theory_file refers to a new file, create it in path.
- 5. Add the license named by add_license
- 6. Add a README.md file
- 7. Add 'Zenodo' metadata so that it recognizes the repository as a FAIR theory
- If it is possible to push to the remote repository, use git_update to push the repository to 'GitHub'

Value

Invisibly returns a logical value, indicating whether the function was successful or not.

See Also

git_repo add_license_file, git_update

Examples

Create a theory with a remote repository

derive_formula

End(Not run)

derive_formula Derive Formulae From Augmented DAG

Description

Uses the form attribute of edges in an augmented DAG to construct formulae for the relationship between exposure and outcome.

Usage

derive_formula(x, exposure, outcome, data = NULL, ...)

Arguments

х	An object of class dagitty.
exposure	Atomic character, indicating the exposure node in x.
outcome	Atomic character, indicating the outcome node in x.
data	Optional, a data.frame to be used as environment for the formulae. Default: NULL \ensuremath{NULL}
	Additional arguments, passed to adjustmentSets

Details

The form attribute of an augmented DAG of class dagitty should contain information about the functional form for the relationships specified in the DAG. For this function, the form attribute must be an additive function as also accepted by formula. The form attribute may contain a leading intercept and constant slopes, which will be parsed out. If the form attribute does not meet these requirements, the resulting formula may be invalid. For example:

- form=".5+x1" would return ~x1.
- form="2*x1*x2" would return ~x1+x2+x1:x2.
- form="-.2-.2*I(x3^2)" would return ~I(x3^2).

Value

A list of objects with class formula.

See Also

hasArg get_edges adjustmentSets

Examples

```
x <- dagitty::dagitty('dag {
C
O
X
Y
O <- X [form="I(X^2)"]
C -> X
Y -> 0 [form="Y*X"]
}')
f1 <- derive_formula(x, outcome = "0", exposure = "X")
f2 <- derive_formula(x, outcome = "0", exposure = "Y")</pre>
```

download_theory Download FAIR Theory

Description

Downloads a FAIR theory archive from a 'Git' remote repository or 'Zenodo'.

Usage

```
download_theory(id, path = ".")
```

Arguments

id	URL of the 'Git' repository or DOI of the 'Zenodo' archive.
path	Character, indicating the directory in which to create the FAIR theory.

Examples

```
download_theory(id = "https://github.com/cjvanlissa/tripartite_model.git",
path = file.path(tempdir(), "tripartite_git"))
download_theory(id = "10.5281/zenodo.14921521",
path = file.path(tempdir(), "tripartite_zenodo"))
```

8

filter_conditional_independencies Filter Conditional Independencies

Description

Removes all conditional independencies, obtained using impliedConditionalIndependencies, based on the variables available in data.

Usage

filter_conditional_independencies(x, data)

Arguments

х	An object of class dagitty.cis.
data	A data.frame.

Value

An object of class dagitty.cis, or NULL if no conditional independencies remain.

See Also

impliedConditionalIndependencies

Examples

```
dag <- dagitty::dagitty('dag {
  x1 -> y
  x2 -> y}')
df <- data.frame(x1 = rnorm(10), y = rnorm(10))
cis <- dagitty::impliedConditionalIndependencies(dag)
cis <- filter_conditional_independencies(cis, df)
is.null(cis)</pre>
```

lsac

Synthetic Data: Longitudinal Study of Australian Children

Description

This synthetic dataset, based on "Growing Up in Australia - the Longitudinal Study of Australian Children" (LSAC). This longitudinal study covers a representative sample of about 10.000 children and their families, and aims to examine children's development from early childhood through to adolescence and adulthood. All variables pertain to the mother; note that fathers also play an important and sometimes unique role in children's emotional development.

Usage

data(lsac)

Format

A data frame with 8214 rows and 6 variables.

Details

Except for "coping", all variables were created by taking the row means of several items, omitting missing values. The corresponding item names from the LSAC codebook are given below.

warmth	numeric	fpa03m1-fpa03m6	Parental warmth scale
relationship_quality	numeric	fre04m1-fre04m7	Hendrick relationship quality scale
temperament_negreact	numeric	fse13a1-fse13a4	Temperament scale for reactivity
emotion_regulation	numeric	fse03c3a-fse03c3e	SDQ Emotional problems scale
social_functioning	numeric	fgd04b2a-fgd04b2e	Peds QL social functioning
coping	numeric	fhs26m2	Level of coping

References

Australian Institute of Family Studies. (2020, March 23). Growing Up in Australia.

mottistefanidi2012 Adaptation of Adolescent Immigrants in Greece

Description

This simulated dataset, based on work by Motti-Stefanidi and colleagues (2012), assesses the adaptation and well-being of adolescent immigrants in Greek schools.

Usage

```
data(mottistefanidi2012)
```

Format

A data frame with 1057 rows and 17 variables.

Details

GRK1	ordered	Greek language ability at age 13
IMM1	ordered	Immigrant status at age 13 $(0 = no, 1 = yes)$
ADV1	ordered	Adversity at age 13
INV1	ordered	Parental School Involvement at age 13
SEF1	ordered	Self-efficacy at age 13
GPA1	ordered	Academic achievement at age 13

10

prune_dag

GPA2	ordered	Academic achievement at age 14
GPA3	ordered	Academic achievement at age 15
CON1	ordered	Conduct at age 13
CON2	ordered	Conduct at age 14
CON3	ordered	Conduct at age 15
EMO1	ordered	Emotional symptoms at age 13
EMO2	ordered	Emotional symptoms at age 14
EMO3	ordered	Emotional symptoms at age 15
POP1	numeric	Peer popularity at age 13
POP2	numeric	Peer popularity at age 14
POP3	numeric	Peer popularity at age 15

References

Motti-Stefanidi, F., Asendorpf, J. B., & Masten, A. S. (2012). The adaptation and well-being of adolescent immigrants in Greek schools: A multilevel, longitudinal study of risks and resources. Development and Psychopathology, 24(2), 451–473. doi:10.1017/S0954579412000090

prune_dag

Prune DAG Based on Adjustment Sets

Description

Wraps adjustmentSets to construct a pruned DAG which only includes covariates that (asymptotically) allow unbiased estimation of the causal effects of interest.

Usage

```
prune_dag(
    x,
    exposure = NULL,
    outcome = NULL,
    which_set = c("first", "sample", "all"),
    ...
)
```

Arguments

х	An input graph of class dagitty.
exposure	Atomic character, name of the exposure variable.
outcome	Atomic character, name of the outcome variable.
which_set	Atomic character, indicating which set of covariates to select in case there are multiple. Valid choices are in c("first", "sample", "all"), see Value.
	Other arguments passed to adjustmentSets

Value

If which_set = "all", returns a list of data.frames to allow for sensitivity analyses. Otherwise, returns a data.frame.

See Also

adjustmentSets

Examples

```
dag <- dagitty::dagitty('dag {x -> y}')
prune_dag(dag, exposure = "x", outcome = "y")
```

quizz

Create a Quiz

Description

Convenience function for creating a basic quiz in HTML format from the arguments captured by ..., where the type of each question is determined automatically from the class of the arguments.

Usage

```
quizz(
   ...,
   render_if = knitr::is_html_output(),
   title = "Quiz",
   show_box = TRUE,
   show_check = TRUE
)
```

Arguments

• • •	Each argument should be a named vector, see Details.
render_if	Logical, whether or not to render the output. By default, this argument uses knitr::is_html_output().
title	Atomic character, default: 'Quiz'
show_box	Logical, whether or not to draw a box around the quiz. Default: TRUE
show_check	Logical, whether or not to show a button to check answers. Default: TRUE

quizz

Details

The function renders questions captured by the arguments in The name of each argument is the text of the question. The value of each argument determined the question type and its correct answer. The following types of questions are supported:

- "torf()" The argument should be a single value of type logical, e.g.: "The answer to this question is true." = TRUE
- "mcq()" The argument should be a vector of type character. The first element is taken as the correct answer; the order of answers is randomized. E.g.: "This multiple choice question has three answers." = c("Correct", "Incorrect", "Not sure")
- "fitb()" The argument should be of type numeric. If the vector is atomic, the first element is taken as the correct answer, e.g.: "Provide an exact floating point answer of 0.81" = 0.81. If the vector has two elements, the second element is taken as the tolerance tol, e.g.: "Here, 0.8 will be correct." = c(0.81, 0.01). If the vector is of type integer, the tolerance is set to zero, e.g.: "The answer is 4." = 4L

Alternatively, ... may contain a single atomic character referring to a text file that contains the questions, see examples.

Value

NULL, this function is called for its side effect of printing HTML code using cat().

See Also

is_latex_output mcq, torf, fitb

Examples

```
# Quiz from arguments:
invisible(capture.output(theorytools:::quizz(
"The answer to this question is true." = TRUE,
"This multiple choice question has three answers." =
c(answer = "Correct", "Incorrect", "Not sure"),
"Provide an exact floating point answer of 0.81" = 0.81,
render_if = TRUE
)))
# From a file:
quizz_file <- tempfile()</pre>
writeLines(
c("The answer is true. = TRUE",
"The answer is correct = c(answer = \"Correct\", \"Incorrect\", \"Not sure\")",
"The answer is exactly .81 = 0.81",
"But here, .8 is also fine = c(0.81, .01)",
"Write the word 'true' = c('true', 'TRUE')",
"Here, answer exactly 4. = 4L")
, quizz_file)
invisible(capture.output(theorytools:::quizz(quizz_file, render_if = TRUE)))
```

select_controls

Description

Wraps adjustmentSets to construct a dataset with covariates that (asymptotically) allow unbiased estimation of causal effects from observational data.

Usage

```
select_controls(
    x,
    data,
    exposure = NULL,
    outcome = NULL,
    which_set = c("first", "sample", "all"),
    ...
)
```

Arguments

х	An input graph of class dagitty.
data	A data.frame or object coercible by as.data.frame().
exposure	Atomic character, name of the exposure variable.
outcome	Atomic character, name of the outcome variable.
which_set	Atomic character, indicating which set of covariates to select in case there are multiple. Valid choices are in c("first", "sample", "all"), see Value.
	Other arguments passed to adjustmentSets

Value

If which_set = "all", returns a list of data.frames to allow for sensitivity analyses. Otherwise, returns a data.frame.

See Also

adjustmentSets

Examples

```
dag <- dagitty::dagitty('dag {x -> y}')
df <- data.frame(x = rnorm(10), y = rnorm(10))
df1 <- select_controls(dag, df, exposure = "x", outcome = "y")
class(df1) == "data.frame"
df2 <- select_controls(dag, df, exposure = "x", outcome = "y", which_set = "sample")
class(df2) == "data.frame"
lst1 <- select_controls(dag, df, exposure = "x", outcome = "y", which_set = "all")
class(lst1) == "list"</pre>
```

simulate_data

Description

Simulates data from an (augmented) DAG, respecting the optional metadata fields form, for functional form of relationships, and distribution, for the distributions of exogenous nodes and residuals.

Usage

```
simulate_data(
    x,
    beta_default = round(runif(1, min = -0.6, max = 0.6), 2),
    n = 500,
    run = TRUE,
    duplicated = "unique"
)
```

Arguments

x	An object of class dagitty.
beta_default	Function used to specify missing edge coefficients. Default: runif(1, min = -0.6, max = 0.6)
n	Atomic integer defining the sample size, default: 500
run	Logical, indicating whether or not to run the simulation. Default: TRUE.
duplicated	Atomic character, indicating how to resolve duplicate terms from multiple edges pointing to the same node. Default: "unique". See Details.

Details

Data is simulated sequentially, first from exogenous nodes and then from their descendants. If x is an augmented DAG with metadata indicating the functional form of relationships and distribution of exogenous nodes and residuals, this information is used. If this information is absent, nodes and residuals are assumed to be normally distributed, and edges are assumed to be linear, with coefficients samples based on beta_default.

The argument duplicated controls how multiplicative terms are merged across edges pointing to the same outcome node. The default duplicated = "unique" removes terms that are duplicated across edges (i.e., if two edges point to node "0", and both edges specify .5*E, the resulting function will say .5*E. However, if one edge specifies .2*E and the other specifies .3*E, they are not duplicated and will be added. Alternatively, duplicated = "add" just sums terms across all edges pointing into the same outcome node.

Value

If run is TRUE, this function returns a data.frame with an additional attribute called attr(, which = "script") that contains the script for simulating data. If run is FALSE, this function returns the script as character vector.

See Also

get_nodes, get_edges exogenousVariables

Examples

```
x <- dagitty::dagitty('
dag {
    X [distribution="rbinom(size = 2, prob = .5)"]
    Z [distribution="rexp()"]
    Y [distribution="rnorm()"]
    X -> Y [form="0.5+X"]
    Z -> Y [form="2*Z"]
    A -> X
}
')
txt <- simulate_data(x, n = 5, run = FALSE)
df <- simulate_data(x, n = 5, run = TRUE)
df_from_txt <- eval(parse(text = txt))</pre>
```

use_webex_vignette Create a webexercises vignette

Description

Wraps use_vignette to add a vignette or article to vignettes/ with support for webexercises.

Usage

```
use_webex_vignette(name, title = NULL, type = c("vignette", "article"))
```

Arguments

name	Atomic character, vignette name. See use_vignette.
title	Atomic character, vignette title. See use_vignette.
type	Atomic character, one of c("vignette", "article"), defaults to "vignette".

Value

Returns NULL invisibly, called for its side effects.

webex_vignette

Examples

```
## Not run:
use_webex_vignette("vignette_with_quiz.Rmd", "Quiz people with webexercises")
```

End(Not run)

webex_vignette Create Vignette with webexercises Support

Description

This function wraps rmarkdown::html_document to configure compilation to embed the default webexercises CSS and JavaScript files in the resulting HTML.

Usage

webex_vignette(...)

Arguments

. . .

Additional function arguments to pass to html_document.

Details

Call this function as the output_format argument for the render function when compiling HTML documents from RMarkdown source.

Value

R Markdown output format to pass to 'render'.

See Also

render, html_document

Index

* datasets lsac, 9 mottistefanidi2012, 10 add_license_file, 6 add_readme_fair_theory, 2 add_significance, 3 add_theory_file, 3 add_to_pkgdown, 4 add_zenodo_json, 4 add_zenodo_json_theory (add_zenodo_json), 4 adjustmentSets, 7, 8, 11, 12, 14 create_fair_theory, 5 derive_formula, 7 download_theory, 8 exogenousVariables, 16 filter_conditional_independencies, 9 fitb, 13 formula, 7 get_edges, 8, 16 get_nodes, 16 gh_whoami, 6 git_repo, 6 git_update, 6 hasArg, 8 html_document, 17 impliedConditionalIndependencies, 9 is_latex_output, 13 lsac, 9 mcq, 13 mottistefanidi2012, 10

prune_dag, 11 quizz, 12 read_json, 5 render, 17select_controls, 14 simulate_data, 15 torf, *13* use_vignette, 16 use_webex_vignette, 16 webex_vignette, 17